A thesis submitted to the Faculty of the Graduate School of State University of New York at Buffalo in partial fulfillment

* of the requirements for the degree of

Master of Science
September 1983

TABLE OF CONTENTS

ACKNOWLEDGEMENT

LIST OF FIGURES
LIST OF TABLES
ABSTRACT

THE COORDINATE SYSTEMS AND CALIBRATION
3.1 The Bifurcation
3.2 The Coordinate Systems Definition
3.3 Relationship Between The Two Coordinates
—————保en Two Beams Are In Vertical Planes
3.4 A Discussion For Probe Point In The Curved Portion
3.5 Position Calibrartion In Practice
3.6 Calibration On Tracker Outputs

CONTENTS

7.1 Summary And Conclusions
7.2 Suggested Further Investigations And Comments

APPENDICES:

1) SDK-85 EXPANSION AREA SCHEMATIC
2) TRANSLATOR $\{3$ TRANSLATOR INTERFACE CONNECTION DIAGRAM
3) STEPPER MOTOR DRIVING MODES
4)I/O PORT 侖 BIT ASSIGNMENT FOR MICRO-PROCESSOR
4) PIN ASSIGNMENT
5) LED INTERFACE SCHEMATIC
6) SOFTWARE PROGRAM LISTING

REFERENCES

ABSTRACT

Aspects of flow in a human lung can be modeled by a series of simple bifurcations. A scaled-up which preserves dynamical similarity can be accomplished by using a finid of higher viscosity and reducing the flow speed so that the Reynolds number is constant.

The experiment carried out here uses a Laser Doppler Anemometer System to measure velocity field in a three-quarter inch diameter tube which is a scaled-up typical bronchial bifurcation. Tap water seeded with alumina trihydrate is used as the working media. An ad-hoc calibration program is introduced to take care of the reflection problem caused by different reflective indice between water and the bifurcation which is constracted of plexiglas.

Measurement of tubewise velocity component is made with a He-Ne LDA system moved by a three dimensional traversing system which is controlled by an SDK-85 microprocessor. Signals processed through tracker are analyzed by a PDP-11 minicomputer. Serial interface between the minicomputer and the microprocessor is established so that the positioning of the 1 aser system can be automated.

Evolution of the primary profiles thruogh the bifurcation is investigated in detail at Reynolds number 320. The flow was found to have 'head-shoulder', second hump', and 'wing-1ike'features, etc. Plausible reasons are
given to interpret these features. A comparison of the flow pattern in major direction with 01son's hot-wire-measured data is made. The differenct situations between the two measurements are noted.

1.1 GENERAL STATEMENT OF THE WORK

The mechanics of breathing in human trachea and bronchia from the viewpoint of an engineer is just a flow going through various bifurcations. It is therefore believed that aspects of flow in a human lung can be modeled by a series of simple bifurcations. Because of the small sizes associated with the real lung,itis highly desirable in the laboratory to work with scale models which ate larger. Dynamical simulation of the flow in the lung can be accomplished in these models using the principle of dynamic similarity, which requires that the Reynolds number of the model be the same as that in the lungs.

This study is an attempt to measure the flow fieldina lung bifurcation using a computerized Laser Doppler Anenometer system. The scope of this work is twonfold:
(1) The investigation on the flow field

Care is taken to avoid possible errors due to the inherent characteristics of the laser system.
(2)The automation process

Efforts were made to have both the probe positioning and data acquisition/analysis process

Altough the application of this investigation is to flow in the human lung, the methods developed and the results obtained are also applicable to piping systens where bifurcations occur.

1.2 RESEAKCH BACKGROUND

Studies of flow patterns within the branching systems which attempt to mimic flow conditions within the body have been conducted for years. Leonado Da Vinci, in about 1500 , conducted experiments on branched channel flow for biological application. Lie sketched the flow patterns in his experiments which clearly show the division of the fluid stream into the two branches, an eddy formation on the surface of the flow dividergradual disappearance of the large eddy as it moves downstream, and separation at the sharp inner wall of curvature, along with reattachment at a downstream position.

Namann and Zeller $\left({ }^{1970}\right.$ conducted experimental studies on large scale model bifurcations with laminar flow for á range of Reynolds number from 400 to 1100 under steady and pulsatile conditions. They used colored dye strears to describe the basic patterns of flow and found secondary velocity compönents developing just downstream from the flow

Several researchers have used hot wires to measure velocity profile in model bifurcations. Schroter \geqslant Sudiow (1969) used a single hot wire to determine the velocity profile in the plane of the bifurcation and normal to the plane for a symmetrical bifurcation with a sharp flow divider, a total branching angle of 70 degrees, and a sharp curvature. They also used a smoke stream to visualize the secondary currentsp showing a secondary flow pattern downstrean from the flow divider. At the inner wall of curvature they also showed separartion occurring.

Schreck Q Mockros ($^{(7)^{\circ}}$ also used single hot wire to measure the velocity profiles at each $\pi / 4$ position in a series of bifurcations. The two symetrical models used have total branching angles of 42 and 80 degrees. The velocity distribution obtained by Schreck β Mockros were in general similar to the measurements of Schroter β Sudiow. Olson () conducted more extensive hot wire measurements. He used a pulsed and a sensor wire together to neasure all three components of the velocity field within a set of bifurcations. He used six bifurcations of which one is asymetric and the branching angles were 50, 70,and 90 degrees. 01 son recorded results at various Reynolds numbers between 300 and 1700. Lie found no separation from the outside "wall since the wall in his model is gradually

Al1 previous investigators used hot wires which we believe could have some disturbance on the flow fields. The experiment carried out here used Laser Doppler Anemometer to measure the flow fields. The major advantages for the laser system over hot-wires are:
(1) It creates essentially no disturbance to the flow. (2)The relation between Doppler frequency and flow velocity is linear
(3)It is Sensitive to only velocities in the measured direction.

Another advantage of the LDA over hot wires in measurement accuracy is its Gausian intensity distribution which weights more on the center-point velocity than on the pheripheral area in the 'control volume'.

Although the effectiveness of the LDA technique has been widely recognized, some of the problems associated with LDA have been noted in taking the measurement. (See Chapter 5.)
1.3 BASIC PRINCIPLES OF THE LDA SYSTEHS

As shown in Fig. 1.1 , for the differential mode LDA systen which we use here there is a well known Doppler

$$
\begin{aligned}
& f_{s i}=f_{i 1}+\frac{\bar{V} \cdot\left(\hat{e}_{s 1}-\hat{e}_{i 1}\right)}{\lambda_{1}}-\cdots\left(B_{4} \cdot 1.1 \cdot a\right) \\
& f_{s 2}=f_{i 2}+\frac{\bar{V} \cdot\left(\hat{e}_{52}-\hat{e}_{i 2}\right)}{\lambda_{2}}-\cdots(2 q \cdot 1.1 \cdot b)
\end{aligned}
$$

Where:
$f_{i l}, \lambda_{1}, \hat{e}_{11}=f r e q u e n c y$, wavelength, and unit vector of the first incident light
$f_{i z}, \lambda_{2}, \hat{e}_{i z}=f r e q u e n c y$, wavelength, and unit vector of the second incident light
$f_{S I} \hat{e}_{S I}=f r e q u e n c y$ and unit vector of the scattered light due to the first incident light
$f_{s z} \hat{e}_{S Z}=f r e q u e n c y$ and unit vector of the scattered light due to the second incidentlight
$\overline{\mathrm{V}} \quad=\mathrm{velocity}$ vector of the scattering center - $\theta=$ scattering angle
 measuring direction, in the plane of the two incident beams and normal to the bisector of the angle between the two incident beams

FIG. 1.1 Doppler Signal Formation

Therefore we can detect a beating frequency:

$$
\begin{align*}
f_{d}= & f_{s 2}-f_{s 1} \\
= & {\left[\frac{\bar{V} \cdot\left(\hat{e}_{s 2}-\hat{e}_{i 2}\right)}{\lambda_{2}}-\frac{\bar{V} \cdot\left(\hat{e}_{s 1}-\hat{e}_{i 1}\right)}{\lambda_{1}}\right] } \\
& +\left[f_{i 2}-f_{i 1}\right]
\end{align*}
$$

This is a general case either with or without a frequency shift. In practice we have the optical frequency shift, (for much much smaller than the incident frequency ($\mathrm{i}_{\mathrm{o}}=\sim 40 \mathrm{MHz}, \mathrm{f}_{\mathrm{i}} \sim 10^{14} \operatorname{HL} \mathrm{~Hz}$) so that Eq. 1.2 is then reduced to:

$$
\begin{align*}
f_{d} & =\frac{V_{x} \cdot 2 \sin (\theta / 2)}{\lambda}+f_{0} \\
& =f_{D}+f_{0}
\end{align*}
$$

where:
$\lambda=\lambda_{1}=\lambda_{2}=632.8 \mathrm{~nm}$ the wave length of the incident light for the Helium-Neon system $f_{D}=$ the Doppler frequency
and:

$$
\begin{array}{ll}
V_{x}=c \cdot f_{D} & ---(E q \cdot 1.4) \\
c=\frac{2 \sin \theta / 2}{\lambda} & ---(E q \cdot 1.5)
\end{array}
$$

Note that based on Snell's law, different reflective indices of the fluids will not affect the calibration factor C because of the self-compensation between. λ and $\sin \frac{\theta}{2}$.

The detected frequency is encoded in the photocurrent by a photodector in the following form:

$$
i_{d} \alpha E_{s_{1}}^{2}+E_{s_{2}}^{2}+2 E_{1} E_{s_{2}} \operatorname{Cos}\left(2 \pi f_{d} \cdot t\right) \cdots(\mathrm{Eq} \cdot 1.6)
$$

where:

$$
\begin{aligned}
& I_{d}=\text { photodector current } \\
& E_{S!}=a m p l i t u d e \text { of the light scattered from the } \\
& E_{S Z}=\text { first beam }
\end{aligned}
$$

second beam

$t=$ time variable
Knowing $f_{0}, \theta, a n d \lambda$ wan thus obtain the velocity component by processing the photocurrent.

EXPERIMENTAL DESCRIPTION

2.1 GENERAL DESCRIPTION

This chapter describes the experimental setup and how the facilities are working together. A schematic system configuration is shown in Fig. 2.1. The whole system is divided into the following subsystems:
(1) The Flow System
(2) The Laser and Optics System
(3) The Data Acquisition/Analysis System
(4) The Traversing System
2.2 THE FLOW SYSTEM

As can be seen on Fig. 2.1, the working fluid is flowing in closed loop manner with constant head reservoirs to maintain a steady flow pressure across the bifurcation.

To maintain a slow and steady flow, the driving force of the 1 iquid is the elevational difference between the upper and the lower tanks. The two tanks are situated on angle-iron racks which are bolted to a vertical steflame. The relative elevation of the two tanks is adjustible from approximately -35 inches to +35 inches, but is set at +29 inches all through the experiment. Flow velocity is controlled by a velocity control valve right downstream the upper tank. A pump is used to provide the make-up water for the upper tank so that constant water levels on both upper and lower tanks can be maintained. The function of the four-way cock is to easily reverse the flow direction at any time without reassemble any portion of the flow system.

The bifurcation portion is constructed of two opposite and symmetric pieces of plexiglas in which the semi-circular grooves are carved. (See section 5.1 formore detail geometry of the bifurcation area.) Note that the long straight tubing is deliberately introduced right upstrean and downstram of the interesting area to ensure a fully developed steady-state incoming flow. A calibrated rotaneter is installed on the returning line to measure the volume flow rate.

All the piping is consisted of three quarters inch inside dianeter tygon tubes. The diameter on the bifurcation area is also three quarters inch.

2.3 THE LASER \mathcal{K} OPTICS SYSTER

The laser system used is Helium-Neon laser, Hodel 124B, made by Spectral-Physics. Some specifications are included in Table 2.1. The transmitting optics is a DISA 55x modular system and is schematically shown on Fig. 2. 2 .

The laser light enters the quarter wavelength retarders, of which one is connected on the laser head to convert the linearly (and vertically) polarized beam into circularly polarized beam, and the other, mounted onto the initial optical end, reverses the polarization back to vertical direction. This allows free rotation of the entire optics assembly without altering the polarization within the optics unit.

The entering beam is then split into two equal intensity beams in the beam splitter. When the two beams go through the Eragg cell section, one of them passes through the Bragg cell which up-shifts the beam by 40 HHz . The unshifted beam passes through a glass rod in order to maintain optically equal paths with the shifted bean. The next module, the beam displacer, displaces the shifted beam so that both beans can collinate into the ensuing backscatter section.

Pinhole"section is situated next to the baciscatter section to eliminate undesirable reflections or scattered light from front lens. The two beams pass through pinhole
section and then enter the beam transiater where the beam separation is drawn closer to enter beam expander.

The function of the beam expander is to intensify the light at the latter focal point by a factor of approximately 14, resulting in an improvement of signal to noise ratiol SNR) by approximate $1 / 7$ times. Lastly, the beams are brought to focal point via a front lens.

In the backscatter mode, signal from the scattering center at the focal point penetrates back through front lens, beam expander,beam translater, pinhole section and then is reflected by the backscatter section into the photomultiplier. This mode was orginally designed but later abandoned because of the extremely low signal to noise ratio resulting from the reflected light from the plexiglas surface which is much higher than the backscattered Doppler signal.

In the forward scatter mode used, the photomultiplier (PM) tube is attached to a long bar which, in turn, fixed to the traversing system to compensate the movement of the bean intersection. (See Figure 2.5.)

The shifted Doppler signal is detected by the $P M$ optics, transformed into current signal by the ph section, and then fed to the shifter for further processing. A 1 ist of optical paraneters is shown on Table 2.1.

$55 X$ MODULAR LDA OPTICS.
 One-Component Forward Scatter and Backscatter Mode with Frequen

TABLE 2.1 PARAMETERS FOR THE LASER AND OPTICS SYSTER
Laser type: He-Ne $15 \xi_{幺} 35 \mathrm{~mW}$, polarized
Laser make: Spectral-piysics, Hodel 124B
Wavelength, : 632.8 na
Front 1 ens type: DISA X 57 , Achromatic
Focal 1 ength, $f: 310 \mathrm{~mm}$
Focal length apurature, D: 79 mm
Beam dianeter, d:1.1mm
Beam separation, D (after beamexpander): 25 mm
Expansion ratio, E : 1.9375
Half intersection angle, $\theta / 2$ (in the air) : 4.56 Deg.
Focused beam waist diameter, $d_{f}: 0.1172 \mathrm{~mm}$
Detector optics: inaging type with pinhole
Photodetector : Photomultiplier RCA 4526
Dector pinhole diameter, $\quad 0.1 \mathrm{~mm}$ 1

Probe volume diameters:

$$
\begin{aligned}
& 2 \mathrm{a}=1.475 \mathrm{~mm} \quad \text { (Convention as in Fig. 5.2) } \\
& 2 \mathrm{~b}=0.117 \mathrm{~mm} \\
& 2 \mathrm{c}=0.117 \mathrm{~mm}
\end{aligned}
$$

Fringe space, $\delta_{f}: 3.983 \mathrm{~m}$
Fringe number, $N_{f}: 15$
Calibration factor, $C=\frac{\lambda}{2 \sin (\% / 2)}: 3.983 \mathrm{~ms}^{-1} / \mathrm{MHz}$
2.4.1 Signal Nomenclature

The following symbols are used:
f_{D} : Doppler frequency, directly proportional to particle velocity in the direction of measurement fo :Optical frequency shift, introduced by Bragg cell $\left(f_{0}=+40 \mathrm{MEz}\right.$)
fd :The detected frequency by PN tube $\int_{40}: E 1 e c t r o n i c$ frequency shift, due to the local oscillator in the $55 N 10$ DISA frequency shifter is consisted of two parts: $\quad\left(\int_{20}=40 \mathrm{MHz}+\right.$, f(). The 40 MHz is to cancel out the optical shift f_{0}. f_{S} is the net frequency shift. f_{T} : The tracker input frequency, also the shifter output frequency
2.4.2 Signal Processing Before Tracker

The frequency detected by PM is:

$$
f_{d}=\left|f_{D}+f_{0}\right|-\cdots-(E q \cdot 2.1)
$$

This signal is then fed to the frequency shifter where the electronic frequency shift is imposed.
and

Since $f_{0}=40$ hila $\propto f_{D}>-40$ milk all through the experiment, we have output from the shifter:

$$
f_{t}=\left|f_{d}-f_{L c}\right|=\left|f_{0}-f_{s}\right|---(E q .2 .2)
$$

This signal is then fed into a DISA 55 H 20 frequency tracker.
2.4.3 Signal Processing In Tracker

Fig. 2.3 shows how signal is 'tracked' by a voltage controlled oscillator (VCO), and the various outputs of the tracker.

The core potion of a tracker is a phaselock loop whose task is to reproduce the original input signal while removing as much of the noise as possible.

A simplified phase look loop is shown in Fig. 2.4. The input signal has a phase $\theta_{i}(t)$ and the VCO output has a phase $\theta_{0}(t)$. The two signals are compared in the phase detector and the 'error' signal, \bigcup_{d} is produced proportional to the difference in phase between its inputs,i.e.

$$
V_{d}=K_{d} \cdot\left(\theta_{i}-\theta_{0}-\phi\right) \quad \cdots-(E q \cdot 2.3)
$$

Where :

$$
\begin{aligned}
& K_{d}=p h a s e-d e c t o r \text { gain factor (volt/radian) } \\
& \Phi=t h e d e s i g n e d \text { phase } 1 \text { ag between } \theta_{i} \text { and } \theta_{0}
\end{aligned}
$$

Phase error voltage, V_{d} is filtered by a loop filter
where noise and high frequency signal components are suppressed and the control voltage, V_{c} is produced.

The frequency of the $V C O$ is controlled by V_{c}. We have:

$$
\omega=k_{0} \cdot V_{c}
$$

$$
----(\text { Eq. 2.4) where: }
$$

K_{0}
is the VCo gain factor (rad./sec. volt)
ω is VCO frequency (rad./sec.)

Eq. 2.4 can be rewritten as:

$$
\frac{d \theta_{0}}{d t}=k v_{c}
$$

-----(Eq. 2.5) Thus, by tracking the phase of input using output signal θ_{i}, the VCr frequency is essentially the average frequency of the input signal when the loop is locked. Note that the time constant of the loop is so small that VCO frequency is actually an instant reflection of the input signal.

As shown in Fig. 2.3, the input signal is amplified and filtered leaving only frequencies in the set range before being fed into the phaselock loop. The' sIN' output from the VCO is kept 90 degrees behind the input (ie. $\oint=90$ Deg.) when signal is locked,
thus : $\quad f_{v e}=f_{T}$
-----(Eq. 2.6)
is further processed in three ways:
(1) ANALCG OITPUT

One branch goes through frequency-to-voltage (f/v) converter, output filter, sample β hold, and then output so that

$$
V_{\text {analog out }}=\frac{10 V}{R A N G E} \cdot f_{T} \quad---(E q \cdot 2.7)
$$

Where RANGE is the maximum frequency in the selected range.
(2) DIGITAL OUTPUT β DISPLAY MODULE

The second branch goes to the DIGITAL OUT Block (Fig. 2.3), where counting of the 'SINE' output of the VCO takes place at regular intervals.

The digital output is expressed as:

$$
D=256 \cdot \frac{f_{T}}{R A N G E}-\text { (Eq. 2.8) }
$$

and is represented by an 8-bit word.

This signal was original used as a digital input to a PDP-11/34 minicomputer for data analysis but was substituted for by the analog output because of the nonfunctional serial buffer interface between the digital output and the computer.

The display module gets signal from the digital out. The following parameters are used to calculate
either the Doppler frequency or flow velocity:
a) net frequency shift for from shifter
b) frequency range R, from front panel setting
c) calibration factor C, from front panel setting

$$
C=1 \text { Display Doppler frequency }
$$

$C=\frac{\lambda}{2 \sin \theta / 2}$ Display velocity
d) f_{7} / f_{D} setting, from front panel

When in f_{T} mode, f_{S} will be forced to be 0 in calculation.
e) $f_{D}-f_{s}>0 / f_{D}-f_{S}<0$ setting, from front panned
$f_{D}=f_{S}+f_{7}$ when $\quad f_{D}-f_{S}>0$
$\mathbf{f}_{D}=f_{S}-f_{T}$ when $\quad f_{D}-f_{S}<0$

(3) LOCK DETECTOR

The third branch from VCO is presented in the ' COSINE' form. (ie. $\oint=0$ no phase lag to the input signal) This signal, together with a branch of the amplified input are first multiplied in a phase detector and then low -passed by a filter. The low-passed signal, ΔV_{ℓ} is compared with a preset reference level $\Delta V_{\text {Cr }}$ in the level detector. The result is:
(a) "When $\Delta V_{X}>\Delta V_{\ell r t h e ~ l o c k e d ~ s i t u a t i o n ~ i s ~}^{\text {a }}$ determined.

The LOCK output will show a T TL logic 0
(b) When $\Delta V_{\ell}<\Delta V_{\ell}$ the unlocked situation is determined and the LOCE output will show a TTL logic 1. If the lock detector indicates out of lock, the analog as well as the digit outputs will immediately be. frozen.

When signal is out of lock, a search circuit, which is triggered by a delay circuit 500 VC periods after the initial unlock, will assume.(i.e. =1) The phaselock loop will be interrupted by an electronic contact at the input of the loop integrator. The 'search' block will send an N^{\prime} signal of alternately -0.22 V and +0.22 V to the loop integrator thus forcing the VCO frequency going up and down in the selected range until an agreement between tracker input and the search frequency is reached. AT this time the lock detector will resume locked and the phaselock loop will lock in again.
2.4.4 Signal processing After Tracker

The ANALOG OUT and the LOCY signals are drawn from tracker and fed into a Phoenix analog to digital converter whereby the 'data' enter computer. These data are analyzed by a Fortran subroutine, ANA.FTN and the mean velocity, root mean square fluctuation, turbulence intensity for the locked, unlocked, and combined situations are calculated.
2.5.1 GENERAL DESCRIPTION

The function of the traversing system is to:
(1) carry the bifurcation and move it in Z-direction (2) carry the laser and optics system, including receiving $P M$, and have two-dimensional maneuverbility on the system (X $\mathcal{X} Y$ directions)
(3) perform automatic as well as manual positioning of the LDA system
(4) display current position of LDA in XYZ system. By combining (1) and (2), the 1 aser 'probe' has actually three dimensional maneuverbility.

The traversing system can be divided into three portions:
a) The mechanical portion β its power drive
b) The translater and the translater interface
c) The SDK-35 microprocessor controller and position display

Fig. 2.5 shows a pictorial sketch of the mechanical parts. Note the position of the bifurcation and laser optics.

The vital parts of the mechanical portion are the three sets of stepper motors and shaft encoders which are distributed to the three axes. Each axis is moved by a stepper motor of which the internal windings are sequentially energized by its power drive. Each axis has also a shaft encoder assembly which is an optical-incremental type and provides a digital pulse train to the $\operatorname{SDK}-85$ controller.

The encoder consists of an encoder plate attaching to the shaft and the body of the encoder is mounted to a fixed location. A matched photodiode and LED is mounted on the body. With a 5-pitch-per-inch lead screw and the 200-slot encoder plate, the system accuracy is approximately within 0.002 inch.

The stepper motor type is H062-FD09 made by Superior Electric and the encoder is made by Vernitech for robotics industry.

FIG. 2.6 TRAVERSING SYSTEM BLOCE DIAGRAM

TRAMLATCR movnla
2.5.3 THE TRANSLATER AND THE TRANSLATER INTERFACE

A functional block diagram of the traversing system is given in Fig. 2.6 .

The function of the translates is to provide a sequential control signal in order to energize the motor sequentially. There are a variety of selections for the sequential control. (See Appendix 3.) However, due to the software and hardware arrangement, only the following control mode is being used:
a) For manual control: Base speed $Q_{\text {R }}$ Run speed (High speed)
b) For automatic control: Base speed only

The translate interface is at the system site where the switching of signals from the SDK-85 or the manual switch array from front panel switches and the gating of proper combination of these signals onto the translator card occur.

Refer to Fig. 2.6. The PULSE OUT signal, a pulse train generated by the internal oscillator in the translator, is 'gated', in the translator interface card. according to the control switch on the front panel or a control word from S DK -35, in the translator interface card. This pulse train, included in the translator control
signals, is then fed back to either CW PULSE or CCV PULSE on the translator board to determine the motor direction.

A 1 is of control bits is given in Table 2.2. Note all signals are T TL compatible. (Also refer to Appendix 2, TRANSLATOR 稙 TRANSLATOR INTERFACE CONNECTION DIAGRAR for better understanding.)

TABLE 2.2 HNEHONICS OF THE CONTROL BITS

BIT NAME	DESCRIPTION
AUTO/HANUAL	Switch on front pannel determining
	auto or manual mode
A0, A1	Address codes for translators and
	their coriesponding notors
	$\mathrm{A1}, \mathrm{~A} 0=0,0$ axis 1 i.e. Z axis
	0,1 axis $2 \quad Y$ axis
	1,0 axis 3 x axis
NC BASE	Base speed for auto mode
NC RUN	High speed for auto mode
NC CW	Clockwise rotation of motor, auto mode
NC CCH	Counterclockwise rotation, auto mode
MAN BASE	Base speed, manual mode
MAN RUN	liigh speed, manual mode
HAN CW	Clockwise rotation, manual mode
MAN CCW	Counterclockwise rotation, manual mode
RUN	Run speed, active low
$\overline{\text { BASE }}$	Base speed, active low
$\overline{\mathrm{CCN}}$ PULSE	Triggering pulses for counterclockwise
	rotation, gated fromi PULSE OUT
$\overline{C W}$ PULSE	same as CCl PULSE but for clockwise
	rotation
$\overline{\text { PULSE OUT }}$	Triggering puise train from built-in
	oscillator in translator

Except for the expansion area and the readout portion, the microprocessor is, in general, the same as a standard SDE-85 microprocessor. (Refer to SDK-85 system design kit, Users manual.)

The functions of the controller are to:
(1) Determine mode of operation (auto/manual) by reading front panned switch settings.
(2) Accept manual move command from front panne switch when in manual mode.
(3) Accept position command (in XYZ format) from a PDP-11/34 executive computer when in auto mode.
(4) Decode the position information and activate the translator control word to drive the motors accordingly.
(5) Monitor position via a feedback loop closed by shaft encoders during motor operation.
(6) Update current position to the front panel LED position* readouts.
(7) Stop drives by resetting the translator control word when the system reaches the disired position.

The translator status word is hardware wired but is not used by the software program.

An analysis of the execution tine shows that at a feedback loop execution time of 90 seconds, the software counter can track both base speed pulse train (600 step/sec) and high speed pulse train (3000 step/sec) without a loss of data pulse.

A schematic block diagram of the $\operatorname{SDK}-85$ is given in Fig. 2.7. For completeness, the following information is included in the Appendices:

SDK-85 EXPANSION AREA SCHMATIC----Appendix 1
I/O PORT β BIT ASSIGNMENT----Appendix 4
PIN ASSIGNHENT----Appendix 5
LED INTERFACE SCHERATIC----Appendix 6

CHAPTER 3
THE COORDINATE SYSTEMS AND THE CALIBRATION
3.1 THE BIFURCATION

Fig. 3.1 shows the detail geometry of the bifurcation under investigation. The bifurcation was milled symmetrically out of two pieces of rectangular plexiglas. The major axes are defined in the $\pi / 2$ or $3 \pi / 2$ direction on each plane (s=constant). These axes also fall on the plane of bifurcation. The minor axes are defined perpendicular to the corresponding major axis on the same s plane. In other words, it falls on $\quad=0$ or position.
The 'lung' is positioned upside down to
avoid accumulation of the small air sutrainmen at low speed running.

3.2 THE COORDINATE SYSTERS DEFINITION

Since the traversing syster can only travel in the Cartesian coordinates and the probe point in bifurcation is better expressed in a 'cylindrical' coordinates, The two coordinates must be well defined and their relationship be established.

Fig. 3.1 sketches the relation between the 'cylindrical' coordinates (s,r, θ) for beam intersection and the Cartesian coordinates on the LDA (X,Y, X). The origin of (s, r, θ) system is set right at center line spot where the curvature begins. The + s direction is defined as streamise (actually tubewise) displacement toward downstrear of the lung bifurcation. The straight ines $\theta=0$ are defined normal to the plane of bifurcation and toward LDA system. (i.e. Parallel to and toward +X direction.)

The (X,Y,Z) coordinates on the LDA is defined such that the traversing system is at its origin when the bean intersection is at the origin of the (s,r, θ) system. The + Y direction is parallel to the line, $\theta=\pi / 2$ on $s=0$ plane.

The programmed transformation from (s,r, θ) systen to (X,Y,Z) system is established through optical as well as geometrical relationship. Thus accurate and automatic positioning of tine probe point becomes possible.

The transformation from (s,r, θ) to (X, Y, Z) is established in the following ways:
(1) Case 1, $s=0$: $Z=0$ and transformation is detailed in section 3.2.
(2) Case 2, s<0:Saine as case 1 except $z=s$.
(3)Case 3,s>0:
(a) Transformation from (s,r, θ) to $\left(X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}\right)$ is first made in the same way as case 1 by presuming $\left(X^{\prime \prime}, Y^{*}, Z^{\prime \prime}\right)$ as (X, Y, Z)
(b) Transform ($X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$) into ($X^{\prime}, Y^{\prime}, Z^{\prime}$) through a rotation angle as showninfig. 3.1.

Note $X^{\prime \prime}=X^{\prime}=x$ in the case.
(c) Transform ($X^{\prime}, Y^{\prime}, Z^{\prime}$) into (X, Y, Z) through a pure translation.

FIG 3.2 DEFINITION OF THE COORDINATES

3.3 THE RELATION BETVEEN THE TVO COORDIHATES
——— WHEN THO BEALIS ARE IN VERTICAL
planes

Fig. 3.2 shows how the probe point $P(0, r, \theta)$ and the position of $\operatorname{LDA}(X, Y, 0)$ are related.

The reference R, imbedded in the LDA, is arbitrarily chosen and thus defines $2 b$ and A winch is the distance from the reference point to the plexiglas surface. It is defined that when goes to $\mathrm{C}(0,0,0)$ in $(\mathrm{s}, \mathrm{r}, \theta)$ system, R goes to Cartesian origin and A becomes A_{0}.

The following equations can be solved for
θ_{i} and $\theta_{0}:$

$$
\begin{aligned}
& n_{2} \sin \theta_{i}=\eta_{3} \sin \theta_{0}--(E q \cdot 3.1) \\
& \frac{r}{\sin \theta_{0}}=\frac{R}{\sin \left[\pi-\left(\theta-\theta_{i}\right)-\theta_{0}\right]}--\left(E_{q} \cdot 3.2\right)
\end{aligned}
$$

FIG. 3.3 RELATION $\operatorname{BETGEEN}(0, r, \theta)$ AND $(X, Y, 0)$

where:
$n_{2}=r e f 1 e c t i v e$ index of plexiglas (1.489)
$\cap_{3}=r e f l e c t i v e$ index of working fluid (water 1.33)
$\theta_{i}=i n c i d e n t$ angle in horizontal plane
O. $_{0}=r \operatorname{flected}$ angle in horizontal plane
$R=i n t e r n a l$ radius of the tube
Introducing $\Delta=\theta-\theta_{i}$, we have:

$$
\begin{aligned}
& \theta_{i}=\sin ^{-1}\left(\frac{n_{3} r \sin \Delta}{n_{2} r^{2} \sin ^{2} \Delta+(R-r \cos)^{2}}\right)--(E q \cdot \quad 3.3) \\
& \theta_{0}=\sin \left(\frac{r \sin \Delta}{\sqrt{r^{2} \sin ^{2} \Delta+(R-r \operatorname{li} \Delta)^{2}}}\right)-(E q \cdot \quad 3.4)
\end{aligned}
$$

An iteration program was made to solve for θ_{i} and θ_{0}. From this the cartesion position of the LDA can be calculated:

And:

$$
\mathrm{Y}=\mathrm{R} \sin \theta_{i}=\frac{R \cdot n_{3} \cdot r \sin \Delta}{n_{2} \sqrt{r^{2} \sin ^{2} \Delta+(R-r \cos \Delta)^{2}}}-(E q \cdot 3.5)
$$

Further we have:

$$
\begin{aligned}
& F=r \cdot \cos \left[\Pi-\left(\theta+\theta_{0}\right)\right]+R \cos \theta_{0}---(E q \cdot 3.6) \\
& \mathrm{D}=\mathrm{F} \cdot \cos \left(\theta_{0}-\theta_{i}\right) \quad-\cdots(\mathrm{Eq} \cdot 3.7) \\
& t=D \tan \theta_{3} \\
& e=C-R \cos \theta_{i} \\
& L=t+e \tan \theta_{2} \\
& A=(B-L) \cdot \tan \theta \text {; } \\
& x=A-A_{0} \\
& H_{1} \sin \theta_{1}=N_{2} \sin \theta_{2}=N_{3}, \sin \theta_{3}-\cdots-(E q \cdot 3.13)
\end{aligned}
$$

$$
\begin{aligned}
& x=\left\{B-\left\{\left[R_{1} \theta_{0}-r \cos \left(\theta+\theta_{0}\right] \cos \left(\theta_{0}-\theta_{i}\right) \cdot \frac{n_{1} \sin \theta_{1}}{\sqrt{\eta_{3}^{2}-n_{1}^{2} \sin ^{2} \theta_{1}}}\right.\right.\right. \\
& \left.\left.+\left(C-R \cos \theta_{i}\right) \frac{n_{1} \sin \theta_{1}}{\sqrt{n_{2}^{2}-n_{1}^{2} \cdot \sin ^{2} \theta_{1}}}\right\}\right\} \tan \theta_{1}-A_{0}--(E q \cdot 3.14)
\end{aligned}
$$

Where $\theta_{1}, \theta_{2}, \theta_{3}{ }^{\text {are }}$ the incident and reflective angles in vertical plane and all symbols are as shown on Fig. 3.3.

3.4 A DISCUSSION FOR PROBE POINT IN THE CURVED PORTION

In the course of transformation from the (s, r, system to the (X,Y,Z) system when $s>0$, we have added a combination of pure rotation and pure translation to the basic transformation of case 1. This is exactly true when the two beams hit the straight tube portion, assuming the tube is perfectly milled. However, an offset from the ' modeled' position to the true position exists. This section estimates the error and discusses tine legitimacy of neglecting this offset in practice.

Different perspectives of the beam hitting on the curved portion of the plexiglas and water interface are shown in Fig. 3.4. Note the exaggerated comparison on the actual beam locus (solid lines) and the model one (double dotted ines). The offset $P Q$ can be decomposed into PQI as shown in sideview 1 and PQ2 shown in front view. Fig. 3.5 clarifies the difference between the modeled half-intersection angle, θ_{2} and the actual ones, θ_{2} and $\dot{\theta}_{2}$, in two perpendicular planes.

Considering a unit incident beam $I K$ and taking $\theta_{2}=4.56$ deg. $=0.079537$, we can approximate:

$$
\beta \sim \frac{\theta_{2} R}{D C C}=0.57^{\circ}
$$

where $\mathrm{R}=0.375 \mathrm{in}$.
:ID of the tube
$\mathrm{DCC}=3$ in.
: Distance from center of the cured portion to centerinine of the tube.

Al 1 symbols are as shown on the figures.
and,

$$
\mathrm{HK}=\mathrm{DCC} \sin \beta=0.0298^{\prime \prime}
$$

$\mathrm{Also}: \mathrm{AD}=\cos \theta_{2} \quad---(\mathrm{Eq} \cdot 3.15)$
$\mathrm{ED}=\sin \theta_{2} * \cos \beta \quad---(\mathrm{Eq} \cdot 3.16)$
$A K=\sqrt{\cos ^{2} \theta_{2}+\sin ^{2} \theta_{2} \cos ^{2} \beta}-\cdots(E q \cdot 3.17)$
$\cos \left(\frac{\pi}{2}-\mathbb{E}_{21}\right)=\frac{A K^{2}+K^{2} B^{2} A D^{2}}{2 \cdot A K \cdot K D}-(E q \cdot 3.18)$
So, $\theta_{21}=4.5598$ deg. by substituting $\theta_{2} \& \beta$ into (Eq.'s 3.15 (1) 3.18).

Therefore the offset from sideview 1 is

$$
\begin{aligned}
\mathrm{PQ1} & =\left(\cot \theta_{31}-\cot \theta_{3}\right) \cdot \mathrm{HK} \\
& =0.000494^{\prime \prime}
\end{aligned}
$$

and the offset from front view is

$$
\begin{aligned}
\mathrm{PQ} 2 & =\mathrm{in} \tan \left[\operatorname{arc} \sin \left(\frac{\mathrm{H}}{\mathrm{H}_{2}} \sin \beta\right)-\beta\right] \\
& =0.0000354^{\prime \prime} .
\end{aligned}
$$

The conclusion is that the error is of order

In addition to the analytical analysis, a second bifurcation which has exactly the sane geometry but contains only the vicinity of the bifurcation area was made to perform the experinental calibration.

Scale lines on a gridenscribed on a thin filn was put in the second (along with the working fluid) tube to see if the bean crossing actually hits the calculated positions. Excellent agreement between the computed transformation and the actual positioning was confirmed.

To assure that centeriine of the optics is perpendicular to the bifurcation plane, a thin flatmirror was stuck onto the plexiglas. The spot where the reflected laser beam hits on the focal lens was carefully examined to be in the correct position at all turning angles. and all positions of the optics assembly.

The displacement in $+X$ direction on LDA system is neasured when their corresponding probe point is transiated, in $+X$ direction, from centerline of the miniature to its outer flat surface. This physical displacement, which agrees with the calculated one, is then applied back on the bifurcation to locate its origin. A measured symmetric velocity profile on 2.5 inches upstream the origin further confirms the calibration.

The voltage from the analog output was supposed to be:
$V_{\text {analog }}=\frac{10 \mathrm{~V}}{\text { RANEE }} \cdot \mathrm{f}_{\mathrm{T}} \quad--(\mathrm{Eq} .2 .8) \mathrm{A}$ drift on
the output voltage was found: Therefore, calibration was necessary before $V_{\text {analog onfould be further processed. }}$.

Based on the data shown on the tracker display module, which we found to be working correctly, the following listing shows the relation between the Vanning out and the calibrated analog output $\mathrm{V}_{\mathrm{an} \text { an out: }}$ out

$$
\mathrm{V}_{\text {ana out }}^{\prime}=\mathrm{b} 1 \cdot \mathrm{~V}_{\text {analogout }} \mathrm{b} 0 \quad---(E q \cdot 3 . i 7)
$$

Where bi, bo are constants and were determined by linear regression fitting over the ranges.

$$
\begin{array}{rlrl}
\mathrm{b} 1, \mathrm{~b} 0 & =0.973459,-0.036448 & \text { for Range: } 1 \sim 10 \mathrm{MHz} \\
& =0.991966,-0.091971 & 0.3 \sim 3.3 \mathrm{MHz} \\
& =0.988761,-0.080598 & 0.1 \sim 1 \mathrm{MHz} \\
& =0.988288,-0.072361 & 33 \sim 333 \mathrm{KHz} \\
& =0.979682,-0.103719 & 10 \sim 100 \mathrm{KHz} \\
& =0.979710,-0.068719 & & 3 \sim 33 \mathrm{KHz} \\
& =0.979661,-0.095801 & 1 \sim 10 \mathrm{KHz}
\end{array}
$$

A similar calibration on the LoCK output is also included in the software program ATOD.FTN. The lock percentage is then decided as:

$$
\text { Lock } \%=(1.0143-\mathrm{LV} / 4.33) 100 \%---(\mathrm{Eq} .3 .18)
$$

Where $L V=$ voitage measured on LOCI output and we have used 0.07 volt for full lock indication and 4.95 volts for full unlock situation.

CHAPTER 4

THE SUPPORTING SOFTWARE PROGRAMS

There are two big programs performing automatic positioning \because of $L D A, ~ d a t a ~ a c q u s i t i o n, ~ d a t a ~ a n a l y s i s, ~$ coordinate transformation, and data recording:
(1) MOVE.SRC

This program on SDK-85 was written by Bryan Howe and is modified by the present investigator on the portion which communicates with PDP-11. A simplified flow chart of this program is given in Fig. 4.1 .
(2) LUNG.FTN

This main program carries 6 subroutines functions which are delineated below:

PARAM.FTN: * Initialization of tracker parameters

* Select parameters for analog output calibration

CAL. FTN : * Transformation of (str, $\boldsymbol{\theta}$) to ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)
ATOD.FTN : Calls ADPHX.MAC to sample data from analog-to-digit converter

* Transformation of sampled data to
velocity
\& lock percentage
ADP HX. MAC: * Samples data from A/D converter
ANA.FTN : * Calculates mean velocity, RMS fluctuation , and turbulence intensity for the

1ocked, (unlocked, and combined signals TALK.FTN : * Communicates with MOVE.SRC on SDK-85 The (X, Y, Z) were expressed in thousandth - of inches when they are sending out.

A flow chart showing the overall algorithm is given in Fig. 4.2 .

FIG. 4.1 FLOW CHART FOR MOVE.SRC

FIG. 4.2 FLOW CHART FOR LUNG. FIN (PL)

CHAPTER 5

THE MEASURING TECHANIQUES AND LIMITATIONS

5.1 THE SEEDING PARTICLES

Tap water was used as working medium. There are natural 'seeding' particles in it, however, to enhance the signal receptance, Almina Trihydrate from Alcoa were added. Approximately one quarter of a teaspoon for 18 gallons of water. Composition of the seeding particles is listed in TABLE 5.1.

C333 ALUMINA TRIHYDRATE
A1 0 65.0 \%

Si 0.01
Fe 0 0.004
NaO 0.15

Na O(soluble) 0.02
moisture (110 C) 0.4

Density: $\quad 2.42 \mathrm{~g} / \mathrm{cc}$
Average particle size: $6.5 \circlearrowleft 8.5 \mu \mathrm{~m}$
5.2 LIMITATIONS ON THE LASER ANEMOMETRY

There are a few factors affecting the performance of the LDA system. This portion is to discuss specifically how mach these factors affect our measurement.
(1) Temporal Resolution

The temporal resolution is limited from two sides:
(a) The limited ability of the seeding particles to adapt to flow velocity without significant lag.

This becomes more difficult when the flow has very high fluctuation and short cycle time.
(b) The response time of the signal processor, the frequency tracker, in our case. The processor will not be able to detect the signal if the cycle time of the flow or the the
residence time of the particle is shorter than the minimum transit time of the processor.

Noel Nee (1982)in his thesis set a criterion for maximum particle size. He assumed that particles act like a linear first order system. Therefore, the particle time constant can be evaluated as:

$$
1 / \tau_{p}=\alpha=\frac{\nu K}{a^{2}} \quad--(E q .5 .1)
$$

Where
$K=\frac{q}{2 \frac{p^{\prime}}{p}+1} \sim 1.5$
$\alpha=a^{\rho}$ measure of maximum frequency that particle is able to respond without a significant lag.
$\rho=$ density of the working fluid ($=1$ in our case)
$\rho^{\prime}=$ density of the particle (~2.5 in our case)
$\nu=v i s c o s i t y$ of the fluid ($\sim 0.95 * 10$ ft/sec)
a =radius of the particle
 conservatively pick $a=5 \mu m$. Then:

$$
\alpha=52950 \mathrm{sec}^{-i} \text { or } \tau_{p}=1.89 \cdot 10^{-5} \mathrm{sec}
$$

Considering the bifurcation region which is the only acceleration zone in our problem, We have:
$W=V / R$ Where $W=$ angular velocity $\left(\sec ^{-i}\right)$
Since has a dimension of sec ${ }^{-1}$, we can imagine the flow frequency is of order of $\boldsymbol{\omega}$.

Let $V=V_{\text {max }}=3.24 \mathrm{~m} / \mathrm{sec}, \quad R=.375 \mathrm{in}$.
then:

$$
W \sim 340 \mathrm{sec}^{-1} \text {, or } \tau_{f} \sim 2.94-10^{-3} \mathrm{sec}
$$

Seeing that $\mathcal{X} \gg \omega$, we definitely do not have the velocity lag problem. In fact the difference is so great that even reasonably intense secondary flow regions should be 'traded' satisfactorily.

A check on the other side of the problem shows that the tracker time constant is of order $10 \boldsymbol{\mu} \boldsymbol{f e c}$. This is also much much smaller than τ_{f} thus it may be concluded that there is no problem here either.
(2) The Signal Drop Ont Problem

Signal dropout is a common problem in the continuous LDA processing. The physical reasons for the dropout are as follows:
(a) The signal amplitude is too low due to: aa) Particle concentration too low or particle size too small
bb) Poor S / N ratio
cc) Phase cancellation among the particles
(b) The particle transit time is much too short relative to the loop response time of the tracking type processor.

Buchhave etc. (1979), according to their analysis, concluded that if the dropout time is small compared to the
turbulence integral scale and the tracker holds the last value, as in our case, all the moments of the velocity will be conserved.

It is desirable that dropout be less than 10% if we want to conserve higher order moments in the case of high-turbulence measurement. However, if we can assume that the dropout rate is independent of the velocity of the fluid and sufficient averaging time is used, the first moment of the velocity will be conserved even if we have higher dropout time.

Since our major concern is the first moment velocity (the flow is laminar) and seeing that the dropout rate was kept under 20% throughout our measurement, we concluded no problem ${ }^{\prime} n^{\prime}$ this regard.
(3) Spatial Resolution Probe Volume

Probe volume is defined as the volume within the $1 / e^{2}$ boundary of the optical fringe modulation. For 1 aster beams which have Gaussian intensity profile, the probe volume is an elifipsoidas shown in Fig. 5.2.

The intensity can be formulated as

$$
\begin{equation*}
w(\bar{x})=\frac{1}{(2 \pi)^{3 / 2} \sigma_{x} \sigma_{y} \hat{\sigma}_{z}} \exp \left[-\left(\frac{x^{2}}{2 \sigma_{x}^{2}}+\frac{y^{2}}{2 \sigma_{y}^{2}}+\frac{z^{2}}{2 \sigma_{z}^{2}}\right)\right] \tag{Eq.5.3}
\end{equation*}
$$

Where : $\bar{X}=(x, y, z)$ is the position vector and $\int_{x}, T_{y} \overparen{S}_{z}$ are the standard deviations of the corresponding Gaussian distributions

The spatial resolution of the LDA depends on the probe volume. The selected probe volume must be smaller than the shortest wavelength of the velocity to be measured.

In the system we have:

$$
\begin{array}{ll}
2 \mathrm{a}=4 O_{y}=\frac{d_{f}}{\sin \theta / 2} & \text { (Eq. 5.4) } \\
2 \mathrm{~b}=4 \sigma_{4}=d_{f} & \text { (Eq. 5.5) } \tag{Eq.5.5}\\
2 \mathrm{c}=4 \sigma_{z}=\frac{d_{f}}{\operatorname{Lo} \theta / 2} & \text { (Eq.5.6) } \\
d_{f}=\frac{4}{\pi} \frac{f \lambda}{E d_{i}} & \text { (Eq. 5.7) }
\end{array}
$$

where all symbols are as shown in Table 2.1.
FIG. 5.2 THE PROBE VOLUME

(4) The Curvature Effect

The finite extension of the probe volume resulted in a spatial integration of the flow field. If the flow field is
 different from the velocity at the center point of the volume. This is known as the curvature effect. The following estimates the worst error in our case due to curvature effect.

For multi-particle flows, the continuous Doppler signal relates to the true velocity as follows:

$$
U m(t)=\frac{1}{N(t)} \iint\left(W(\bar{x}) \quad U(\bar{x}, t) g(\bar{x}) d^{3} \bar{x}---(E q \cdot 5.8)\right.
$$

Where : $W(x)$, given in Eq. 5.3, is a weighting function referring to the shape of the measuring volume
, Net) is the instaneons number of particles in the probe volume

Um (t) is the measured velocity
$U(x, t)$ is the velocity at point x
$g(x)$ is a function which accounts for the presence or absence of a particle at a location. ($g(x)=1$, presence $\quad \mu \quad 0$, absence)

To simplify the problem, let's consider only U_{x} direction. Assuming the principal gradient of U_{x} to be in the z-direction and taking the ensemble average vields we can rewrite
$\begin{array}{cc}\bar{U}_{X}, m(t)=\int_{i} I(z) \bar{U}_{X}(z, t) d z & \text { (Eq. 5.9) } \\ \text { where } I(z)=\frac{Z^{2}}{\sqrt{2 \pi} \sigma_{z}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right) & \text { (Eq. 5.10) }\end{array}$

Note that in Eq. 5.10, we have taken the ensemble average so that $N(t)$ and $g(t)$ are no longer present.

In the bifurcation coordinates, let center point of the probe be at $r=r$. Then, Eq. 5.10 becomes:
$U_{S \rightarrow m}\left(r_{\nu}, t\right)=\int_{\gamma_{0}-\infty}^{\gamma_{0}+\infty} \frac{1}{\sqrt{2 \pi} \sigma_{z}} \exp \left[-\frac{\left(\gamma-\gamma_{0}\right)^{2}}{2 \sigma_{z}^{2}}\right] U_{S}(r, t) d r---(E q .5 .11)$
By substituting U_{m} for U_{S}, using a Tailor series expansion of U_{m}, and neglecting higher order terms, we have

$$
\mathrm{Um}\left(r_{0}, t\right)=\mathrm{U}\left(r_{0}, t\right)+\frac{\hat{O}_{2}^{2} U^{\prime \prime}\left(\gamma_{1}, t\right)}{2}---(E q .5 .12)
$$

where donble prime denotes twice differentiation over the r direction.

Thus the error due to the carvature effect is

$$
\begin{aligned}
\operatorname{Err}\left(r_{v}, t\right) & =\frac{T_{z}^{2} U^{u}\left(Y_{0}, t\right)}{2} \quad(E q \cdot 5.13) \\
& =0.1844 U^{u} \quad(U \mathrm{in} \mathrm{~mm} / \mathrm{sec})
\end{aligned}
$$

To have an idea of how big the error is, consider the entrance flow which is Hagen-Poiseuille profile:

$$
\begin{equation*}
\mathrm{U}(I)=\mathrm{U}_{\dot{\&}}\left[1-(I / R)^{2}\right] \tag{Eq.5.14}
\end{equation*}
$$

Substituting into Eq. 5.13 and putting the numbers in yields

$$
\operatorname{Err}\left(r_{c}\right)=-\frac{\sigma_{z}^{2}}{R^{2}} U_{\mathbb{E}}=-0.0016 \mathrm{U} \notin \quad \text { everywhere }
$$

We therefore conclude that, unless very close to the wall, the curvature effect is insignificant.
(5) Measuring Point Effect On Photodector

The measuring volume is defined as the region in the space from which Doppler signals are received and detected by the system. The following are the important factors affecting the measuring volnme:
(a)wavelength and the geometry of the receiving optics such as F-number,f/D.
(b)photomultiplier gain
(c) the position and the focusd point of the PM optics We now focus on the last item since it has certain effect on the measured data.

The detector, placed at a definite angle to the optical axis of LDA, cut out a section of the probe volume given by the intersection of the probe volume and the cone defined by the view field of the detector. Theoretically, the best signal is obtained when the center of the measiring volume coincides with the center of the probe volnme. However, in practice, it is not easy to assure this point, especially when lock percentage is lower. We found, instead of a point, there is a small region around centerine of the probe volume in which, when the measuring point is located, the best signal can be obtained. This error,due to the offset of the measuring point, which is often neglected, may become significant with high velocity gradient. Sometimes, this may account to approximately 3% of the centerifine velocity. Some detail as to how this number was achieved
may not be appropriate The adopted data is then the mean value of the data taken at several spots inside the small region.
(6) Doppler Ambiguity

LDA measurement with continuous Doppler signals is always affected by the random dispersion of particles in the find and the resulting random phase fluctuations of the scattered light. This phenomenom creates an ambiguity in the velocity measurement. It also has a bandwidth broading effect in the spectral analysis.

Fortunately, Doppler ambiguity does not significantly affect the measurement of the first moment which concerns us.

CHAPTER 6

DATA AND RESULTS

6.1 GENERAL DESCRIPTIONS

The flow was measured in detail at a Reynolds number of 320. It was found that flow pattern of 650 Reynolds number is very close to that of 320 Reynolds number based on measurement over several planes.

Measurement were taken on each 30° as well as 45° intervals. The interval in the radial directions is either 0.05 or 0.1 inch depending on local situations. Data points are up to $r=0.35$ inch and sometimes less because of the inavailability of signals. A 1 ist of measured plane is given in Table 6.1.

Because of the symmetrical geometry, the ensuing paragraphs refer only to the right-hand branch of the bifurcation.
6.2 EVOLUTION OF THE FLOW PATTERN

Fig. 6.1 shows that the entrance flow is pretty close to a fully developed Hagen-Poiseuille flow with peak velocity of $2.43 \mathrm{~mm} / \mathrm{s}$.

Because of the divider ahead, the profile is gradually suppressed around the centeriine area thus making it flatter. (This suppression becomes farther-reaching with higher velocity.)

At $S / D=0$, Fig. 6.2, a 'shoulder' in minor axis (0-180) is being brewing. As the expansion space lies aheadin major direction (90-270), the pattern is flatter around centerifine in this direction than in either 0-180 or 45-225 directions.

Patterns for plane $S / D=0.628$ are drawn on Fig. 6.4. Note that the centeriine of the tube direction deviates from the centerline of the bifurcation by 0.04 inch at this location, and makes little velocity difference.

F1ow patterns for $S / D=1.256$ and 1.565 are given in Fig. 6.5, 6.6, and 6.7. Note: (1)the 'shoulder' is becoming apparent in 180-0 direction, (2)offset of the centerline of the tube is significant and velocity shown is tubewise direction everywhere. (3)a second hump is brewing on the right end of the 90-270, 45-225, and 30-210 curves. (Compare to next few pianes.)

Flow patterns right on the plane of the divider are given in Fig. 6.8, 6.9. Note the 'head' is further suppressed on 0-180 line. Because of the inertia, the high velocity is toward the inner wall of bifurcation and the 'head' on minor direction becomes lower. This inertia seems to be a suorce of secondary flow, measured by 01 son (? , which comes from center vincinity toward 270 direction, i.e. inner wall of bifurcation, and bounds back along either side of the tube. The auther believes that it is this secondary flow which makes (1)the 'shoulder' become stronger thus
overcome the 'head', and (2)the existence of the second hump near the outer wall of bifurcation on the planes of $S / D=2.548$ and 3.635. (Fig. 6.10 to 6.12)

Figures 6.13 and 6.14 show profiles of $S / D=4.135$. Note that double humps are apparentin all directions and the flow peaks are going closer.

On the planes of $S / D=5.333,6.905$ (Fig. 6.15, 6.16) , the flow is gradualiy getting used to its new direction and is on its way toward a fully developed flow.

The flow patterns for the major and minor directions are given in Fig. 6.17, 6.18. Note the abrupt closidgupas well as speeding up of the 90-270 peak to the inner wall and then gradually slowing down and returning to the centerife of the tube. Also note the boundary layer developing on the inner wall right after the flow divider.

A comparison of equal velocity lines showing the evolution of the wing-1ike contorys is given in Fig. 6.19.

The results are summarized as follows:
(1) Inlet parabolic flow patternat $s=-3$ in. (S/D=-4) (2) Flow gradually retarded down near the center areas. This effect is less apparent in major direction than in the minor direction when it is in the expansion zone. (3) Becanse of inertia, the high velocity is toward inner wall of bifurcation and a secondary flow is developed righ after the divider. This secondary flow is going from center portion to the inner wall and
bounds back along both banks of the tube. (4) The head-down-shoulder-up pattern in 0-180 direction is because of retardation around center area and of the strong secondary flow mentioned in (3). (5) Instead of the usual slowing down, the peak velocity is fixst speeding up and moving toward the inner wall very fast right after the divider, and then gradually slowing down as well as moving toward the tube center.
(6) A second hump is gradually formed after divider in all but minor direction. This is due to the secondary flow mentioned in (3) above.
6.3 A COMPARISON WITH OLSON'S DATA

Using a hot wire anemometer, Olson conducted an extensive measurement on several model lung bifurcations. Velocity profiles of the major direction for the condition closest to ours is given in Fig. 6.20. Note that 01son used mean velocity and radius in the parent and dangher branches to nondimensionize velocities and radial lengths in the parent and daughter tubes respectively.

The differences between 01son's experiment and this work is noted in Table 6.2. As geometries of the two bifurcation is not totally comparable, similar nondimensionalization is not drawn to compare with 01son's figure.

Although there are quite a few differences, the results
bear the following similar trends:
(1) High velocity is toward inner wall of bifurcation and gradually moving toward center. (2) Second hump appearance and winglike velocity profile exist after the flow divider.

The conclusion is: The difference in inlet pattern seems to matter little downstream of the divider, although it does dominate upstream the divider.

TABLE 6.1

LIST OF MEASURED PLANES

S(in.)	S/D	$(S / D) 0^{*}$
-3	-4	-5.905
0	0	-1.905
.471	.628	-1.277
.942	1.256	-0.649
1.174	1.565	-0.34
1.429	1.905	0
1.911	2.548	0.643
2.726	3.635	1.73
3.101	4.135	2.23
4	5.33	3.425
5.179	6.905	5

* OLSON'S EQUIVALENT (S/D) SEE NOTES ON TABLE 6.2.

TABLE 6.2

COMPARISON OF PARAMETERS FOR OLSON'S AND SHEU'S DATA

	OLSON'S	SHEU'S
Appratus type	hot-wire	LDA
Mother tube size	2пI.D.	0.75\% I.D.
Daughter tube size	1.5π	0.75π
Total branch angle	70 deg.	73 deg .
Carvature ratio*	$1 / 7$	1 / 8
Reynolas No. (mother)	468	「320
Reynolds No. (daughter)	311	「160
Position of origin**	0 at divider	0 at beginning
		of curvature

NOTE: * Curvature Ratio= (radins of mother tube)/(radius of centerifine curve)

$$
\begin{aligned}
& S o+1.429=S \\
& (S / D) o+1.905=(S / D)
\end{aligned}
$$

Where So, S=tubewise displacement for $01 \operatorname{son}^{\prime} s$ and Sheu's system (in.)
(S/D)o, (S/D)=nondimensionalized tubewise displacement for the two systems
$=-3$
$b=-4$

$$
\begin{aligned}
& x \quad 270-90 \\
& =\quad 180-0 \\
& +\quad 225-45
\end{aligned}
$$

FIG. 6.11
$S=2.726, \quad S / 0=3.635$
$(180-0,270-90,225-45)$

FIG. 6.19
EVOLUTION OF EQUAL
VELOCITY CONTOURS

A Numbers shewn are veloatie in $m m / s$

CHAPTER 7

CONCLUSION AND FURTHER INVESTIGATIONS

7.1 SUMMARY AND CONCLUSIONS

A forward scattered LDA system with frequency shifter and tracking type signal processor is used here to measure the flow fieldina model lung bifurcation. The system was established so that probe positioning and data acquisition are controlled by a PDP-11/34 minicompater and a SDK-85 micropressor, thus making on-1ine measurement possible.

The tubewise component of the laminar flow pattern with parabolic inlet condition at about 320 Reynolds namber is measured. The divider was found to have a very dominant effect around its vicinity and within five diameters downstream A higher velocity was detected near the inner wall of bifurcation. The flow was found to have 'head-shoulder', 'second hump', and 'wing-like' features. These features are contributed by flow inertia and its consequential secondary flow acting on the fiow divider. A comparison of the flow pattern in the major direction with Olson's 'hot-wire' data is made. The different sitaations between the two measurements are noted. Discrepancies in the inlet flow pattern have far less effect on the downstream flow than the divider does.

7.2 SUGGESTED FURTHER INVESTIGATIONS AND COMMENTS

The following paragraphs are comments and suggestions for further investigations:
(1) Velocity measurement on the other two directions:

Measurement on the primary component of the flow field has been carried out here. The other two components can be expressed in either radial/tangential or major/minor axes directions.

According to the present apparatus arrangement, only the directions lying on the plane perpendicniar to the axis of optics assembly can be measured. Therefore only one more component can be measured in either choice of coordinates. The third component may be obtained analytically through thecontinnity equation.

Following a similar approach shown in section 3.2 , it is possible to pinpoint the beam intersection inside the tube when two beams are in the plane perpendicular to the tube axis. Care shall be taken to examine the actual direction measured, because the beam crossing has, in most cases, been tilted by the curved interface.
(2) Measuring the pulsatile respiration:

Measurement on the pulsatile inspiration/ expiration conditions can be achieved through the following additional measures:
a) Couple the four-way cock in the flow system to a
bi-directional motor and link the motor to the microprocessor through any unused port.
b) Include a counting loop in SDK-85 program and periodically reverse the flow direction by alternately rotating the motor. The period can be included in the command sent from PDP-11.
c) Handshakings between the PDP-11 and the SDK-85 shall be established.

AFFENIIX 3

ETEFFEF MOTOF DRIVING MOLE

The stepfer motar is controlled by its corresfonding STM 10玉 SLO-SYN translator module.

The three modes are as follows:
(1)Full Step With Two Windings Gr

This made drives the motor in steps of 1.6 degrees. The motor windings are energized in the fallowing sequence far elackwise rotation:

FULL-STEP, THO WINBINGS ON

SWITCNIN STEP	MOTOR LEAD OR TERMFNAL			
	RED (1)	WHITE/RED (3)	WHITE/ENEEN (4)	EREEN (5)
1	ON	OFF	OFF	ON
2	ON	OFF	ON	OFF
3	OFF	ON	ON	OFF
4	OFF	ON	OFF	ON
1	ON	OFF	OFF	ON

(2)Full Step With Grae Winding On

This mode drives the mator in stefs of $1 . E$ degrees. The motor mindings are energized in the follouing sequence for elachwise rotation:

FULL-STEP, ONE WINDING ON

SWITCHIME STEP	MOTOR LEAD OR TERMIMAL			
	RED (1)	WHITE/RED (3)	WHITE/GREEN (4)	GREEN (5)
1	OFF	OFF	OFF	ON
2	ON	OFF	OFF	OFF
3	OFF	OFF	ON	OFF
4	OFF	ON	OFF	OFF
1	OFF	OFF	OFF	ON

(G)HE1f Ster (One Winding On)

This mode drives the motor in steps of 0.7 degree. The motar windings are energized in the fallowing sequence for elockuise ratation:
half Step

$\underset{\text { STEP }}{\substack{\text { SWITCHIME }}}$	MOTOR LEAD OR TERMAhM			
	$\operatorname{RED}_{\text {(i) }} k$	WHITE/RED (3)	$\begin{gathered} \text { WHTE/GREEA } \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { GREEN } \\ & \text { (5) } \end{aligned}$
1	OfF	OFF	OFF	OM
2	ON	OFF	OFF	ON
3	ON	OFF	OfF	OFF
4	ON	OFF	ON	OFF
5	OFF	OFF	On	Off
6	OFF	ON	ON	OFF
7	OFF	ON	OFF	OFF
8	OFF	ON	OFF	ON
1	OFF	OFF	CFF_{4}	ON

NOTE: a) Only mode (3) was hardware uired.
$\left.t_{1}\right) *(1),(3),(4),(5) \operatorname{correspand}$ ta M1, ME, M4, ME an translator module (See Apperidix 2.)
c) If necessary, the direction of matar rotation convention can the reversed by reversing the motor lead connections at terminals M4 and MS.

I/G FORT \& EIT AESIGNMENT FQF MTEROFFOCESGMR

I/G FORT ASSIGNMENT:

(1)ON E2S1A (USART):

SYSTEM FGFT \#
\#10
\#11
(2) ON E15EA\#t:

FUNETIIN
I/O to FIF-11
Commarid/Made/Status reg.

EYSTEM FOFT \#

\#20 E/S Fieg.
\#21 (fort A) urused
\#22 (part E) unused
\#zs (fort C) Fulse analysis reg.
(receive fulse from encoder)
\#24,25
timer used by system monitor. to support LED's \& keypad
(3) ON E15SA\#2:

SYSTEM FOFT \#

\#2 8

\#29 (fort A) translatar status reg.
\#2A (port E) translator contral req.
\#ZE (Fiort ©) multipurpose reg.
\#2C, 2 L
(only fulse train selert used)
FUNETION
E/S Feg.
timer, taud rate sel. for lisaft

SYGTEM FOFT \#

$$
\# A O, A 1, A Z \quad\left\{F \quad A, E_{1}, C\right\rangle
$$

\#A 3
$\# E O, E 1, C 2$ (F A, E, C)
\#ES
挑 $\mathrm{CO}, \mathrm{C}, \mathrm{CZ}$ ($\mathrm{F}, \mathrm{A}, \mathrm{E}, \mathrm{C}$)
\#10

FUNCTICN
Forts for LED display, \quad xis \#1
(on 82s혀 1)
control for E255\#1
ports for LEA display, axis \#2 (an 8255\#2)

Eoritral for GCSE\#2
forts for LED display, axis \# (on 8255\#3)
control for exs5\#3

EIT ASSIGNMENT:

(1) FULEE TFAIN FEGISTEF(2BH)

```
FULEE TFAIN N
FULEE TFAIN INPUT
```


(2) TFANELATOR ETATUE FEG. (27 H)

(3)TRANSLATOF CONTFOL FEG. (2AH)

(4) MULLTIFURFOSE FEG. (2EH)

FULSE TFAIN SELECT

* UNLEEEI

NOTE:This section lists detail pin assignment on translator interface card and the blue flat catile sochet connecting ELK-ES and translator cage.

IN TRANSLATOR INTEFFACE:

FIN NO.	FUNCTION	FIN NO.	FUNC:TION
A, E	$+5 \mathrm{~V}$	C:	AO)
I	A1	E	NLFEUN
F	NCEASE	H	NOEW
blank	NCCCW	K	UNUSED
M	ALITO/MANIIAL	N	MAN FIUN
F	MAN EASE	F	MAN EW
blarik	MAN ECW	T~tilark	LINUEEI
U, W, X	UNSEII	Y, Z	GFCIUND
1	FUN(TO TRANSLATOF)	2	EASE ("n "n)
3	CCW (""*)	4	CW("" "")
5	FLILSE TFAIN (FFOM	SLATOR)	

AFPENLIX 5
 FIN AGSIGNMENT

NOTE: This seetion lists detail pin assignment on translator. interface card arid the blue flat catile socket connecting Enk-es and translator cage.

CIN TFANSLATOR INTEFFACE:

FIN NO.	FUNETICN	FIN NO.	FUNC:TION
A, E	$+5 v$	C	A0
$\underline{\square}$	A1	E	NCRUN
F	NCEASE	H	NC:W
blank	NCCCL	k	UNUSED
M	AUTTU/MANUAL	N	MAN FIUN
F	MAN EASE	Fi	MAN EW
blank	MAN CCW	Tnitlark	UNUSEI
u, w, x	UNSECI	Y, Z	GFICUND
1	FUN(TO TRANSLATGF)	2	EAEE ("" $"$ "
3	CCW("" "")	4	CW("" "")
5	FULEE TFAIN (FFOM	SLATOR)	

ON FLAT	AELE GOCKET	AGE	ENDI):		
FIN NO.	FUNCTIUN			FIN NO.	FUNE:TIN
1--6	+5V			7	AO
E	A1			9	NC:FILN
10	NEEASE			11	NC:W
12	NCCLCW			13--18	ETATUS FEG.
19	AUTIM/MAN			20	MAN FUN I
21	MAN EASE 1			22	MAN CW 1
23	MAN CCW 1			24	JOG (UNUSED)
25	FULLSE TRAIN	FFOM	ENCOLER	F 1	
26	UNUISEI			27	MAN FUN 2
28	MAN EASE 2			29	MAN CW 2
30	MAN ECW 2			31	UNUEET
32	FULSE TFAIN	FFOM	ENCOLIEF:	2	
33	UNLIEEC			34	MAN FLIN 3
35	MAN EASE 3			36	MAN CW 3
37	MAN CCW 3			36	UNUEED
39	FULSE TFAIN	FFiCM	ENCOTEF:	3	UHUSED
40-44	UNUSEII			$45-50$	GFiOUND

 ETFUFCAT ION

 FROHAM LUNG
FROUHAM /FOGFAR/N1,N2,N3, E, AO.
COMMIN /MAXMIN/XMJN, XMAX, YMIN, YMAX, ZMIN, ZMAX !CAL

COMAIN /LATA1/ISIZE, IDATA(1624)
COMMON FFAFAMW/IKANGE, FANGE(7), ISIGN, E1, EO :FARAM, ATOLI
COMMIIN/INTEX/ANS, ERANCH, CHGZ ICAL, ATOD, FARAM
CHGO FOE SAMPLING FARAM's,i.e. SAMFLING FATE, \# OF SAMILE/CHAN.
COMHOW/GAMFLE/ICHANE, ICHAN1, NSAMFL, ICONE1, ICOLE 2 , IFRR
:FRQD=IUPFLER FREQUENCE
!FROT-TFACLER INFUT FHEG.
OIMENGION XLGCK(512), FFRG(512)
EOUTVAIFNGE (FROLI(1),FFQT(1))
ETHIVALENCE (ITATA(1), XLOEK(1))

FEAM_N1,N2,N:
CHITE=
 ! DATA FILE FOR ANALIZEL DATA.
ALI. ABSIGN(S, "LF:'")
CALL AGSIGN(4, "TT4:") CALL AGEIGN(4, "TT4:')
XMAREK
IMAFK. WRITE $(2,7 \%)$ XMARE
FGFMAT $(1 \times, F 7.2)$
FOFMAT (1X,F7: Z) TVFE A, Enter REFLECTIVE INDICES N1, N2, NS
ACCEFT $A, N, N 2, N S$
THET $1=-07512$!EEAM BEFARATIGN SET AT MILIDLE ON EEAM EXFANIER TOMFUTE THET1, THET 2 , THETS \quad THT $1=S I N(T H E T Z)$

THET $2=A T A N(X T 1)$ N
IF (TT2 . LT, 1.0) 6070
TYFE *, INCIEENT ANGI
TYFE *, Try changing

GOMHONS S(3)
MTMENETGN We
! ATOL, ANA

COMMON／XLIATA／FACT，EHIFT，FRUT（512），DATAS（512），VEL（512），CLGCK
GIMMON／LIATAI／ISIZE，ILIATA（1024）
COMMON／FAFAMW
COMMON／INLEX／ANS，EFANCH，
COMMINN SAMFLE／ICHANS，ICHAN1，NGAMFL，ICOLE 1 ，ICODEZ，IERF
LIMENSION XLOCK（E12），FROD（512）
GITVALENE FRATA（1）FRRT（K（1）
$\begin{aligned} & \text { EQUIVALENEE（IDATA（1），XLOCK（1））} \\ & \text { LOGICAL＊ANS，ERANCH，FLNAME（20）}\end{aligned}$
INTEGER CLOCK
ISIZE $=1624$
IF（ICOLEZ ．EQ．4）GO TO 98\％
TYFE＊，＇SAMFLING RATE $=150$ Khz＇
GOTO 1010
$\begin{aligned} & \text { GATA IOUT，KE，FI NAME（ } 20 \text { ）} / 1,5, \text { ，FALSE．} / \\ & \text { ISIZE }=1024\end{aligned}$
WRITE（S，1002）CLOCK
LIMENSION XLOCK（E12），FROLI（512）
EQUIVEALENCE（FRQL（1），FRQT（1））
LOGILCAL＊ 1 ANE，EFANCH，FLNAME（ZO）

－客密空 采 丞
LOLK
$\begin{aligned} & \text { AIL ALIFHX（ICHANE，ICHAN1，NSAMFL，ICODE1，ICONEZ，IERF）} \\ & \text { IF（IERF．NE．O）GO TO } 500 \text { ，}\end{aligned}$
$N=1$ CHANSANSANFL
ACCEFT 220, ANS
$\begin{aligned} & \text { CHGZ＝：Y } \quad \text { IGHEZ Y TO LHANGE SAMFLING FARA．} \\ & \text { FETUFN }\end{aligned}$
TYFE \＃，NO．OF SAMFLES／C：HANNEL $=$ ，NEAMFL
TYFE \＃，ARE YOU HAFFY WITH THIS？Y／N＇
TYPE \＃，NO GAMFLING RATE＝＇，IX，I3）
IF（ANS ．ER．＂Y ）GOTO 1020
害密
1640
DATA（I）＝E1＊DATA（I）＋EO ！CORRECTEN ANALGG O／F FFGM TRACKER
$\begin{aligned} & \text { 10．＊FLGAT（ILIATA（2＊1－1））／FIGAT（＂} 37777 \text { ）} \\ & \text { ！LIATA（I）＝ACTUAL VOLTAGE MEASUREL（FGR VEL SIGNAL）} \\ & \text { TYFE＊，ANA U／F＝＝，LATA（I）}\end{aligned}$

$$
\begin{aligned}
& \text { FFGT (I) = LIATA (I) *FANGE (IRANGE)/10. ! TRACKER I/F FRER. }
\end{aligned}
$$

IF（IGIGN．EQ．1）FRGLI（I）＝SHIFT＋FRGT（I）！WIEN Fsuras SHIFT
VEL（I）＝FACTAFFRD（I）／1600
$\begin{aligned} & \text { TYFE \＃，ANA G／FP（V）} \\ & \text { Iñ } 100 \mathrm{I}=1, N / 2\end{aligned}$
VEL（M／S）
FFiEG（ KHz ）
$\begin{aligned} & I F(I E F R \text { ．NE（ ）OLO TO SOO } \\ & N=I G H A N E M S A M F L\end{aligned}$
$102(0)$
要is

This is a driver for the Thl Fhoenia: Ad ranverter mhath
that the menory managenent registers and the gma regirters van

Thas progrefin mast be called by a Fur-tran program rantiainimg
EALL AHFHX (TCHANS, ICHANI, NEAMFI, ICODEI, ICOLEZ, IERK, CI RCK)
ILHANS $=$ riemtier of Ehaririels NBAMFI $=$ mumber of samplesteharinel ICOLEE - for single word tranisfer IGOLE $=2$ for souble uard transfer
internal clock
enternal alack
IERF $=\begin{aligned} & 4 \text { for software clack } \\ & 0 \text { if all uk }\end{aligned}$
2 if A/L not in remote mode
3 if Phenix riot resetting propper ly

Sif illegal function bits
CLOCK = suftware cloth count down word
The comman bilack is defined by

TITLE ALIFHX

GLUEL ALIFHX, LKE
GUEL FAFUO, FAFIII, FAFIZ, FAFLIS

- GLOEL FAFLI4, FARUS, FAFU16, FARU7

GET AFLGLMENTE
STINNGH: HIS BZ:TWIN:
; FIRET GHANINEL

- FEECT IIATA1, LI, GEL, GVF

定

MOV
ISIZE:
ILATA:
$\hat{A D F H X}:$
; wheres
Determine Displacement in Blocks (aIB)

$$
\begin{array}{ll}
\text { \#IDATA,RE } & \text {;Get virtual address } \\
\text { \#177700,R3 } & \text { iKeep b lowest bits. [IIE ir, R3 }
\end{array}
$$

Hetermine Elack Number (EN)
Determine Active Fage Field (AFF)
Letermine Physical Address Register (FAF)

电电至至

$$
\begin{array}{ll}
\ddot{\ddot{u}} & \ddot{\ddot{u}} \\
\stackrel{\rightharpoonup}{*} & \stackrel{\rightharpoonup}{\square}
\end{array}
$$

$$
\begin{gathered}
\ddot{9} \\
\frac{\ddot{3}}{\frac{1}{6}} \\
\cdots
\end{gathered}
$$

$$
\begin{aligned}
& \ddot{Z} \\
& \ddot{G} \\
& \dot{C}
\end{aligned}
$$

$$
\frac{\ddot{y}}{4}
$$

GT HW MESE FUR STATIS REGOSTER

；KEEF TRACK LH GAMFLES TATEN
；LQAII COLINT DOOWN HOREL
；WAIT LOOF
左 ；RETURN ERFOR EODE TO FROGGAM
；GO EACK TO MAIN

电总总总总总 를

FORMAT (/, " LUCK FERCENTACE $=$ ', F7. 2, '\%') WRITE (5,170$)$
ARCEFT 155, ANS YOU WANT TO STORE THE [ATA? [Y/N]')
MORTAT (A1)
IFIANS EAC:
EACKSFACE 2

WKITE (2,316)AVL, KHSL, TREIL, AVUL, FMEUL, TREILL, AV, RMS, TRBI
 torimat (ix,F7.2) RETUFIN
ENII

密
ミ8
-
;
8
3
i

C	THIS SUEFOUITNE 15 USEII TO TAIK WITH ERK-ES CONTROLEER
c	TG MOVE THE LEA SYSTEM(i.e. TRAUERSING SYSTEM)
c	NOTE : 1) x, Y, Z ARE MILTIFLIED EY 1,000. BEFORE SENDING TO
E	SLk-E5
6	
c	Y " " \#2 "
C	z " " \#1 "
E	TIATE: $5 / 4 / 83^{\circ}$ D. SHEU IN TRL.
¢\%	
$C_{* * *}$ EUEFROUT INE TALK (x, y, z)	
	CLimon ss)
C:\#\#	
	IF $(x$. GE. $0.11 x=1000 * x+0.49799$ ITO ROUND OFF (AVOIL
	1F(X.LT. 0.$) 1 X=1000 * x-6.47977$! TRANCATION ERROF ALSO TAKE
	IF (Y. GE. O.) $19=1060 * Y+.49979$! CARE OF NEGATIVE CONDITIONE
	1F(z . GE. 0.) 12=1000 $+2+.49889$
	IFIz.LT. 0.) 12=1000*2-.47989 !
	WRITE $(4,200)$ IL, IY, IX
200	
C*** , , ,	
	$s(1)=x$
	$S(2)=Y$
	$s(3)=2$
E \#**	
	FETURN
	END

.. 2000 H
FOW
11 H
61
$\mathrm{VEM1}$
FOW
10 H
11 H
6 H
GCHAF
10 H
$\mathrm{A}, 40 \mathrm{H}$
2 OH
$\mathrm{A}, 2 \mathrm{EH}$
2 OH
A, OEH
2 OH

 ; COMMAND NOF ; INTERNAL FESET
; MODE INSTEUCTICN \& 1 ; COMMANLI INGTFDETION ; 315s ram Fok storage 1

 $5 \quad 5$

H4-5	TMF'HL
12HO	
$\because \mathrm{HLE}$	TMFUF:
xCHicis	
CAIL	ASEET
LXI	E, TECOX
LXI	H, Tilfrlt
MOV	M, C
INX	H
Mov	M, E
LXI	T, NECLX
LXI	H, TMFIE
MOV	M, E
IHX	H
MOV	M, H
LXI	H, AXIS
MVI	H, AXIS1
LXI	H, LEL
MVI	M, LEDI
LXI	H, OEC:IX
MVI	A, FULSE1
GIUT	FlSENF'
CALL	MOVE
MVI	C,034
LXI	H, Cecix
LXI	H, NECIX
CALL	SWAFF'

[^0]
Fage 1-5
; LOMF FLLL GHAR ZERO THE MZERO BIFFER
; MNEGATIVE" ZERG IN THE

	LOMF ALL CHAR ZERO "NEGiATIVE" zERG in the mZERG EllfFER
;	"NEGATIVE" ZERG IN THE NZERG ELIFFER
\#	OF EJJFF Chatiacters in heg e
	hll has fointer to new foestions
;	DE HAG FOINTEF TG OLIL FUSITIUN ELIFFFF
	E HAE NEW FOSITION
	TURN NEW FOEITION FGINTEF
	SWAF IT WITH OLD FUSITION FGINTER
	GTORE IN THE OU.D FOSITION ELIFFFF
	TURN OLI FOSITION FOINTER
;	HL HAS NEW FOINTER
;	de has du fointer
;	COINT Chafacters
;	
;	LASt Ehaficter ?
	LIOPP TIL ESAFFER SWAFPESI
	FEETURN WHEN LUNE

; COLNTS FASSES THFOUGH MAN
; E THROUGH AUTO
; EAVE IN B
; EAVE ANDED RESULT IN C ; GET ETATUS WORL
; WAS IT MANUAL ?
; USE TIGIND GUT
; GOMFARE WITH MANUAL
; IF NOT MANUAL OR AUTG EWITCH
; IS FRGIEN... SENL EFROR TGI FIIF
; OGH IS LASTLGOF COUNT

$$
\begin{aligned}
& \text { EG IS MOVET INTG THE TOF NIEELE } \\
& \text { FGNT TO NEXT ECI STOFAOE LOMATION }
\end{aligned}
$$ TOFE TGF NIEEIE HEFF FOTNT TG LAET ASCII

HHN TUFN FUINTEF IHEN TUFN FGINTEF
ONUFET TA SGII
FESULT IS FETLRNEA IN THE EGLI ELIFFEK
；ELAN ASLII FOR SIGNE
－＊．．．．．

$\begin{array}{ll}\text { LHLI } & \text { TMFDE } \\ \text { MVI } & \text { COBH } \\ \text { CALL } & \Xi I G N \\ \text { XCHG } & \\ \text { LHLII } & \text { TMFHI }\end{array}$

TMPLE

 $\pm \underset{E}{\sum_{i}^{c}}$ Mov
INX DE：
XE：HCi
ALILI XEHG
INX
CALL STE：
CME FAL
苍

LHLII
MOU MOV
XCHS
LHLD
 $5 \frac{\pi}{2}$
AESVAL：
$\ddot{8}$
苟
－

OS 定
7
品
$\%$
\bar{F}

 MOVE．SFiO

$$
\begin{aligned}
& \pm \\
& \begin{array}{l}
E \\
A, O O H \\
E \\
I N \\
A, Q 1 H
\end{array} \\
& \text { turn stil } \\
& \begin{array}{l}
\text { HAS START } \\
\text { EECOMES }
\end{array} \\
& \text { TENS or inchis } \\
& \text { WHERE MO SIGT, } \\
& \text { ASCII STRIN } \\
& \begin{array}{r}
x \times x \cdot I S \\
7 H \cdot-1 W 1 \\
3 \square . J W 1
\end{array}
\end{aligned}
$$

; SIGN SLAN GONFLETE
; SENLI E TO FLIF-11/34
; SEND R TO FUP-11/34

$\stackrel{\because}{\square}$	$\stackrel{\ddot{7}}{3}$		$\underset{\substack{\text { z }}}{\substack{\text { z }}}$	\％	淢

\％	Q8		4		4	8	\％98	\％		5
W3	BE	$\stackrel{4}{-}$	家	$\stackrel{1}{4}$	葛	＊		\％	$\stackrel{4}{4}$	3

 $\stackrel{\ddot{c}}{\vec{i}} \underset{i}{:}$

\cdots	9	8
¢	$\stackrel{4}{5}$	

$\stackrel{\ddot{i}}{\stackrel{i}{i}}$

8	9	8	90	
8	震	斝	豈寺	F\％为安

至首首

星蓠	者		\％		9		9	苟	\＄	早第	9%
易易	S	易	迷	\％	$\stackrel{4}{4}$	8	\％	－	－	¢	i

; USE E TO COUNT FOLL
; COUNT IT
索至

\ddot{E}	$\frac{3}{B}$	药		$$

Fage $1-16$
; POINT TO NSE
$7-A \cup g-8 \div 20: 30: 5$

		-					-	
\cdots	m	7	*		\cdots	\because	-1	*
0	i17	+i	$\ddot{\square}$	*	0	0	\%	-
\%	-	$=$	\%	-	II	-	,	is
$\underline{2}$	-	立	$\stackrel{x}{1}$	$\stackrel{\times}{4}$	$\frac{11}{2}$	-	4	x

; LOAL HL WITH NEW EUFER FOINTER
; FUT ZERO IN TEMF BUFFEF FOR NOW
; TEST MGE FOR ZEFO
; STRIF THE SIGN
; STORE IN E FOR TEST
; OLEAF ACCUMILATOR

 \&

\square^{5}

$\underset{\sim}{\ddot{\circ}} \underset{\sim}{\sim}$

8
-8
-8
-8

4	狍	9	a		$\ddot{\theta}$	θ	4		4	0	为 6
$\underset{y}{q}$	あぁさなはなさ 	$\frac{4}{4}$	\pm	$\frac{15}{6}$	8	6	\pm	$\frac{4}{s}$	O	$\overline{6}$	6ッ

38	20:00:5	Fone 1-19
[rimint		
5		
H, THED		
H,E		
H		
M, p		
TMFIth		
A, M		
NZFR		
M, A		
AXIS		
DEAL		
TKWRD		

AG是

古总

DISA Information Department : 55X Modular LDA Optics, Instruction Manaal

DISA Information Department : 55 N 10 LDA Frequency Shifter

DISA Information Department : 55 N 20 Doppler Frequency Tracker, Instruction Manal

DISA Information Department : 55 N 20 Doppler Frequency Tracker, Service Manaal

Durst,F., Melling,A., and Whitelaw,J. H . Principles and Practice of Laser Doppler Anemometry, 1976

Gardner, Floyd M., Ph.D.: Phaselock Techniques, 2nd. Ed. pp.1-16, John Wiley Sons, 1979

George, William K.: Limitation to Measuring Accuracy Inherent in the Laser Doppler Signal.. Proceedings of the LDA-Symposinm Copenhagen, 1975, pp19-63

Howe, Brya
L. :

A Microprocessor-controled Traversing System For Three-dimensional Flow Measurements M.S. Thesis, State University of New York at Buffalo, February 1982

Intel Corporation: MCS-80/85 Family User's Manual., October 1979

Intel Corporation: SDK-85 System Design Kit, User's Manual, 1978

[^0]:

