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Abstract
Two sets of experimental measurement were carried out on an axisymmetric swirling jet flow
and a natural convection boundary layer. In the first experiment, the far field of an incompress-
ible swirling jet, discharged into a quiescent ambient has been studied using laser Doppler
anemometry. The effect of low to moderate swirl (below vortex breakdown) was studied by
measuring velocity profiles of the mean and fluctuating streamwise, radial and azimuthal ve-
locity components at different streamwise locations up to 50 jet exit diameters. The scaled
velocity and turbulence intensity profiles, centerline decay and growth rates for two swirling
jets with the strength of (S = 0.15 and 0.25) have been compared to those obtained in the same
facility without swirl (S = 0). Like the previous observations for the near jet, there was no
observable effect on the properly scaled far jet for the S = 0.15 case. For the S = 0.25 case, the
only statistically significant effect was a shift in the virtual origin. The results were in excellent
agreement with the equilibrium similarity theory of Ewing [1999] in which the mean azimuthal
component of velocity falls off as the inverse square of the downstream distance. By contrast,
the mean streamwise velocity and turbulence intensities fall off with the inverse of the down-
stream distance. As a consequence, the mean azimuthal equation uncouples from the rest, so
the asymptotic swirling jet behaves like the non-swirling jet. The swirl is also shown to have a
negligible effect on the overall Reynolds normal and shear stress balances.

Measurements are also presented for the boundary layer flow of air along a heated verti-
cal cylinder. The flow was entirely driven by natural convection: there was no co-flow. The
cylinder was 4.5 m in height, had a diameter of 0.15 m, and was maintained at a tempera-
ture of 70◦C (approximately 40◦C above ambient). The cylinder was heated by water flowing
through it, and mounted inside a 1.2 m in diameter cylindrical tunnel through which the am-
bient flow could be controlled. Detailed measurements of temperature and velocity statistics
were taken at heights of 1.5 m, 3m , 4 m height, the latter corresponding to a Rayleigh number
based on length, Ra = gβ∆Tx4/αν ≈ 1.7 × 1011. Two-component burst-mode LDA was used
for measuring the instantaneous velocity, while the fluctuating temperature was measured si-
multaneously using 1-micron platinum wire. Arrays of thermocouples were used to monitor
the ambient and wall conditions, as well as the mean profile. Particular attention was given to
the buoyancy and momentum differential and integral equations in order to evaluate the resid-
ual effects of stratification and co-flow. The strong temperature gradients and end conduction
effects on the temperature probes adversely affected unsteady temperature results, as did the
development with increasing height of the flow between the concentric cylinders.

Keywords: Jet, swirl, natural convection, turbulent boundary layers, vertical cylinder, high
Rayleigh number, cold-wire thermometry, constant current bridge, laser Doppler anemometry.
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Nomenclature

Upper-case Roman

A,Bu, C growth rate constants for self-preserving axisymmetric jet
Aw wire cross-sectional area
Cw specific heat of wire material
Cp specific heat of fluid at constant pressure
Cv specific heat of fluid at constant volume
D nozzle exit diameter
Fo kinematic wall heat flux = qw

ρ Cp

Gθ axial component of angular momentum flux
L axial length scale
Mx axial momentum flux
Neff number of effectively independent samples
R cylinder radius; gas constant
T temperature
U, V,W mean axial, radial and tangential velocity components in the flow, respectively
U0 average exit axial velocity of jet

U+ velocity inner variable = U
u∗

Lower-case Roman

c speed of sound
d wire diameter
e internal energy
fi vector of body force
g gravitational acceleration
h enthalpy; convection heat transfer coefficient
k kinetic energy
mx mass flux of jet in axial direction
p pressure
qw wall heat flux
t time ; fluctuating temperature
u, v, w fluctuating axial radial and azimuthal velocity component, respectively
u∗ friction velocity = (τw/ρ)

0.5

x, r, θ cylindrical coordinate system
xo virtual origin for self-preserving axisymmetric jet
y+ inner variable =y u∗

ν

vii



Greek Symbols

α thermal diffusivity = κ
ρCp

β volumetric thermal expansion coefficient
δ1/2 jet half-width

δT temperature boundary layer thickness
δU velocity boundary layer thickness
δij Kronecker delta
ǫ dissipation of turbulent kinetic energy
Φ viscous dissipation function
ǫ2ψN

relative statistical error of estimator ψN
εν viscous dissipation
η normalized radial coordinate in the momentum integral
ℓ wire length
κ thermal conductivity
µ viscosity
ν kinematic viscosity =µ/ρ
ρ density
σ Stefan-Boltzman constant
τ temporal separation

τw wall shear stress =µ
(

∂U
∂y

)

y=0

Dimensionless Parameters

Grx Grashof number =gβ∆Tx3

ν2

Hx the H-number =gβFox4

α3

M Mach number =U
c

Nux Nusselt number =hx
κ = Fox

∆Tα
Pr Prandtl number = ν

α
Re Reynolds number =Ux

ν
Ra Rayleigh number =Grx.P r

S swirl number = Gθ

MxR

Subscripts

c center line
i quantities associated with the inner region
o quantities associated with the outer region
o jet, nozzle exit condition
w evaluated at the wall
∞ free stream or ambient conditions
max maximum value
rms root mean square value
∗ scaled property
+ normalized by inner variables

Symbols

〈. . . 〉 time averaged quantity
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Abbreviations

CFD Computational Fluid Dynamics
LDV Laser Doppler Velocimetry
LES Large Eddy Simulation
RANS Reynolds Averaged Navier-Stokes
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Chapter 1

Overview of the thesis

The goal of this thesis is to describe the experimental investigations which have been carried
out on two interesting turbulent flow fields:

• Turbulent natural convection boundary layer next to a vertical heated cylinder,

• Incompressible swirling jets with low to moderate swirl number.

In both of these experiments, the burst-mode laser Doppler anemometer (LDA) was used as the
velocity measurement technique. Also thermocouple and cold-wire were used, both separately
and simultaneously with the LDA, to measure the mean and fluctuating temperature field in
the natural convection experiment.

Part I describes a swirling jet experiment which was a part of a continuing study of free
shear flows at the Turbulence Research Laboratory. It was not originally intended to be part
of this dissertation, but the years long delays in establishing a place for and constructing the
natural convection rig for the experiments described in Part II opened the opportunity for this
work. The particular unique feature of the experiment reported herein was to investigate the
far-field evolution of the jet with an initial azimuthal velocity. The natural convection experi-
ment described in Part II continued a series of experiments that had been carried out at Vatten-
fall Utveckling, and moved to the Turbulence Research Laboratory at Chalmers with Professor
Rolf Karlsson in fall of 2000.

1.1 Swirling Jet Experiment

Initial condition have been known to affect the similarity solutions of an axisymmetric jet since
the theoretical work of George [1989]. Numerous experiments on jets since then have made
it clear that, contrary to what was long believed, laboratory jets cannot be categorized as uni-
versal self-similar, point-source of momentum jets. A jet flow asymptotically approaches to its
self-preserving state, but this state is determined by the conditions at the jet source. One of the
indicators of this dependence is the jet spreading rate (dδ/dx). Thus the spreading rate of the
swirling jet is of particular interest. The experiments reported herein were initiated to study
the influence of a mild tangential velocity component on the axisymmetric jet flow.

The near-field of jets and the mixing enhancement due to an initial swirl have been stud-
ied by several investigators (see Farokhi et al. [1989] and Gilchrist and Naughton [2005]). This
study focusses on the far-field; and in particular, on ability of the jet flow to establish self-
similar behavior in the presence of a tangential velocity component. The experimental facility
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was a modification of the same rig used in Hussein et al. [1994] experiment, (see figure 1.1).
Three different sets of screens and two contractions inside the facility generate a one inch ax-
isymmetric jet without any significant disturbances from upstream at the discharge position.
The tangential component of velocity was created by three pairs of nozzles which injected com-
pressed air before the screens. The velocity of the blowers of the main flow and swirl flow were
separately controlled by two frequency converters to generate a specific swirl number.

Figure 1.1: Swirling Jet Experimental Facility.

The experiment was performed using laser Doppler anemometry, both because of the rela-
tively high turbulence intensities throughout the jet and to avoid any disturbances in the flow
by a probe. The confinement around the flow was big enough (3.5m × 3.5m × 10m) to elimi-
nate the effects of the walls on the entrainment using the criteria of Hussein et al. [1994]. The
measurements were carried out at two different swirl numbers of S = 0.15 and S = 0.25, in
addition to a non-swirling case. The far-field of the jet was measured at different distances
downstream from the jet exit up to 50 diameters.

The first part of this thesis describes the study of the similarity region in swirling jet flows.
Chapter 2 is a brief introduction of the flow characteristics and reviews the literatures in this
field. In chapter 3 we look into the governing equations and similarity theories of the axisym-
metric jets. A particularly novel feature of this chapter is the recognition of role of the rate
of addition and conservation of angular momentum in determining the similarity scaling and
flow development. The details of the experimental facility and measurement methods are dis-
cussed in chapter 4. And in the last two chapters of this part, the results of the experiment and
a summary of the work are presented.

1.2 Natural Convection Experiment

This experiment was designed to improve understanding of the process of heat transfer from
a surface with different temperature (in this case higher) than the quiescent surrounding fluid.
Flows that are significantly influenced by gravity and density differences of a body from the
ambient fluid are classified as buoyancy-driven flows. In the presence of a body force like gravity
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or centripetal force, the change in the density due to the temperature difference creates a buoy-
ancy force acting on the fluid which can cause motion. The moving fluid, together with the
stagnant ambient, can create a free shear layer flow (e.g., like in a plume in an unconstrained
environment). When it is constrained by a surface it creates a boundary layer flow along the
surface (e.g., like the flow described below for which the surface was vertical so the flow rises
along it).

In wall-bounded buoyancy-driven flow the laminar flow’s stability is defined by a dimen-
sionless number (called the Grashof number), which compares the amount of buoyancy force
delivered into the flow relative to the viscous force damping the motion:

GrL =
gβ ∆TL3

ν2
∼ Buoyancy Force

Viscous Force
(1.1)

where g is the gravitational acceleration, β is the coefficient of thermal expansion, ∆T is the
temperature difference from some reference value (usually the free stream), ν is the kinematic
viscosity, and L is an appropriate length scale (e.g., the distance from the leading edge of the
surface). Another dimensionless parameter closely related to it is the Rayleigh number defined
by:

RaL =
gβ ∆TL3

να
(1.2)

where α is the thermal diffusivity. It is easy to see that the Rayleigh number is just the Grashof
number times the Prandtl number, Pr = ν/α. For air over the range of the experiments reported
herein, the Prandtl number is nearly constant at 0.7. Note that for the case of a constant wall
heat flux, so-called flux Grashof and Rayleigh numbers can be defined by using the wall heat flux,
say qw, instead of the temperature difference; i.e.,

Gr∗ =
gβqwL

4

ν3
(1.3)

Ra∗ =
gβqwL

4

ν2α
(1.4)

The Grashof and Rayleigh numbers are typically many orders of magnitude higher than their
counterparts for forced flow, the Reynolds number. This is because of their dependence on L3

(or L4) and inverse dependence on ν2 (or α.ν). The Reynolds number, by contrast, is propor-
tional to L/ν. Experiments and linear stability theory suggest that the critical value for Grashof
number in air varies between 108 and 1010. Incropera [2007] suggests Ra ≈ 109 as the value
for the critical Grashof number where the laminar flow becomes unstable. This critical value
does not predict when the flow develops into a fully turbulent natural convection boundary
layer. This is generally believed to occur much later at roughly Gr > 1010 for air. The primary
consideration in designing (actually modifying) the facility for this experiment was to insure
a well-developed turbulent boundary layer. Of equal importance, however, was to insure that
the boundary layer was of sufficient thickness and velocity that it could be measured with the
available technology, especially the critical near wall region from which the wall shear stress
and heat transfer rates can be determined.

The experimental facility used in this experiment was a modification of the rig used by Pers-
son and Karlsson [1996]. A cylindrical surface was chosen in order to avoid the effect of side
walls that could change the two-dimensional nature of the flow and add more complexity. On
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Figure 1.2: Natural Convection Boundary Layer Experimental Facility.

the other hand the natural convective heat transfer from a cylindrical geometry is also appeal-
ing for industrial applications such as heat exchangers and reactors. In the original Vattenfall
rig a length of 2 m was used for a slender cylinder of 10cm in diameter to create a boundary
layer with RaL = 1.4 × 1010. For this experiment the length of the cylinder was increased to
4.5 m in order to give a Grashof number of RaL = 1.7 × 1011 at 4m height at a temperature
difference of 40 degree Celsius.

For the rig shown in figure 1.2, the hot water circulates in a closed cycle through a water
pump to keep the surface temperature of the cylinder constant. Air was used as the working
fluid in the experiment, because the optical method of velocity measurement (LDA) has diffi-
culties working in a fluid with high index of refraction such as water in the presence of a high
temperature gradient (mirage effect). The entrance section of the rig from the bottom was also
modified to let the air enter the rig in a uniform and symmetrical way. The cylinder is confined
within a 1.2 m diameter fiberglass cylinder, and a collector at top of the tunnel diverts the hot
air to an enclosure surrounding the rig where it is cooled down and small particles are added
to the air for the LDA measurements. The entire system of air and water temperature is mon-
itored by a set of thermocouples during the measurement, which typically takes several hours
or more.

In Part II, chapter 7 of the thesis reviews the background, applications and previous at-
tempts to study the natural convection flows. The equations and supporting theories of the
fluid dynamics will be presented in chapter 8, and the details of the experimental facility will
be discussed in chapter 10. The measurement methods, laser Doppler anemometry, resistance
wire (cold-wire) and thermocouple thermometry, are described in chapter 11, and also deals
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with the errors arising from the measurement methods. Finally in chapters 12 and 13, the
results of the experiment along with discussion and a summary of the work are presented.
Among the most significant findings are heat transfer results which call into question previous
measurements of wall heat transfer in natural convection flows. Also the present results raise
serious doubts about whether the previous measurements of natural convection wall-bounded
flows were in flows which could in any sense be regarded as fully-developed. Questions are
also raised about the methodologies of the present and previous experiments.
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Part I

Incompressible Swirling Jets
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Chapter 2

Introduction

This chapter introduces the concept of turbulent jet, and especially a jet with swirl. It also
briefly reviews the literature and provides background for the theoretical and experimental
presentations of the subsequent chapters.

2.1 What is a jet?

The jet flows are well-known because of their many engineering applications. But they also oc-
cur commonly in nature. Examples range from phenomena like the Mount St. Helens volcano
to living creatures like a squid which propels itself by squirting water behind it. In fact, any
stream of fluid that mixes with a surrounding medium moving more slowly can be called a jet
flow. In this thesis the word jet will be used to refer only to a source of momentum exiting into
a quiescent environment.

Figure 2.1: A jet flow visualization using a simple home humidifier.

For a fluid mechanician, jets represent a class of free shear flows which are inhomogeneous
flows that evolve in the absence of walls. Wakes, plumes and shear layer flows are other classes
of free shear flows. All undergo transition and transform from laminar into turbulent flow
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Figure 2.2: Schematic of the early development of a jet.

much more rapidly than wall bounded flows. In the absence of density differences, the mean
velocity gradient (or mean shear) is the source of turbulence. More accurately, it is the Reynolds
stresses working against this mean shear that accounts for all of the turbulence energy produc-
tion. Underlying these ‘averaged’ measures of what is going on in a jet are an incredible array
of vorticity interactions. The manner in which these vortices interact with each other and with
the mean flow is for the most part poorly understood.

Both two-dimensional jets (flow discharged from a slot) and axisymmetric jets evolve in
the surrounding ambient medium in the manner illustrated schematically in figure 2.2. A free
shear layer is generated immediately after the laminar flow exiting the nozzle of jet meets the
stationary fluid. This has its origins in the upstream boundary layers formed in the jet nozzle,
so the nature of this boundary layer in the nozzle can very much influence the early transition
process. But for even modest exit Reynolds numbers (a few thousand), the transition processes
are dominated by the local shear instabilities and the shear layer rapidly becomes turbulent
(usually within less than a diameter, sometimes much less). Eventually as the shear layers
(or shear annulus) grows, the sides of the shear layer merge. But before they do there is a ir-
rotational flow region inside called potential core which has not yet been entrained into the
turbulent shear layer. This region has an approximately flat velocity profile in the middle is
usually less than three nozzle diameters long. The next region is dominated still by the rem-
nants of the mixing layer and the mass inflow from the nozzle. It is not until the fully developed
region which evolves about 20 – 30 diameters downstream that the jet achieves a self-similar
(or self-preserving) state. There are clearly two length scales here: the streamwise length scale
which is the distance from nozzle and the jet half-width (δ1/2), that is the radial distance in
each cross-section between the jet centerline and the position at which velocity reaches half of
its maximum value.

The nature of turbulent free shear flows is also characterized by another important phe-
nomenon; namely, entrainment in which turbulent (or vortical) fluid converts the surrounding
(usually irrotational) flow into vortical fluid. Though this feature is not unique to turbulent
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flows, it is substantially greater than in a laminar flow. In a turbulent flow, the large scale ed-
dies engulf (or surround) parcels of irrotational fluid, which is then converted into vortical fluid
by the ‘nibbling’ due to viscous diffusion of the small scale vorticity at the interface (sometimes
called the ‘Corrsin superlayer’). It is the efficiency of this process that explains the widespread
application of jet flows in industry for mixing. The amount of the mass brought into the flow
is overwhelmed by the entrained mass within 30 diameters from the exit plane (see figure 2.3).

Figure 2.3: The entrainment of a jet flow overwhelms the initial mass flow and defines a virtual origin.

If a line tangent to the rate at which mass crosses any downstream section of the flow is
extrapolated backwards, there is a location from which the jet source appears to emanate with
no initial mass flow (see figure 2.3). This position is called the virtual origin, and is one of the
parameters characterizing the initial conditions. The same virtual origin can be obtained by
tracing lines tangent to the instantaneous interface between the jet and the ambient fluid (c.f.,
Cater and Soria [2002]), or by fitting a curve to a plot of the velocity profile half-widths as a
function of downstream distance (c.f.,Hussein et al. [1994]).

Although the three-dimensional turbulent nature of the flow makes it difficult to model, the
theoretical study is simplified by its symmetries. First it is a homogeneous flow in azimuthal
direction (or homogeneous in the spanwise direction for the plain jets). This makes the spatial
derivative of any averaged quantity with respect to the azimuthal angle, θ, identically zero.
Second, the flow develops much more slowly in the streamwise direction than in the radial
direction, so it can be treated to a first approximation as a thin shear layer using a boundary
layer type approximation. The thin shear layer approximation considerably simplifies the av-
eraged equations since the streamwise derivatives of the averaged flow are much smaller than
spanwise ones (i.e., ∂/∂x≪ ∂/∂r).

Turbulent jets have continued to interest researchers for many years, both because of their
numerous applications as well as their importance to our fundamental understanding of tur-
bulence. Jet flows with swirl are of particular interest, especially in combustion; and many
experimental and theoretical studies have tried to address the questions of the stability and
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Figure 2.4: Swirling jet velocity components.

dependency on initial condition of jet flow. But even the non-swirling axisymmetric jet has
proven a considerable challenge to researchers, and only recently have the role of upstream
conditions and downstream similarity been fully recognized (George [1989], Cater and Soria
[2002], Mi et al. [2001]). Only with this recognition has it become possible to sort out the ap-
parently conflicting results for even the single point turbulence statistics (Hussein et al. [1994],
Panchapakesan and Lumley [1993], Burattini et al. [2005]). This thesis extends the range of that
understanding to include swirling jets, at least as far as the asymptotic flow is concerned.

2.2 Swirling Jets

Swirling jets add to the interest of this class of flows because swirl can be considered as a signifi-
cant change in the jet flow’s initial conditions. Farokhi et al. [1989] and Gilchrist and Naughton
[2005] investigated the effect of swirl on the near-field flow of an axisymmetric jet and showed
that moderate swirl (below vortex breakdown) enhances the growth rate and mixing compared
to those of a non-swirling jet. The latter presented evidence that the enhanced growth rates
persisted to 20 diameters downstream of the jet exit, even though the swirl had decayed to a
point where it was barely detectable (Gilchrist and Naughton [2005]). Such changes in the flow
characteristics in the near-field suggest that some turbulence structure of the swirling jet must
persist far downstream.

An axisymmetric jet with an initial azimuthal velocity component is considered to be a
swirling jet flow (see figure 2.4). When the azimuthal velocity strength exceeds the axial com-
ponent strength of the flow (swirl number greater than unity), the flow behavior changes and
the flow becomes unstable with recirculations. Investigations by Chigier and Chervinsky [1967]
show even in swirl numbers lower than unity (S ≈ 0.6), the reversed flow is observable. The
present study was limited to low-to-moderate swirl (S ≤ 0.25) below the vortex breakdown
limit and for which the flow still behaves as a jet. How this change in the initial condition alters
the flow far downstream in the similarity region is the question this study tried to answer.

While studies by Craya and Darrigol [1967] and Chigier and Chervinsky [1967] focused
on the swirl strength and the flow behavior of different swirl degree, Gilchrist and Naughton
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[2005] are also considered the effect of swirl generator’s type on the growth rate of the jet. The
azimuthal velocity component can be introduced to the axial flow in different ways. The so-
called “q-vortex” type of swirl produced a higher peak in the exit velocity profile compared
to the “solid-body” swirl type. The “radial-type” swirl generator used by Sheen et al. [1996]
also produced the same range of swirl number with the variation in exit profile. In all these
experiments, the shape of the jet source profile directly manipulated the behavior of near-near
fields, in a similar manner to the investigations of as Mi et al. [2001] on non-swirling jets. The
instabilities in swirling jets and the structures of the vortex break-down in high swirling num-
ber flows studied by Panda and McLaughlin [1994] and Shtern et al. [2000] indicate that the
high swirl destabilizes the jet flow.

Although swirling jets in the near field have been studied for a long time, detailed mea-
surements of the far-field flow under carefully controlled conditions are lacking. The objective
of the present study is to make such measurements in the jet far field using laser Doppler
anemometry (LDA) to complement our existing knowledge of these swirling flows. The LDA
data acquired herein is used to assess the characteristics of the swirling jet in the far-field and
compare these results with those in the near field. By contrast with the earlier studies of the
near field, the present results for the far jet show a linear growth rate for the far field of swirling
jet that is the same as for the non-swirling jet. Moreover, if the statistical moments are properly
scaled using the rates at which momentum and mass are added at the source, there appears to be no
effect of swirl in the far-field other than to move the virtual origin of the flow. The overall
findings substantiate the theoretical analysis of Ewing [1999] who used equilibrium similarity
considerations to argue that the effects of swirl on the asymptotic jet should be negligible.

In the following sections, the implications of the governing equations and the similarity re-
sults are reviewed. It is argued that the swirl introduces another length scale into the problem,
with consequence that the swirl number is a ratio of length scales. Next the experimental facil-
ity and experiments are described and the data on the first and second moments is presented.
Finally the implications of the similarity analysis on the results are considered.
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Chapter 3

Theory of Axisymmetric Jets with Swirl

This chapter considers the consequences of swirl on the Reynolds-averaged Navier-Stokes
equations. Of primary interest is the asymptotic development of the jet for large distances
from the jet source. This work has previously been published as Shiri et al. [2008], and earlier
versions appeared as Shiri [2006] and Shiri et al. [2006].

3.1 Introduction

For nearly half-a century, all jets were believed to evolve to be asymptotically independent of
their initial conditions, and depend only on the rate at which momentum was added at the
source and the distance downstream (c.f. Tennekes and Lumley [1974], Monin and Yaglom
[1975]). While experiments never confirmed this, it was not until the analysis of George [1989]
that an asymptotic dependence on initial conditions was shown to be consistent with similar-
ity solutions to the RANS equations. The past two decades have seen numerous experiments
confirming this asymptotic dependence for jets and other free shear flows (See George [2008]
for a recent review).

By any measure, the addition of swirl at the jet source can be considered to be a signifi-
cant change in the jet flow’s initial conditions. As noted in the preceding chapter, numerous
experimental and theoretical studies have tried to address the questions of the stability and de-
pendency on initial condition of jet flow (e.g., Farokhi et al. [1989] and Gilchrist and Naughton
[2005]). All have focused on the near-field flow of an axisymmetric jet, and showed enhanced
growth rate and mixing compared to those of a non-swirling jet. This thesis is concerned with
the asymptotic state of jets with moderate swirl and below vortex breakdown). Such jets evolve
as statistically stationary flows for which the Reynolds-averaged Navier-Stokes equations ap-
ply. Stationarity assures that time-averaging and ensemble averages are the same, at least in
the limit of an infinitely long record and an infinite number of members of the ensemble; i.e.,

lim
T→∞

1

T

∫ T

0
[quantity]dt = 〈[quantity]〉. (3.1)

Note that this is not necessary true if the flow contains periodic components, which would
probably be the case if it were unstable. This is not a problem for the swirl numbers under
consideration herein, no matter whether the jet is swirling or not.
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3.2 Basic equations for the swirling jet

3.2.1 Mass conservation

In the absence of sources of mass, the continuity equation is the same as for the non-swirling
jet. For constant density flow, the Reynolds-averaged continuity equation is given by:

∂U

∂x
+

1

r

∂

∂r
rV +

1

r

∂W

∂θ
= 0 (3.2)

With the assumption that the flow is axisymmetric in the mean, the last term is identically
zero since the azimuthal derivative of any averaged quantity is zero; i.e., ∂/∂θ = 0. Thus the
mean continuity equation reduces to:

∂U

∂x
+

1

r

∂

∂r
rV = 0 (3.3)

Equation 3.3 can be integrated from the axis to any radial value r to obtain the following:

V (x, r, θ) = −1

r

d

dx

∫ r

0
Ur′dr′ (3.4)

The entrainment rate per unit mass, say E, can be defined as:

E = lim
r→∞

∫ 2π

0
V rdθ = 2π lim

r→∞

rV (3.5)

Substituting equation 3.4 yields immediately:

E = 2π lim
r→∞

rV = 2π
d

dx

∫

∞

0
Urdr (3.6)

For the asymptotic state, the last integral can be shown (see below) to be constant, which im-
plies that V → 1/r for large values of r.

3.2.2 Momentum Conservation

The instantaneous Navier-Stokes equations in cylindrical coordinates for a constant density
flow are given in Appendix B. Also in Appendix D the consequences of Reynolds-averaging
of these equations are shown, and the order of magnitude analysis presented to identify the
most important terms which form the basis of a similarity analysis. For high Reynolds number,
the case of interest herein, the viscous terms can be neglected in the mean momentum equation.
This can be verified a posteriori using the actual data.

Thus, ignoring the viscous terms and assuming azimuthal symmetry, the Reynolds-averaged
Navier-Stokes equations in cylindrical coordinate can be shown to be given by:

U
∂U

∂x
+ V

∂U

∂r
= −1

ρ

∂P

∂x
− ∂uv

∂r
− uv

r
−
{

∂u2

∂x

}

(3.7)

− W 2

r
= −1

ρ

∂P

∂r
− ∂v2

∂r
+
w2 − v2

r
−
{

∂uv

∂x

}

(3.8)

U
∂W

∂x
+ V

∂W

∂r
+
VW

r
= −∂vw

∂r
− 2

vw

r
−
{

∂uw

∂x

}

(3.9)
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Note that the last term in brackets in each equation is usually neglected since they represent
changes in the streamwise direction. The ∂u2/∂x term will be seen to make a second order
contribution to the momentum integral, so will be retained for now; but the ∂uv/∂x terms will
be dropped since they are substantially smaller.

Equation 3.8 can be integrated from any radial value r to ∞ to obtain the pressure as:

1

ρ
[P (x, r) − P (x,∞)] = −

∫

∞

r

W 2 + [w2 − v2]

r′
dr′ − [v2] (3.10)

where W and all turbulence quantities are assumed to vanish at infinite radius. Equation 3.10
can be differentiated with respect to x to obtain:

1

ρ

∂P (x, r)

∂x
= ρ

dP(x,∞)

dx
− ∂

∂x

∫

∞

r

W 2 + [w2 − v2]

r′
dr′ − ∂v2

∂x
(3.11)

If it is assumed that there is no external flow, then dP (x,∞)/dx = 0. Assuming this and
substituting equation 3.11 into equation 3.7 yields the streamwise momentum equation as:

U
∂U

∂x
+ V

∂U

∂r
= −1

r

∂ruv

∂r
+

∂

∂x

{

[v2 − u2] +

∫

∞

r

W 2 + [w2 − v2]

r′
dr′

}

(3.12)

The last term is almost always negligible compared to the others.

3.2.3 Integral equations for axial and angular momentum conservation

In order to compute the strength of the flow in streamwise and azimuthal directions, these
equations can be integrated over a plane downstream of the jet to derive axial and angular in-
tegral momentum equations given below:

Conservation of axial momentum in axial direction:

First multiply the mean continuity equation 3.3 by U and add it to equation 3.12 to obtain:

∂

∂x
U2 +

1

r

∂

∂r
rUV = −1

r

∂

∂r
ruv +

∂

∂x

{

[v2 − u2] +

∫

∞

r

W 2 + [w2 − v2]

r′
dr′

}

(3.13)

Then multiply by r and integrate from 0 ≤ r <∞. If the swirl velocity and turbulence second-
order moments are assumed to vanish at infinity, the result after integration by parts is:

d

dx

∫

∞

0

[

U2 − W 2

2
+ u2 −

(

w2 + v2

2

)]

rdr = 0 (3.14)

Integrating from the source to any streamwise value yields the following streamwise mo-
mentum integral constraint on the motion:

Mo = 2π

∫

∞

0

[

U2 − W 2

2
+ u2 −

(

w2 + v2

2

)]

rdr (3.15)

This clearly reduces to the integral equation of Hussein et al. [1994] (appendix) when W = 0
as it should. Note that [ U2 + u2 ] represents the flux of momentum per unit mass across

17



Natural Convection Boundary Layers & Swirling Jets

any plane perpendicular to the jet axis, while the remaining terms arise from the streamwise
pressure gradient.

Conservation of angular momentum in axial direction:

The integral equation governing angular momentum can be derived in a similar manner.
First multiply equation 3.3 by W and add it to equation 3.9 to obtain:

∂

∂x
UW +

∂

∂x
uw = − 1

r2
∂

∂r
(r2VW )− 1

r2
∂

∂r
(r2vw) (3.16)

Then multiply to r2; i.e.,

∂

∂x

(

r2(UW + uw)
)

= − ∂

∂r

(

r2(VW + vw)
)

The final angular momentum integral is obtained by integrating over r:

d

dx

(
∫

∞

0
2π[UW + uw]r2dr

)

= −
[

2πr2(V W + vw)
]

∞

0

with boundary conditions,

For r = 0 −→ V =W = uv = 0

For r = ∞ −→ U =W = uv = vw = 0

The right-hand side of the equation vanishes leaving:

−
[

2πr2(V W+ < vw >)
]

∞

0
= 0.

So the left hand side of the equation yields immediately:

d

dx

∫

∞

0
2π[UW + uw]r2dr = 0 (3.17)

Again integrating from the source to any streamwise location yields the following angular
momentum integral constraint:

Go = 2π

∫

∞

0
[UW + uw]r2dr (3.18)

3.3 Basic scaling parameters

3.3.1 Streamwise and angular momentum conservation

The basic equations have been carefully reconsidered recently by Ewing [1999] and Shiri et al.
[2008]. Of primary concern were the two fundamental integrals of the RANS equations for
the fully developed asymptotic turbulent swirling jet derived above. The first is Mx, which is
the total rate of transfer of kinematic linear momentum across any downstream plane, say at
location x. As shown above, at high Reynolds numbers and in the absence of an external flow,
this reduces to:

Mx(x) =Mo = 2π

∫

∞

0

[

U2 − W 2

2
+ u2 − v2 + w2

2

]

rdr (3.19)
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Moreover, since there are no net forces other than pressure (which is accounted for in 3.19) act-
ing on any control volume containing this plane and the exit plane of the jet, Mx must remain
equal to its source value Mo at all downstream positions x.

The second fundamental parameter Gθ(x) is the rate which kinematic angular momentum
is swept across any downstream plane. From integration of the angular momentum equation
with the same assumptions as above, this was shown above to reduce to:

Gθ(x) = Go = 2π

∫

∞

0
[UW + uw]r2dr. (3.20)

Like the linear momentum, Gθ(x) should remain constant at its source value, Go, since in an
infinite environment there are no torques acting on any control volume containing the source
plane nor any plane that cuts perpendicularly through the jet axis.

3.3.2 The effect of mass addition at the source

A third integral provides the rate at which volume (kinematic mass) is swept across any down-
stream plane:

mx(x) = 2π

∫

∞

0
Urdr. (3.21)

Unlike Mx and Gθ, as noted above (and in the previous chapter), mx is not constant at the
rate at which kinematic mass is being added at the source, mo, since mass is being continually
entrained by the jet. Nonetheless, in non-swirling jets, mo (together with Mo) sets the virtual
origin of the jet (George [1989]), since it imposes a length scale, D∗ , at the exit plane. D∗ is the
effective diameter defined by

D∗ =

√

m2
o

Mo
. (3.22)

In fact it is the ratio of the axial distance, x to this length scale that measures the evolution
of the near jet into the far jet. In particular, it is only when x >> D∗ that the asymptotic
free jet can be reached. Or said another way: only when the mass entrained by the turbulence
overwhelms that added at the source close the jet is the asymptotic state attained. For top-hat
jets of diameter D, this state seems to be achieved for x/D > 30.

Addition of mass at the source also introduces a velocity scale, U∗, into the problem. U∗ is
defined by

U∗ =
Mo

mo
. (3.23)

BothD∗ and U∗ can be replaced by simply the exit diameterD and exit velocity Uo if (and only

if) the exit profile has top-hat form (i.e., uniform velocity across the exit plane). This is easy to
see since in the top-hat case

D∗ =

√
π

2
D, (3.24)

U∗ = U0. (3.25)

Much confusion in the history of the study of turbulent jets has resulted from the failure to
recognize the importance of using D∗ and U∗ if the exit profile is not a top-hat. And often
alleged effects of source conditions can be eliminated with proper scaling. As will be shown
below, proper scaling becomes even more important when swirl is introduced, since the effect
of Go is to introduce yet another length scale into the problem.
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3.3.3 The role of swirl

It is easy to show that addition of both linear and angular momentum imposes another length
scale, L∗, onto the flow, even without mass addition at the source (i.e., point sources of linear
and angular momentum). L∗ can be defined as

L∗ =
Go
Mo

. (3.26)

It is immediately obvious that, if mass is also added, then another length scale ratio, the so-
called swirl number, can be defined

S∗ =
Go

MoD∗

√
π. (3.27)

Note that the factor of
√
π has been inserted into equation 3.27 to make it reduce to the usual

definition for top-hat exit profiles (which seldom can be achieved when swirl is present); i.e.,

S =
2Go
MoD

=
L∗

D∗

√
π. (3.28)

Clearly we should expect L∗ to replace D∗ as the length scale governing downstream behavior
only when the swirl number is large (in much the same manner that x replaces D∗ for the far
non-swirling jet). Since (as will be reviewed below) the effect of angular momentum on the
flow diminishes as the flow evolves downstream, at low swirl numbers, L∗ will provide an
indication of a measure of at most a change in the virtual origin of the asymptotic swirling jet.

3.4 Equilibrium similarity implications for the far swirling jet

The similarity of the asymptotic swirling axisymmetric jet has recently been reconsidered by Ew-
ing [1999], Shiri [2006], Shiri et al. [2008]. These theoretical results will prove to be crucial in
interpreting the measurements presented later. The primary differences from the non-swirling
axisymmetric jet are the need to consider the additional moments W , uw, vw, and the angular
momentum integral constraint.

The most important results of the equilibrium similarity analysis of the swirling axisym-
metric jet can be summarized as follows.

• The profiles of mean streamwise velocity and turbulence normal stresses can be described
by single length and velocity scales. The convenient choices (and those used to scale the
data in this paper) areUc, the centerline velocity, and δ1/2, the velocity half-width (defined
as the distance from the centerline to the point at which the mean velocity falls to half its
centerline value). Thus the normalized radial coordinate is η = r/δ1/2, exactly like the
non-swirling jet.

• The spreading rate of the asymptotic jet is linear; i.e.,

δ1/2 = A(x− xo), (3.29)

where xo is a virtual origin which can depend on the Reynolds number and swirl number.
The coefficient A (or dδ1/2/dx) can in principle at least depend on the jet exit conditions.
Both sides can be normalized by D∗, but normalization by D introduces a dependence
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on the exit profile (which can be non-uniform with swirl). Note that, if done rigorously,
the result of equation 3.29 is not particularly straightforward to obtain, but follows from
a detailed consideration of the Reynolds shear stress equations and the behavior of the
dissipation George [1989], Hussein et al. [1994].

• The Reynolds shear stress, uw, scales with U2
c dδ1/2/dx. The linear growth of the far jet

implied by equation 3.29 means that the factor of dδ1/2/dx is constant, so these moments
scale the same as the turbulence intensities. However, it should be noted that the de-
pendence of the coefficient on upstream conditions means that scaled profiles may differ
from experiment to experiment.

• From the conservation of linear momentum, equation 3.19, it follows immediately that
the mean centerline velocity falls asymptotically inversely with increasing δ1/2. Although
this is well-known George [1989], Hussein et al. [1994] it is instructive to review briefly the
reasons since similar considerations apply to the angular momentum considered below.
First ignore for the moment the swirl and turbulence contributions and substitute the
similarity profile for the mean velocity into equation 3.19 to obtain

Mx = [U2
c δ

2
1/2] 2π

∫

∞

0
f2 ηdη, (3.30)

where η = r/δ1/2 and f = U/Uc. Since the integrand depends only on the similarity
variable η that is integrated over the entire domain, all of the x-dependence on the right-
hand side is in the square-bracketed term. But the left-hand side is equal to a constant
since Mx =Mo. Therefore, Uc must be inversely proportional to δ1/2; i.e.,

Uc ∝ δ−1
1/2. (3.31)

Inclusion of the turbulence terms only modifies the constant of proportionality, since they
too can be shown to scale with U2

c . The swirl contribution (from the radial pressure gradi-
ent), W 2/2 will be shown below to vanish downstream relative to the other terms, so the
effect of its omission decreases with distance. Combining equations 3.30 and 3.31 with
the linear growth rate of equation 3.29 implies that

Uc = Bu
Mo

1/2

(x− xo)
, (3.32)

where Bu is a constant. In fact Bu and A can not be independent, but must also be linked
to each other and the shape of the profile through equation 3.19. Alternatively the center-
line velocity can be normalized by U∗:

U∗

Uc
=

1

Bu

[ x

D∗

− x0
D∗

]

. (3.33)

Note that Uo can be also used if the exit profile is top-hat; but if it is not, this introduces
an artificial dependence on jet exit conditions.

• The mean azimuthal (or swirl) velocity component scales with its maximum value at any
cross-section, Wmax, and falls off as the inverse square of δ1/2 (or x − xo). This is a
surprising result (originally shown by Ewing [1999]), but can be seen immediately by
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substituting similarity profiles for the mean velocity, say U/Uc = f(η), W/Wmax = g(η) ,
into the angular momentum integral of equation 3.20. Since uw is negligible, the result is:

Gx = [Uc Wmax δ
3
1/2 ] 2π

∫

∞

0
f g η2dη. (3.34)

The integral in similarity variables can at most depend on the exit conditions and is inde-
pendent of x. Also the left-hand side is constant since conservation of angular momentum
requires that Gx = Go. Using equation 3.32 implies:

Wmax ∝ [Uc δ
3
1/2 ]

−1 ∝ [δ1/2]
−2 (3.35)

It follows immediately from equation 3.29 that the swirl velocity, Wmax falls off inversely
with the square of the downstream distance. Combining equation 3.34 with 3.32 and 3.29
yields

Wmax = C
Go

Mo
1/2(x− xo)2

(3.36)

where C is a constant (at most dependent on the jet exit conditions). Note that, just as
A and B are linked by the linear momentum integral, C is linked to both by the angular
momentum integral.

Since the mean velocity falls off only inversely with distance, but the swirl falls off as in-
versely with the square of distance, the swirl should appear to die off. This is exactly what
was noted in the experiments of Gilchrist and Naughton [2005]: the swirl dies off downstream.
Moreover, as first pointed out by Ewing [1999], this means the asymptotic swirling jet should
behave exactly as a non-swirling jet, with at most different values of A, B and C that could
in turn depend only on the jet exit conditions. A particular goal of the experiments described
below was to test if and how these things happen.

Note the fact that the swirl appears to die out relative to the streamwise flow does not mean
it is gone: angular momentum is still being conserved, it’s just being spread over a larger area.
As a consequence the swirl (or azimuthal mean equation) uncouples itself and plays no role
in the evolution of the streamwise and radial equations which behave as though the jet were
non-swirling.
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Chapter 4

Jet Experimental Facility and
Measurement Methods

This chapter describes the swirling jet facility and the velocity measurement methodology used
in this experiment. Also the details of the measurement procedure and the boundary condition
of the experiment will be discussed.

4.1 Experimental Setup

A two-component LDA (Laser Doppler Anemometer) was used to measure the instantaneous
velocity field. Measurements were carried out in different cross-sections of the jet, starting
from the jet nozzle up to 50 diameters from it. A traversing system was used for displacing the
LDA probe in the three Cartesian coordinates. Two series of measurement were carried out.
The first measured the streamwise and tangential velocities at x/D = 5, 10, 20, 25, 30, 35, 40, 50
by traversing the LDA lens horizontally. The second series of measurement was carried out
at x/D = 28, 30, 32 by traversing the lens along radii both horizontally and vertically in order
to obtain velocity statistics of all three velocity components: streamwise, radial and tangential.
All the measurements were carried out for three different swirl conditions: S = 0.25, 0.15 and
non-swirling.

4.1.1 Swirling Jet Facility

An existing facility, previously used by Hussein et al. [1994], was modified to produce both ax-
ial and tangential velocity components in an air jet flow. Two fifth-order polynomial contractions
were used to accelerate the flow from the settling chamber into the jet exit, which was of diam-
eter D = 25.4mm (one inch), as shown in figure 4.1. The streamwise velocity of the jet exit for
the non-swirling case was nearly a laminar top-hat profile flow (c.f. Shiri et al. [2008]). When
swirl was added to the main flow, the tangential velocity component had an approximately
solid-body distribution in the core region of the nozzle exit, but the streamwise profile was
modified from a top-hat shape slightly as well. The exit profiles for all three swirl conditions
are presented later with the experimental results.

One main centrifugal blower was used to supply axial flow, and six 15mm injectors con-
nected to a second blower added the swirling component independently. These two fans were
controlled by separate frequency converters so that the air speed and the strength of the swirl
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(a) (b)

Figure 4.1: (a) The swirling flow inside the tunnel converted into a 25.4mm (one inch) axisymmetric jet
using two contractions; (b) The arrangement of the swirl nozzles.

could be adjusted by changing the rotational speeds of two blowers.

As shown in the schematic of the jet apparatus (figure 4.2), the main flow first exhausts into
a diffuser, then passes through a pack of straws in order to eliminate all the large scale vortices
generated by the blower and transferring pipes. In the next section the swirl flow is added at
through 6 nozzles which were positioned tangentially in the inner circumference of the tunnel.
The transferring pipes of the swirl nozzles were connected to a pressurized section, which can
be seen in figure 4.1. Three sets of screens were positioned after the swirl injectors to dampen
any large scale turbulence

The visualization of the jet from the side shown in Figure 4.3 was obtained by heavily seed-
ing the jet flow. The potential core and developing region of the jet flow, as explained in chapter
3, are clearly visible.

The average streamwise velocity of the flow used in the experiment was 28 m/s, corre-
sponding to a Reynolds number of 40, 000 with a turbulence intensity of 2%. The higher tur-
bulence intensity of the flow produced compared to the original facility (∼ 0.58%, reported by

Figure 4.2: Schematic of the swirling jet facility.
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Figure 4.3: Smoke visualization of swirling jet used in experiments.

Hussein et al. [1994]) was due to the disturbances created by the swirl injectors. The exit veloc-
ity profile’s shape changes with the strength of the swirl, therefore the Reynolds number at the
exit varies slightly considering the effective diameter, D∗ (see chapter 3). More details about
the experimental facility can be found in Shiri [2006] and Hussein et al. [1994].

4.1.2 Boundary Conditions and Controlling the Experiment

As noted by Hussein et al. [1994] (see especially the appendix), there can be significant differ-
ences between a jet in a confined or semi-confined enclosure and one in an infinite environment
because of the re-circulating flow entrained by the jet. The enclosure was needed to provide
the approximately statistically uniform distribution of seeding particles necessary for the LDA
measurement technique (c.f., Buchhave et al. [1979]). It also eliminated any disturbances from
the working environment of the laboratory. A 10m× 3.5m× 3.5m size structure of plastic sheet
was built around the jet facility. A closed loop circulation was achieved by placing the blower
inlet inside the tent, but far upstream from the jet exit.

The jet was positioned along the centerline of the enclosure in order to be as far as possible
from the side walls (and floor and ceiling). If the radial extension of the jet were too close to
the surrounding walls, the entrainment would not appear to enter the jet from infinity in a
radial direction. Instead it would be adversly influenced by the backward flow in the outer
region which compensates for the entrainment from downstream. This reversed flow created
by confinement progressively decreases the net momentum integral across the jet downstream.
Hussein et al. [1994] suggested that the momentum loss due to confinement can be estimated
as:

Mx

Mo
=

[

1 +
16

π.B2
u

( x

D

)2 Ao
AR

]

−1

(4.1)

where Mx is the momentum integral at the distance x from the jet exit with the diameter D
and initial flow momentum of Mo. Ao/AR is the ratio of the jet nozzle to the enclosure cross-
sectional area, and Bu is defined as the velocity profile growth constant in chapter 3. From
this experiment, Bu = 6.87; therefore at a distance of x/D = 50, the momentum loss can
be estimated as M/Mo ≈ 0.99. The estimated loss is below our ability to measure it, a fact

25



Natural Convection Boundary Layers & Swirling Jets

confirmed in the experiments by evaluating the momentum conservation along the jet axis as
presented in chapter 5.

4.2 The Velocity Measurement in Turbulent Free Shear Flows

The main characteristic of free shear flows is their mixing ability. This arises from the high tur-
bulence intensity of such flows, especially near their outer boundaries. Among all the methods
used to measure instantaneous velocity and velocity correlations in high turbulence level shear
flows like jets, laser Doppler anemometry is the most reliable.

The laser Doppler anemometer will be described in detail in chapter 11. The same laser
and optics were used for both the swirling jet and natural convection boundary layer. The op-
tical lens was set in back-scatter mode in both experiments and the same seeding generation
method was used. The seeding was introduced into the jet through the main stream fan and
allowed to run for a very long time before measurements were taken. This ensured that the
flow was uniformly seeded, thereby avoiding any bias in velocity measurements in the outer
intermittent region. The focal length of the lens was the same, but in the jet experiment the
probe volume of the LDA created by the intersecting laser beams was made smaller (< 50 µm)
by using a different beam expander in order to have a better special resolution.

A two-component LDA system (Dantec) was used in a backscatter arrangement for the
present study. The flow was seeded with an aerosol and bursts produced by particles passing
through the control volume were analyzed by Dantec BSA burst processors. The sampling rate
of the LDA system was not fixed, but rather a ”burst” mode was used where all particles were
sampled as they arrived. The particles were produced by SAFEX fog generator which gener-
ates a dense white fog by evaporation and condensation of a water-based fog liquid. The mean
droplet size was around 1µm and a closed loop circulation of air kept the particle density con-
stant during the measurement. The particle time constant was estimated to be approximately
2.5 µs that can be compared to the smallest Kolmogorov microtime, (τ = (ν/ǫ)0.5) at x/D = 30,
estimated using the results of the energy balance in chapter 5 as 450 µs.

The most notable effect of the additional swirl velocity component was a diminished parti-
cle concentration in the core of jet compared to non-swirling jet. Since this was also the region
where the mean flow gradients were the smallest, it was believed to not adversely affect the
results.

4.3 Statistical Uncertainty

All statistical moments were computed using the residence time weighting algorithms (Buch-
have et al. [1979], George [1988]) as employed by Hussein et al. [1994]. For the measurements at
x/D = 30, a fixed sampling period of 600 seconds was used. At most locations, the actual num-
ber of samples was at least 150,000 at each point in the high velocity regions, and more than
10,000 in regions where the velocity was less than one meter per second. The largest estimate
of the integral time was 0.1 s., so the minimum number of effectively independent samples was
3000.
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The relative statistical error can be estimated as George et al. [1978]

ǫ2ψN
=

1

Neff

var(ψN − 〈ψ〉)
〈ψ〉2 . (4.2)

where ψ is the statistical quantity being estimated and ψN is the estimator using N indepen-
dent estimates.

For the mean flow, var(ψN − 〈ψ〉)/〈ψ〉2 is just the turbulence intensity squared. For the sec-
ond moments using Gaussian statistics it is 2, but it increases rapidly to 15 for fourth moments.
Using these, the relative statistical error for the mean streamwise velocity U is estimated to be
less than 0.3 % (high velocity regions at far-field of jet). It is at most 2 % (at low velocity re-
gions of the jet) for the second moment statistics, but somewhat higher for the third moments.
Fourth (and higher) moments were available, but not deemed reliable because of the limited
bandwidth of the LDA bandpass filters which removed the tails necessary to compute them.

Most problematical for these measurements was the mean swirl velocityW for which equa-
tion 4.2 reduces to

ǫ2WN
=

1

Neff

〈w2〉
W 2

. (4.3)

The mean square azimuthal velocity 〈w2〉 is about equal to the other turbulence normal stresses
(and scales with U2

c ), but the expected value of W drops rapidly with increasing x (as noted
in preceding chapters). Therefore, even if great care is taken in aligning the optical system to
enable accurate measurement of W , statistical errors greatly complicate its determination.

Note that similar problems occur for the measurement of the radial mean velocity, V , which
is also very small. But these were overcome in the same manner as in Hussein et al. [1994];
namely by using the continuity equation in similarity variables to compute V from U (at least
in the far jet where similarity was established).
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Chapter 5

Results of the Experiment

This chapter contains the experimental results for three experiments, two with swirl at the
inlet plane, one without (the conditions in three cases were explained in precious chapter).
The results have previously been published as Shiri et al. [2008, 2007a,b]. The paper by Shiri
et al. [2008] using laser Doppler anemometry showed that the growth rate enhancement due to
swirl (c.f. Gilchrist and Naughton [2005]) does not persist in the far-field of a swirling jet flow
with moderate swirl numbers (0.15 and 0.25). The results were consistent with the equilibrium
similarity theory of Ewing [1999] in which the mean swirl velocity was argued to decrease
downstream as 1/(x − xo)

2, while the mean stream-wise velocity decreased as 1/(x− xo). The
investigation in Shiri et al. [2007a,b] included all three velocity components of the turbulence
quantities at a swirl number of S = 0.25, and all moments to third order were obtained (ex-
cept those involving both the azimuthal and radial components simultaneously). As noted by
George [1989] , if there were an effect of the source conditions on the similarity profiles, it is in
the second and higher moment profiles where it would be expected to appear. The second and
third-order moments are quite close to the earlier non-swirling results; some collapse on top of
them almost perfectly, others show a slight difference.

Regardless, the results should be of considerable interest, since many of the quantities mea-
sured are those which must be modeled in all second-order closure models. This evaluation is
of particular interest since both the mean azimuthal and mean radial velocities were obtained
directly, meaning that both continuity and momentum balances were possible. The swirl is
shown to have a negligible effect on the overall Reynolds normal and shear stress balances. Fi-
nally they lend additional confidence in the non-swirling jet data of Hussein et al. [1994] who
used an earlier generation of LDA equipment.

5.1 Exit Velocity Profiles

The exit velocity profiles for the three cases are shown in figure 5.1. The non-swirling jet has a
top-hat axial mean velocity profile at the jet exit. But the swirling jet profiles all exhibit profiles
in which the axial velocity peaks at the centreline. Also the magnitude of the centreline veloc-
ity relative to the cross-sectionally averaged velocity increases with increasing swirl number.
Similar axial profiles for jets with swirl have been observed by Gilchrist and Naughton [2005]
and Farokhi et al. [1989]. Panda and McLaughlin [1994] also saw this peak and provided an
explanation based on vortex tubes becoming spirals.
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Figure 5.1: Axial and tangential mean-velocity profiles at the jet exit for three different swirl numbers.

The profiles of the azimuthal (or swirl) velocity at the exit, on the other hand, exhibit a sim-
pler behavior. In the core region (about 1/2 of the exit diameter) the swirl velocity for both
cases increases nearly linearly with radius; then rolls off smoothly to its maximum value after
which it diminishes rapidly to zero at the wall. Clearly the near linear region is close to being
in rigid body rotation.

The fact that the exit axial velocity profiles for the two flows differed from the near top-
hat of the non-swirling jet means that a simple top-hat scaling with the source exit velocity
and diameter is not useful. As noted in the chapter 3 the absence of a simple top-hat profile
complicates the scaling of the jet, since its natural length scales are determined by the rates at
which mass, momentum and angular momentum are added to the jet at the exit plane. Clearly
it is therefore essential to quantify the rates at which mass, momentum and angular momentum
were added to the flow, since these are crucial to scaling the data. They are also important for
establishing properly the swirl number of each flow.

5.2 Test Cases

A list of the test cases is provided in Table 5.1, where each case has been labeled by its swirl
strength, S. The axial and tangential velocities were chosen in order to maintain the same
Reynolds number in all three cases: Re ≈ 40, 000. The quantities mo, Mo and Go were de-
termined by carrying out their defining integrals (equations 3.13, 3.16 and 3.21). Surveys were
made in the following locations downstream (x/D = 5, 10, 20, 25, 30, 35, 40, 50) as illustrated in
Figure 5.2. In the first set of measurements, the LDA probe was traversed in just a horizontal
cross-section of the jet to measure the streamwise and radial velocity components. Then a sec-
ond set of measurements was performed with the optical probe traversed in both horizontal
and vertical directions across the jet cross-section. This method provided all three streamwise,
radial and azimuthal velocity components. The second measurement was done just in the lo-
cations of x/D = 28, 30, 32. Both sets of measurements are reported together below, since there
was virtually no difference for the streamwise component.
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Table 5.1: Test cases for the present study.

S Uc,0[m/s] Wmax,0[m/s] U∗[m/s] D∗[mm] Mo Go mo S∗
0 26.3 0 25.9 22.7 0.366 0 0.0268 0
0.15 27 6.7 24.8 22.9 0.345 6.75 × 10−4 0.0260 0.145
0.25 28.4 10 22.9 23.5 0.317 9.66 × 10−4 0.0252 0.239

5.3 The mean streamwise velocity in the far jet

Figure 5.3 shows the mean axial velocity profiles for all three cases (S = 0, 0.15, and 0.25) and
the following downstream positions: x/D∗ = 20, 25, 30, 35, 40 and 50. The mean velocity has
been normalized by Uc, its centerline value, and the radial coordinate has been normalized
by δ1/2, the jet half-width (determined as described in the next section). In all three cases, the
normalized velocities show collapse of the data for all cross sections in the far-field region of the
jet. Moreover, there is very little (if any) difference from one set of data to the next. Both of these
observations are consistent with the theory presented earlier that the far asymptotic swirling
jet should appear to be independent of swirl. The profiles are also in excellent agreement with
those reported by Hussein et al. [1994] who used the same facility, before it had been modified
for swirl, but at an exit Reynolds number of 100,000. The profiles measured here (see figure 5.4)
show slightly higher values of velocity for r/(x − x0) > 0.12 , perhaps due to the better LDA
hardware (Dantec burst-processor versus the earlier counter). The same differences were also
noted recently by Wänström [2009] using PIV.

Figure 5.2: Measurement grid for swirling jet experiments.
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Figure 5.3: Mean streamwise velocity at different axial positions for three different swirl numbers (a)
S=0, (b) S=0.15 and (c) S=0.25. The profiles have been normalized by the local mean centerline velocity
Uc and the half-width δ1/2.
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Figure 5.4: Mean streamwise velocity at x/D = 50 for three different swirl numbers S=0, S=0.15 and
S=0.25 compared with the data presented in Hussein et al. [1994]. The profiles have been normalized by
the local mean centerline velocity Uc and the distance from the exit (x− x0).

5.4 Variation of Uc and δ1/2 with x

The jet velocity half-width is defined as the distance between the centerline and the location
where the axial velocity drops to half of the centerline velocity. In order to calculate these
values for each curve, the following empirical jet profile was fitted to each profile White [1991]:

U

Uc
= sech2

(

a
r

x

)

. (5.1)

It is clear from Figure 5.1 that the exit velocity profiles for these swirling jets are not a top-
hat profiles, so the centerline velocity at the exit is not representative of the exit flow. Therefore,
in order to have a reliable comparison between three different cases, it is necessary to scale the
far jet data with the D∗ and U∗ (defined by equations 3.22 and 3.23 respectively) and summa-
rized in Table 5.1.

The results are shown in Figure 5.5. The solid lines drawn on the figure are regression fits
of equation 3.29 with both sides divided by D∗. For all the slope of the curves, A, is 0.093
and the virtual origin is at xo = 0.75 − 0.76D∗. The value of A is very close to the value of
A = 0.094 in the non-swirling jet of Hussein et al. [1994]. For the same experiment though
the virtual origin was at xo = 3.5D∗ (xo = 4D), however, so it is closer to the exit plane for the
present experiment. This perhaps reflects the differences in the way the flows were generated,
or alternatively simply the inclusion of data for which there was a slight loss in momentum in
the earlier experiments which measured farther downstream to x/D = 100 (see Appendix 2 of
Hussein et al. [1994]). The same regression fit to the S = 0.25 case yields 0.093 and −2.9 re-
spectively. This suggests strongly that there is really no statistically significant difference in the
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Figure 5.5: Streamwise variation of the velocity profile half-width plotted as δ1/2/D∗

versus x/D∗.

Figure 5.6: Streamwise variation of centerline mean velocity plotted as U∗/Uc versus
x/D∗.
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Figure 5.9: Plot of U2

c δ
2

1/2/Mo versus x/D∗ for all three swirl numbers.

spreading rate for the three swirl values. There is most certainly, however, a change in virtual
origin, which even with the modified curve fit has moved from the zero and low swirl values
to xo = −2.9D∗, which means it is upstream of the exit plane. The fact that there are no differ-
ences at all when the flow has low swirl number is consistent with the earlier observations that
the swirl number must exceed certain value (between S = 0.15 and S = 0.25) for any effect to
be noticed on the near field, e.g., Gilchrist and Naughton [2005].

The mean streamwise centerline velocity is plotted as a function of downstream location in
Figure 5.6 in the region where the jet can be assumed to be self-preserving (x/D∗ > 20). The
solid lines shown are regression fits of equation 3.33. Since the local centreline velocity ap-
pears in the denominator of the ordinate, the 1/(x− xo) decay rate is manifested as a straight
line in the figure, the slope of which is 1/Bu. For the S = 0 and S = 0.15 jets, the values
of Bu are nearly identical at 6.87 and 6.86 respectively, and the virtual origins are the same at
xo/D∗ = 0.75. (Note that the virtual origins are the same as for the curve fits to δ1/2, as they
must be.) The regression fit to the data for the S = 0.25 case yields a slightly smaller value of
Bu = 6.81 case with a virtual origin of −2.9. Therefore the data as plotted behave according
to the expected linear functions of the axial distance. To within the statistical error, there is no
change in either the spreading rate or the rate at which the centerline velocity decays, other
than the change in virtual origin for the S = 0.25 case. These values are slightly higher than
then equivalent value from Hussein et al. [1994], which when converted from D∗ to D yield Bu
= 6.55. This is perhaps due to the slightly higher Reynolds number of the latter, but is within
the uncertainty in the integration of the profiles at the exit plane.

The importance of using properly normalized profiles is illustrated in Figures 5.7 and 5.8
from Shiri [2006], which shows the same data normalized in the more traditional manner using
the maximum exit velocity and the jet diameter. The effects of the exit profile on the down-
stream development, especially for the highest swirl number, are very much in evidence, sug-
gesting a significant dependence on exit conditions. This effect vanishes when the data are
plotted with proper normalization.
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5.4.1 Streamwise momentum integral constraint on mean velocity

Before leaving this section it should be noted that all values of the parameters chosen above
satisfy the constraint imposed by the similarity form of the linear momentum conservation
expressed by equation 3.30 of the previous chapter. As shown in Figure 5.9, for all three data
sets,A2B2

u ≈ 0.405± 1%. This constancy, together with the collapse of the profiles in similarity
variables, is a necessary consequence of momentum conservation. Moreover, it confirms that
the jet is behaving as a jet in an infinite environment with no co-flow (c.f. Hussein et al. [1994],
George [1995]).

5.5 The mean swirl velocity and angular momentum conservation

As noted in the preceding chapter, the measurement of mean azimuthal (or mean swirl) veloc-
ity, W , was by far the most difficult part of the experiment. The direct measurements normal-
ized by the centerline mean velocity are shown in Figure 5.10. Because W is almost two orders
of magnitude less than the streamwise mean velocity at the locations of interest, even fractions
of a degree difference in the alignment of the laser beams introduces significant errors. Also
because of the very low value of W compared to 〈w2〉, there is considerable scatter in the re-
sults purely because of the statistical error. (In fact the relative statistical error is infinite near
the center where W = 0).

Nonetheless, by trying to account for the small offset near the origin and fairing curves
through points near the local maxima, it was possible to make an estimate of Wmax for each
of the two values of S, and this was invaluable in evaluating the theory. From conservation
of angular momentum and equilibrium similarity it was argued in Chapter 3 that Wmax is
described by equation 3.36, and falls off with increasing x as 1/(x − xo)

2. Since Uc (described
by equation 3.32) falls as only 1/(x − xo), then Uc/Wmax ∝ (x− xo). Also all of the integrals in
similarity variables have constant values (since the normalized profiles are independent of x);
hence the values of C (and Bu) should be independent of swirl. It follows immediately that the
slope of Uc/Wmax should be proportional to Mo/Go; i.e.,

Uc
Wmax

=
C

Bu

Mo

Go
(x− xo),

=
C

Bu
S−1
∗

[

(x− xo)

D∗

]

. (5.2)

Thus the higher the swirl number, the farther downstream for the swirl to die off relative to
the jet centerline velocity. Alternatively, from the definition of L∗ in equation 3.26, it follows
immediately that

Uc
Wmax

=
Bu
C

(x− xo)

L∗

. (5.3)

Thus the role of L∗ as a second length scale is clear: it measures the distance for the swirl mean
velocity to die off.
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Figure 5.10: Profiles of W/Uc versus r/δ1/2 for S = 0, S = 0.15 and for S = 0.25

38



CHAPTER 5. RESULTS OF THE EXPERIMENT

Figure 5.11: Uc/Wmax versus x/L∗ using the same virtual origins as before; i.e, for S = 0.15, xo = 0.75
and for S = 0.25, xo = 2.9

Figure 5.11 plots Uc/Wmax versus x/D∗. The fitted lines in the figure use the same virtual
origins obtained above for the S = 0.15 and 0.25 cases; i.e., xo = 0.75 and −2.9 respectively.
From the considerations of the preceding paragraph, the ratio of the slopes of the two plots
should be equal to the the ratio of the values of Go/Mo itself, which is 0.59. The individual
slopes are 0.395 and 0.593 respectively so the ratio of which is 0.66. Remarkably, this is well
within the experimental error of the expected value of 0.59. Thus in spite of the considerable
scatter in the measurement of W and the data presented in Figure 5.11, the overall inferences
from them are consistent with Ewing’s theory (Ewing [1999]).

5.6 Turbulence higher moments

The investigation included all three velocity components of the turbulence quantities at a swirl
number of S = 0.25, and all moments to third order were obtained (except those involving
both the azimuthal and radial components simultaneously). As noted by George [1989], if
there were an effect of the source conditions on the similarity profiles, it is in the second and
higher moment profiles where it would be expected to appear. Some of the results are shown
in Figures 5.12 and 5.13, together with the earlier measurements of Hussein et al. [1994] in
the same jet (but without swirl). The second and third-order moments are quite close to the
earlier non-swirling results. Regardless, the results are of considerable interest, since many of
the quantities measured are those which must be modeled in all second-order closure mod-
els. This evaluation is of particular interest since both the mean azimuthal and mean radial
velocities were obtained directly, meaning that both continuity and momentum balances were
possible.
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Figure 5.12: Second-Order Moments at x/D = 30, compared with non-swirling jet data from Hussein
et al. [1994].

5.7 Reynolds stresses

The Reynolds stresses u2, v2, w2 and uv are plotted in figure 5.12. The values are normalized
by the square of the centreline velocity at the cross-section and compared with the results from
non-swirling jet produced by the same facility with Hussein et al. [1994]. Since only two-
component LDA was used, it was not possible to measure the radial-azimuthal correlation, vw.
This is not a serious problem since it should be zero in view of the azimuthal homogeneity.
The profiles of all moments measured herein are in excellent agreement with the earlier results,
except for a slight decrease in those involving the u-component which are slight lower. The
reason for this is not known at this point, but could be related to the different LDA method-
ologies. On the other hand it is quite possibly related to the higher Reynolds number of the
Hussein et al. [1994] experiment (100,000 versus 40,000).

5.7.1 Third-order velocity moments

Third-order moments are plotted in figure 5.13 and compared with the non-swirling data.
Curve fits to these data are provided in tables 5.2 and 5.3. As for the second-order moments
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Table 5.2: Curve fits for even functions, f(η) = [C0 + C2η
2 + ...]eAη2

; (η =
r/(x− x0)).

- C0 C2 C4 C6 A

u2 1.587 330.284 −1922.685 878055.498 156.166

v2 1.048 53.648 0.066 − 86.364

w2 1.032 129.134 −2159.596 52742.686 104.112

u3 0.2 146.908 9861.882 −2.579 135.747

uv2 −0.172 106.123 −756.518 449688.093 172.189

uw2 −0.177 33.640 3474.348 1.342 142.374

Table 5.3: Curve fits for odd functions, f(η) = [C1 + C3η
3 + ...]eAη2

; (η = r/(x− x0)).

- C1 C3 C5 C7 A

uv −11.946 −424.067 −34742.577 −1390539.741 173.261

u2v 3.418 −2275.911 99175.818 −8126140.636 197.919

v3 −3.9411 −488.044 −2.967 − 111.377

above it was not possible using two-component LDA to measure the azimuthal-radial corre-
lations. This is more problematical for the energy balances of the next chapter, especially vw2

which can be expected to be of the same order as v3. With a single exception, uw2, the profiles
of all moments measured herein are in excellent agreement with the earlier results, except for
(as noted above) a slight decrease in those involving the u-component.

41



Natural Convection Boundary Layers & Swirling Jets

−0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

8
x 10

−3

r/(x−x
0
)

<
u3 >

 / 
U

c3

 

 

(a) Normalized u3

−0.2 −0.1 0 0.1 0.2
−3

−2

−1

0

1

2

3
x 10

−3

r/(x−x
0
)

<
v3 >

 / 
U

c3

 

 

LDA Data S=0.25
Curve fit
LDA Data S=0
HCG94  S=0

(b) Normalized v3

−0.2 −0.1 0 0.1 0.2
−3

−2

−1

0

1

2

3
x 10

−3

r/(x−x
0
)

<
u2 v>

 / 
U

c3

 

 

(c) Normalized u2v

−0.2 −0.1 0 0.1 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

r/(x−x
0
)

<
uv

2 >
 / 

U
c3

 

 

(d) Normalized uv2

−0.2 −0.1 0 0.1 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

r/(x−x
0
)

<
uw

2 >
 / 

U
c3

 

 

(e) Normalized uw2

Figure 5.13: Third-Order Moments at x/D = 30, compared with non-swirling jet data from Hussein
et al. [1994].
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Chapter 6

Summary and Conclusions: Swirling Jet

6.1 Overview of results

The far field of an incompressible swirling jet has been studied using two-dimensional laser
Doppler anemometry. Three pairs of symmetric injectors were used to produce weak-to- mod-
erate swirling jets. Velocity profiles of the mean and fluctuating streamwise, radial and az-
imuthal velocity components were measured in jets with two levels of swirl (S = 0.15 and
0.25) at axial locations up to 50 jet exit diameters. The velocity and turbulence intensity pro-
files, centerline decay, and growth rates for the various swirling jets were compared to those
obtained in the same facility without swirl (S = 0). The mean velocity and turbulence intensi-
ties collapsed to the same profiles when scaled with the jet centerline velocity and half-width.
Thus, by contrast with previous observations for the near jet Chigier and Chervinsky [1967],
Gilchrist and Naughton [2005], there was no observable effect on the properly scaled far jet for
the S = 0.15 case. The results were virtually identical to the non-swirling jet. For the S = 0.25
case, the only statistically significant effect was a shift in the virtual origin (from x/D∗ = 0.75
to −2.9), indicating a more rapid initial spread rate.

The recent predictions of equilibrium similarity theory of Ewing [1999] were found to be
in excellent agreement with the experimental results. In particular, the mean azimuthal com-
ponent of velocity falls off as the inverse square of the downstream distance. By contrast, the
mean streamwise velocity and turbulence intensities fall off with simply the inverse of the
downstream distance. As a consequence the mean azimuthal equation uncouples from the
rest, so the asymptotic swirling jet behaves like the non-swirling jet. A second length scale, L∗,
defined from the rates at which momentum and angular momentum are added at the source
characterizes the distance which is required for the swirl to become negligible.

The present investigation extends the previous study to include all three velocity compo-
nents of the turbulence quantities at a swirl number of S = 0.25. Since only a two-component
LDA was available, this was accomplished by making traverses in both the vertical and hor-
izontal directions. All moments to third order were obtained, excepting those involving both
the azimuthal and radial components simultaneously.

6.2 Energy Balance and Dissipation

If the pressure-velocity correlations and dissipation were known it would be possible to calcu-
late the other terms by using the turbulence kinetic energy equation:
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(6.1)

In the present experiment we were not able to directly measure the dissipation, therefore,
the velocity-pressure correlation terms 1

ρpv and 1
ρpu in the equation 6.1 could not be inferred

directly as in Hussein et al. [1994]. The streamwise gradient of pu/ρ can be ignored relative
to the radial gradient of pv/ρ. Also, Hussein et al. [1994] showed from a locally axisymmetric
dissipation; that the radial gradient has the same shape as q2v, consistent with the estimate of
Lumley [1978] that −pv/ρ = (15 )q

2v. Also the coincident moment of tangential and radial ve-
locity components, uw, was not measured because of the two-component LDA measurement.
In the energy balance computation it was assumed that vw2 ≡ v3. Using this, we are able to
calculate the dissipation through kinetic energy equation. The normalized kinetic energy bal-
ance is plotted in figure 6.1. The results are virtually indistinguishable from those of Hussein
et al. [1994].

The component Reynolds stress equations for the jet are given as below from appendix B:

• u2 Balance:
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• v2 Balance:
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• w2 Balance:

U
∂w2

∂x
+ V

∂w2

∂r
=

[

2

r

p

ρ

∂w

∂θ

]

−
[

2uw
∂W

∂x
+ 2vw

∂W

∂r

]

−
[

∂uw2

∂x
+
∂vw2

∂r
+ 3

vw2

r
+ 2vw

W

r
+ 2w2

V

r

]

− 2ǫθθ (6.4)

• uv Balance:
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The locally axisymmetric estimate is suggested by Hussein et al. [1994] to best represent
the dissipation in the jet flow. But because we could not measure the dissipation directly for
each Reynolds stress equation, the only possible hypothesis is to assume isotropic dissipation
distribution; i.e., ǫxx = ǫrr = ǫθθ = ǫ/3 and ǫxr = ǫrθ = ǫxθ = 0. The energy balances for
Reynolds stresses are plotted in figure 6.2. The values are normalized by cube of the centerline
velocity over distance from nozzle. x0 is the virtual origin of the swirling jet as shown in
figure 5.5. The graphs are in a good agreement with the earlier non-swirling jet energy balance
of Hussein et al. [1994].

6.3 Conclusions

An investigation of turbulent transport equations in the self-preserving region of a moderate
swirling jet flow has shown that the role of different terms in energy balance has not been af-
fected by the additional azimuthal velocity component at the exit of jet. As previously noted
by Shiri and George [2008], the mean streamwise velocity for the swirling jet has the same
rate of evolution as the non-swirling jet with the same initial condition. The higher-order mo-
ments in the swirling jet flow also shows this similarity. The slight differences observed in
some moments like u2 could be the effect of exit profile which tends to change when azimuthal
component is added to the jet, or it could be simply due to differences in the measurement
methodology. The quantities measured and calculated in this study are essential for evaluating
turbulence closure models.
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Chapter 7

Introduction

7.1 Heat Transfer

Energy is the source of life and utilization of the energy is both engineering and art. Technol-
ogy provides for us a wide variety methods to manipulate the energy extracted from natural
resources. But they all come with a price, wasting a great deal of energy in the process of gain-
ing a fragment. The major contribution to this loss is unwanted heat transfer. We know how to
transfer electrical or mechanical energy without losing much; but in the process of transferring
and converting the thermal energy, efficiency is mostly lower.

Heat transfer takes place whenever a temperature difference exists in a medium. It can
occur in three different modes. Conduction is the way that thermal energy passes through a sta-
tionary material at the atomic and molecular level. The process is relatively slow, and in solids
it is the only method that heat can be exchanged internally. But in fluids, in addition to energy
transfer due to conduction, the bulk motion of the fluid plays an important role by moving
energy from one place to another. In doing so it can make the temperature gradients larger,
thus increasing conduction.

Such a heat transfer mode associated with the motion of fluid is called convection. Thermal
energy can also be emitted from a solid surface or an opaque fluid with a nonzero temperature
to the ambient with different temperature. Therefore the heat transfer through radiation is the
third mode of energy exchange. In radiation energy is transported by electromagnetic waves
and there is no need for a medium in this process.

Controlling the motion of the fluid provides the ability to manipulate the process of convec-
tion. Thus having a mobile bulk of material facilitates the design of more efficient systems of
heat transfer. But it also adds the complexity of fluid dynamics into the rather simpler nature
of heat transfer. The widespread applications of convection and the complexity of the fluid
motions makes this mode of heat transfer the most interesting and challenging of all. From in-
dustrial applications including power plants, reactors, turbines, heat exchangers and internal
combustion engines to the domestic applications like heating and ventilation of the buildings,
convection is a primary subject for study by engineers as well as scientists.

Convective heat transfer can be divided into three categories: forced convection, natural (or
free) convection, and mixed convection. The density of most fluids varies with temperature.
So when the temperature in the bulk of fluid differs from the surrounding environment, buoy-
ancy forces due to the differing gravitational attraction create imbalances in the forces acting
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(a) (b)

Figure 7.1: Natural Convection occurs (a) in nature, (b) in buildings.

in different parts of the fluid. These imbalances usually result in motion. Heat transfer due to
buoyancy driven flow is called natural convection. Natural convection happens whenever there
is a temperature gradient in a body of fluid. Although the process of heat transfer improves
when flow is caused by external means, such as by a fan, a pump, or atmospheric winds, it
is customary to use the term forced convection when the effect of buoyancy is negligible in the
momentum balance of the flow. Mixed convection occurs whenever the motion is a mixture of
natural and forced convection. Of all the flows, natural convection flows are among the least
well understood. The major focus of this study is to acquire a better understanding of the
natural convection next to a vertical surface through an experimental investigation.

7.2 Natural Convection

Natural convection is the most commonly occurring method of convective heat transfer in the
world. Even nature controls the environment with it. From the large scale systems like hurri-
cane formation to the the small electrical heat sinks and the simple household radiator1 (figure
7.1, the presence of this phenomenon can be observed almost everywhere. Although a buoy-
ancy driven flow could be created caused by other sources of density variation in a fluid, like
concentration, the ones caused by temperature gradient are more common. The subject is two-
fold: the fluid dynamics of the natural convection flow and the heat transfer of the fluid. Due
to the complex nature of buoyancy dominated flows, the details of both aspects of this phe-
nomenon have never been well understood. This is especially true when the fluid motions are
turbulent.

Buoyancy, the driving force for natural convection in fluids, is the result of density differ-
ences in the presence of a proper acceleration such as gravity, centripetal force or Coriolis force.
As the buoyancy acts on the bulk of the material, it is considered as a body force acting on the
fluid to increase (or decrease) the momentum of the flow. The temperature distribution in the
flow is the key parameter in both equations governing the motion of the fluid and the energy
balance in the flow. Therefore these two equations are coupled together and should be solved
simultaneously. To simplify the equations one can use the Boussinesq approximation to limit

1Note that the word ‘radiator’ suggests radiation, but in fact it works primarily by natural convection.
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the temperature dependence of the momentum equation into just one linear buoyancy term
(gβ∆T ). We will discuss this assumption in detail in the next chapter.

As we mentioned in chapter 1, the Grashof number (Gr = gβ ∆TL3/ν2) plays the same role
in natural convection that the Reynolds number (Re = UL/ν) plays in the forced flows. The ratio
of these two dimensionless numbers is the best indication of the role of buoyancy in the process
of heat transfer. Natural convection dominates the flow when the (Gr/Re2 ≫ 1); and it can be
neglected when (Gr/Re2 ≪ 1). Both methods of heat transfer are present (mixed convection)
when this ratio is close to unity.

Another parameter of interest for natural convection heat transfer is the Nusselt number
defined as:

Nu ≡ hL

κf
=
∂T ∗

∂y∗

∣

∣

∣

∣

y∗=0

(7.1)

where the T ∗ = (T − Tref )/∆T is the temperature normalized by the highest temperature dif-
ference in the flow and y∗ = y/L is the cross-stream distance normalized by a length scale.
It can be considered as the ratio of the convective to conductive heat transfer as the value of
it increases in flows with more active convection like a turbulent flow. Through dimensional
analysis of the governing equations, it can be shown that the Nusselt number also describes the
temperature gradient at the surface as a dimensionless number.

The general empirical correlation for heat transfer can be expressed in the form of

Nu = f(Re,Gr, Pr) (7.2)

where the Nusselt number is a function of Grashof, Reynolds and Prandtl numbers (cf. Incropera
[2007]). There are very few truly theoretical results saying how these parameters should be
related to each other, so most often the relations are determined empirically and expressed as
power laws. For forced convection, the role of Grashof number is negligible, so the heat transfer
law is often expressed as:

Nu = C1 Re
mPrn (7.3)

where C1, m and n have to be determined from experiment. In a pure natural convection flow
the Reynolds number is replaced by the Grashof number, so that the heat transfer law is usually
expressed as:

Nu = C2 Gr
pPrq, (7.4)

where as before C2, p and q are determined from experiment.

The Prandtl number, Pr, describes the property of the fluid as the dimensionless ratio of
momentum diffusivity (kinematic viscosity) to the thermal diffusivity

Pr ≡ ν

α
=
Cp µ

κf
(7.5)

where ν [m2/s] is the kinematic viscosity, α [m2/s] is the thermal diffusivity, µ [Pa s] is the
dynamic viscosity, Cp [J/(kg.K)] is the specific heat at constant pressure and κf [W/(m.K)] is
the thermal conductivity of the fluid. For a low Prandtl number fluid, like liquid metals, heat
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conduction is very effective compared to convection: thermal diffusivity is dominant. For a
high Prandtl number fluid, like oils, convection is very effective in transferring energy, com-
pared to pure conduction: momentum diffusivity is dominant. In air this value is close to one
and the Prandtl number is usually ignored. In laminar flows, the Prandtl number also indicates
the relative thickness of the momentum and thermal boundary layers, but this in not true in
turbulent flow. In turbulent flow the Prandtl number does specify the relative thicknesses of
the viscous and conductive sublayers, given respectively by ηu = ν/u∗ and ηT = α/u∗. Here u∗
is the skin friction velocity defined as u2

∗
= τw/ρ where τw is the wall-shear stress.

Like in the forced flow, natural convection can happen in the presence of solid boundaries
(boundary layer flow) or in a unconfined ambient (like in a plume). In this study we are focus-
ing on the flow induced by the natural convection from a vertical surface with the temperature
higher than surrounding fluid. The boundary layer flow along this surface defines the heat
transfer correlations and the buoyancy force generated by this heat transfer controls the be-
havior of the flow. So the flow is both cause and consequence of the natural convection heat
transfer.

7.3 Turbulent Natural Convection Boundary Layer

One of the major research subjects in the field of heat transfer is the Turbulent Natural Convec-
tion Boundary Layer (TNCBL) next to a vertical surface. Understanding the nature of buoyancy-
driven flow next to a heated vertical surface has long been a challenging area of research in the
field of Fluid Dynamics and Heat Transfer. Classical explanations and empirical relations with
low level of accuracy can not answer the progressive needs of new technological applications.
Efficient domestic heating and ventilation, compact heat sinks in electronic devices, passive
control heat transfer in reactors and many other subjects would benefit from a more complete
understanding of natural convection heat transfer.

Despite numerous investigations and theoretical studies on the Turbulent Natural Convection
Boundary Layer, there is a lack of reliable experimental data. Part of the reason for this will be
clear from the problems encountered in this investigation. But as a result, numerical analysis
and turbulence modeling of the phenomena proceed without realistic guidelines. The usual
assumptions and conditions are far from the actual behavior of this flow. Additional consid-
erations on this matter, such as new properties, scaling factors and new theories of boundary
layer, are needed. And as will be seen in the next chapter, there is even debate about the basic
equations themselves, not just the turbulence models and theories about them.

Turbulence is that characteristic state of a flow in which scalar transport such as heat and
mass transfer are enhanced compared to laminar flow sometimes by many orders of magni-
tude. In the presence of a boundary (like a vertical heated wall) the flow creates a boundary
layer along the surface (see figure 7.2) which starts from bottom to the top of the vertical wall.
As the flow moves up along the wall, the boundary layer will evolve from a steady, laminar
flow into a transition region, and if the wall is high enough it will become a fully turbulent
boundary layer. Where this happens is very much in doubt, since for experiments (especially
in air) the distances required for this to happen can be quite large, often several meters or more,
even for relatively large temperature differences.

Transition of a laminar natural convection boundary layer into a turbulent one depends
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Figure 7.2: (a) Boundary layer created on a vertical hot wall; (b) Velocity and temperature profile in the
boundary layer.

on the relative magnitude of the buoyancy and viscous forces in the fluid. The first stages of
breakdown of a laminar flow can characterized by a specific point at which the flow can be said
to become unstable to infinitesimal disturbances. The dimensionless parameters which define
this point of instability in the buoyancy-driven flow are the Prandtl number (Pr) and either
Grashhof number (Gr) or Rayleigh number (Ra) given by:

RaL ≡ Pr Gr =
gβ∆TL3

αν
(7.6)

where L is the streamwise length scale.

There have been many studies of instability of natural convection flows next to vertical sur-
faces. But transition to turbulence occurs much later, and often involves several different types
of turbulence precursors which form first. For forced boundary layers there is first the region
of non-linear growth, then the formation of turbulent spots, and finally these merge to form a
fully turbulent flow. These processes are not very well understood in natural convection flows
next to vertical surfaces, but have been the subject of great interest over the past decade or so
(c.f. Prudhomme and Le Quere [2007], Pons and Le Quere [2007]). Exactly when the flow can
be considered to be turbulent is thus very much in question, and even a question of definition.
Thus we depend on empirical correlations, sometimes based on heat transfer data, sometimes
on observation of phenomena, sometimes on profiles of mean and fluctuating quantities.

From previous experimental results an approximate criterion for the beginning of turbu-
lence in natural convection next to a vertical flat plate is in the range of Rayleigh numbers
between 108 to 1010 (c.f. Gebhart [1973]). The fact that this varies by two orders of magni-
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tude illustrates the problem. In the flow used in the experiment described later, ∆T ≈ 40◦K,
β ≈ 1/(300◦K) , g = 9.8m/s2, α ≈ 2.9 × 10−5m2/s and ν ≈ 2 × 10−5m2/s . Using these,
transition by the criterion above can be expected to occur somewhere between a height of 0.6m
and 2.8m . This is a huge range, and very much complicates the design of any experiment –
and in fact, complicates even deciding what regime one is observing. The flow next to vertical
cylinders is even less well-understood.

Different regions of the boundary layer can be recognized where the effect of diffusion
or bulk motion of the fluid dominates the heat transfer process. Viscosity enforces a no-slip
boundary condition near the surface which slows down the flow velocity, hence the molecular
motion plays the important role in this region. Far from the surface, the advection of the bulk
fluid motion dominates the thermal energy transfer. Near the wall, however, for the layer of
the fluid adjacent to the surface conduction is the only method of heat transfer.

In this study, our intent was to carry out in a well-controlled environment a turbulent nat-
ural convection experiment at high Rayleigh number(∼ 1011), and perform detailed measure-
ments of velocity and temperature in the fully developed turbulent natural convection bound-
ary layer next to a heated wall. Because of the difficulties in creating a two dimensional flow,
a cylindrical axisymmetric surface (the outer surface of a long pipe) was used instead of a ver-
tical planar wall. There are several reasons for this particular choice of experiment. First of
all, it is a flow case which has been studied before with only limited degree of success (Tsuji
and Nagano [1988a]). Second, we can measure with sufficient details the complicated near-
wall flow to provide new physical insight as well as new experimental information. Third, it
is a generic flow case, which means that the obtained results have general validity, Therefore
it would be valuable as test case for CFD validation and further development of turbulence
models.

7.4 Previous Experimental Investigations

The early attempts to study the natural convection were mainly focused on developing a bet-
ter understanding of the heat transfer process next to flat surfaces. Theoretical work has been
more concerned about the laminar flows, in large part because these were the only ones that
could be analyzed using the available mathematical tools. The assumption of similarity in the
velocity and temperature enabled exact solutions for the laminar flow by Ostrach [1952] and
cited many places (e.g., Incropera [2007]). These kind of solutions formed the basis of the stud-
ies of instability by Gebhart and his co-workers (e.g. Gebhart et al. [2003]).

Approaches to turbulent flow, like in laminar flow, were mostly based on dimensional anal-
ysis and experiment; i.e., on finding an empirical correlation between the Nusselt number as
the dimensionless heat transfer parameter and the Grashof number as the flow specification
and Prandtl number as the fluid characteristic. Many empirical relations for different geome-
tries and different ranges of Rayleigh number have been collected by Incropera [2007], Gebhart
et al. [2003],Arpaci and Larsen [1984] among others. Amongst them the one suggested for a
vertical isothermal plate over the entire range of Ra by Churchill and Chu [1975] as below:

NuL =

(

0.825 +
0.387Ra

1/6
L

[

1 + (0.492Pr )9/16
]8/27

)2

(7.7)
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In the limit of infinite Rayleigh number (Ra → ∞) , NuL → C(Pr)Ra1/3 . The cube-root de-
pendence on Rayleigh number is consistent with many experiments (e.g., Warner and Arpaci
[1968], Balaji et al. [2007], Vliet and Liu [1969]). It was also deduced theoretically by George
and Capp [1979]. The Prandtl number dependence in this limit, Pr2/3, is empirical and based
on the experiments of Fujii et al. [1970].

Although most measurements that have been carried out obtained only mean heat trans-
fer rates and mean temperature profiles, one of the first (and few) studies on the velocity and
temperature fields of the presumably turbulent natural convection boundary along heated ver-
tical flat plates were performed by Cheesewright [1968]. He used hot-wire anemometry and
cold wire resistance thermometery to measure mean velocity and temperature. The platinum
wire used for temperature measurement was rather thick (12.7µm in diameter and 14mm in
length), so the instantaneous temperature was not measured. Later on, however, it was shown
by Hoogendoorn and Euser [1978] that the energy balance for the boundary layer was not satis-
fied, and that the most likely error was in the velocity measurements. This was later confirmed
and is easy to understand: using hot-wires in flows with large velocity and temperature fluctu-
ations requires a very good separation of these fluctuations, which is extremely difficult to do.
Also the turbulence intensities are very high, and hot-wires really don’t work very well above
about a 30 % turbulence level due to cross-flow sensitivity and flow reversal on the wires.

The accuracy problem with hot-wires in thermal flows is a consequence of the physics of the
method, and therefore can not easily avoided. Another problem with hot-wires is that the ve-
locity magnitudes of buoyancy-driven flows are in the range of less than 1m/s. Therefore the
natural convective heat transfer of the wire itself has an effect on the velocity field, plus cross-
wire probes suffer a loss of directional sensitivity (Shabbir et al. [1996]). As a result, turbulence
data obtained with hot-wires in buoyant flows suffer from large uncertainties, particularly in
boundary layers (close to the wall). This also has been seen, for example, in the experimental
data of Tsuji and Nagano [1989a]. In spite of this, their experiment is still used as test case
for validating turbulence models, since there were (and still are) no other alternatives. The
remedy to the problem of uncertainty in the velocity measurement is to replace the hot-wire
techniques of previous experiments with one which does not suffer from the same limitations.
Laser Doppler anemometry (LDA), can in principle, produces highly accurate results, assum-
ing adverse refractive index effects on the beam paths are not significant (c.f., Buchhave et al.
[1979]).

There are other problems with the earlier experiments as well. Many of the previous studies
of the natural convection boundary layer have been made in flows along vertical plates which
attempted to simulate an infinite surface (Cheesewright [1968]; Cheesewright and Ierokiopitis
[1982]; Tsuji and Nagano [1988a]; Tsuji and Nagano [1988b]; Tsuji and Nagano [1989b]). In ver-
tical flat plate experiments, it is hard to eliminate the effect of side walls. Attempts to measure
the heat transfer correlations of a heated cylinder by Fujii et al. [1970] were more focused on
the Prandtl number effect of the heat transfer rather than turbulence properties. Persson and
Karlsson [1996] in their work used combination of LDA and resistance thermometer but their
measurements were carried out at rather low Rayleigh number and they reported large uncer-
tainty in the measurements caused by the confinement of the rig.

Some of the problems encountered by these earlier experiments, were encountered in our
experiments as well. Unfortunately there is considerable evidence that the previous researchers
may not have been aware of them. Thus any skepticism by us about our own results in the fol-
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lowing chapters, should apply also to almost all of the earlier results as well. In fact a useful cri-
terion for looking at all the experiments (old and new) might be this: If a particular phenomenon
was not explicitly and quantitatively ruled out as being a problem, it should probably be viewed as a
serious problem. Unfortunately by this criterion, there seems to be almost nothing that has been
done that can be believed, except perhaps heat transfer measurements using electrically heated
films where the heat transfer could be known relatively accurately and independently from the
temperature field.
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Chapter 8

Basic Equations for Natural Convection

This chapter reviews the basic equations for the fluid mechanics and thermodynamics, espe-
cially as they apply to natural convection flows in air. Important issues addressed include to
what degree such flows can be considered to incompressible, exactly which forms of the ideal
gas equations should be used, and the manner in which the various so-called Boussinesq ap-
proximations should be applied. It concludes with the Reynolds-averaged equations as they
apply to natural convection in air.

8.1 Summary of Basic Equations

For a better understanding of the parameters and equations governing the motion and energy
balance in the flow, it is appropriate to collect all the assumption from the beginning. To do so
we start with the most general version of the equations and list the constrains and assumptions
to simplify them. These equations are the fundamental laws of continuum mechanics.

• Continuity

1

ρ

D ρ

D t
= −∇.~v (8.1)

for a flow with no sources (or sinks) of mass.

• Conservation of momentum

ρ
D ~v

D t
= − ∇P + ∇. ~τij + ρ ~g (8.2)

for a flow with the gravity (~g) as the only body force acting on it.

• Conservation of internal energy

ρ
D e

D t
= −P (∇. ~v ) + ~τij : ∇~v −∇. ~q (8.3)

without electromagnetic, chemical and nuclear energy sources.
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T ρ µ × 105 ν × 105 κ × 102 α × 105 Cp Pr
[◦C] [kg/m3] [N.s/m2] [m2/s] [W/m.K] [m2/s] [kJ/kg.K]

0 1.29 1.71 1.33 2.41 1.89 1.0065 0.714
20 1.20 1.80 1.50 2.57 2.16 1.0069 0.709
50 1.09 1.95 1.79 2.80 2.59 1.0079 0.704

100 0.95 2.17 2.30 3.17 3.38 1.0113 0.695

Table 8.1: Properties of air at 1atm.; [White [1994]].

• Thermodynamic equations of state

ρ = ρ (P, T ) (8.4)

e = e (ρ, T ) (8.5)

where in these equations ρ is the density of the fluid, P is the thermodynamic pressure, T is the
temperature, ~v is velocity vector, e is the absolute thermodynamic internal energy, (~τij : ∇~v) is
the inner product of viscous stress tensor and velocity gradient tensor and (∇. ~q) is the net heat
flow. They represent the instantaneous quantities for a turbulent flow.

The Newton’s viscosity law and Fourier’s conduction law are two constitutive equations

which can be applied to a simple viscous fluid without memory like air. For a flow without
internal heat generation or combustion and ignoring the radiation, the viscous stress tensor
and heat flux can be written as:

τij = 2µ [Sij −
1

3
Skkδij ] (8.6)

qi = −κ ∂T

∂xi
(8.7)

where κ is thermal conductivity and symmetric strain rate tensor defined as,

Sij =
1

2

[

∂ui
∂xj

+
∂uj
∂xi

]

(8.8)

Implementing these two equations in the momentum equation 8.2 gives us the Navier-
Stokes equation for linear momentum as below:

ρ
D ~v

D t
= − ∇P + ρ ~g + 2∇.(µ Sij)−

2

3
∇(µ ∇.~v ) (8.9)

The flow which we would like to be interested in would be an incompressible Newtonian
flow with nearly constant viscosity. The constant viscosity assumption is popular and practical
because it simplifies the momentum equations for analytical purposes. This advantage of a
constant viscosity in the equation 8.9 can be easily seen: the two viscous diffusion terms change
to:

ρ
D ~v

D t
= − ∇P + ρ ~g + µ∇2~v +

1

3
µ∇(∇.~v ) (8.10)

Unfortunately the viscosity of air is a function of temperature and varies around 20% for
the temperatures used in this experiment according to the table 8.1. The density of air also
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changes almost 20% over the same temperature range. In our experiments the absolute value
of the viscous terms are several orders of magnitude smaller than other terms in the momen-
tum equation, except very close to the wall where they dominate. Unfortunately this is also
the region where the temperature is varying the most (roughly 90% of the total drop from wall
to ambient). Obviously one should be aware of the consequences of the constant viscosity (or
thermal diffusivity) assumption in numerical computations as well, at least if comparison is to
made to experimental results. The assumption that either is constant becomes problematical
when the temperature variation increases rapidly, even over a modest range, as it does very
close to the wall in the experiments of interest herein.

The viscous stress tensor, τij , is a symmetric tensor for a non-polar continua [Panton [2005]].
We can write any tensor like ∇~v as the summation of a symmetric and an anti-symmetric tensor.
The viscous dissipation term (~τij : ∇~v ) is just the inner product of τij with the symmetric part
of the velocity gradient tensor. Thus we can write (~τij : ∇~v ) ≡ (~τij : Sij). By using the
Newton’s viscosity law 8.6, the viscous dissipation term in energy equation 8.3 is simplified to
µ Φ, where dissipation function (Φ) defined as:

Φ = 2

[

(Sij : Sij) − 1

3
(∇.~v )2

]

(8.11)

Viscous dissipation is always positive and produces internal energy by taking from the kinetic
energy. Now the internal energy equation, considering equation 8.7, can be written as:

ρ
D e

D t
= −P (∇. ~v ) +∇.(κ∇T ) + µ Φ (8.12)

Note that for this equation the constant viscosity assumption is not necessary.

8.2 Continuity Equation and Incompressibility

As mentioned before, the general mass conservation (or continuity) equation is expressed by
equation 8.1. The term on the left is the rate of density change of a material particle per unit
density. As the material particle moves through the fluid, its size and shape may change. It can
be shown that right hand side term in the continuity equation has a physical interpretation as
the rate of expansion of the material region (Panton [2005]):

lim
VMR →0

1

VMR

D VMR

D t
= ∇.~v (8.13)

The thermodynamical term, incompressible, clearly represents liquids since they have negligible
rate of expansion, but by contrast, compressibility is the nature of gases. So in the fluid me-
chanics of gases, the main criterion for whether compressibility of the flow is important (for the
continuity equation) has been whether its velocity, say u, is comparable to the speed of sound,
say c; i.e., low Mach number, M , where M = u/c. That this is problematical for the thermally
varying flows of interest herein can easily be seen, as shown below.

For all conditions of interest in our experiments, the air can be assumed to behave as an
ideal gas. Thus its equation of state is given by p = ρRT (or equivalently, ρ = p/RT ) where R
is the gas constant for the particular gas of interest. Taking differentials and applying the chain
rule yields immediately:
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dρ =
1

RT
dp− p

RT 2
dT (8.14)

or

dρ =
ρ

p
dp− ρ

T
dT (8.15)

But the isentropic sound speed is defined as c2 = ∂p/∂ρ|s. For an ideal gas (with constant
thermal properties c2 = γp/ρ where γ = Cp/Cv is the ratio of specific heats. (Cp is the specific
heat at constant pressure and Cv is the specific heat at constant volume.) For air γ ∼ 1.4.
Substituting into equation 8.15 and dividing by the density yields:

dρ

ρ
= γ

dp

ρc2
− ρ

ρ

dT

T
(8.16)

This has the following counterpart for moving fluid particles:

1

ρ

Dρ

Dt
=

γ

ρc2
D p

Dt
− 1

T

DT

Dt
(8.17)

For low Mach number flows, changes in pressure within the flow are on the order of ρu2

(i.e., dp ∼ ρu2), where u is typical of changes in flow speed. Thus the first term on the right-
hand side of either equation is on the order of the Mach number squared; i.e., M2 = (u/c)2.

It is usually argued from the above if the Mach number is low, then the rate of expansion is
effectively zero. But clearly there is another term in equation 8.16 that must also be considered,
the temperature term. Whether dρ/ρo << 1 depends completely on whether the temperature
fluctuations themselves are relatively small (i.e., dT/T << 1). For the experiments considered
herein, ∆T ∼ 40◦K while T ∼ 300◦K. Moreover most of this variation occurs in the very near
wall region. Thus the assumptions of incompressibility are quite marginal here and the most
one can safely say is that:

1

ρ

Dρ

Dt
≈ − 1

T

DT

Dt
(8.18)

As shown below, the non-negligibility of the expansion in thermally varying flows will turn
out to be crucial in reconciling the various forms of the internal energy equation. In particular
it is this residual thermal variation that switches Cv to Cp, and implies the negligibility of the
Dp/Dt term in the corresponding enthalpy equation. This is particularly problematical for nu-
merical analysis of natural convection flows which often assume incompressibility at the outset.

Before leaving this section, it should be noted that incompressibility, even if approximately
true does not imply that the density is the same constant value throughout entire flow field. It
only implies that if a fluid moves incompressibly then the density of a particular fluid particle
remains constant, while the density of adjacent particles can be different. This can be easily seen
by substituting zero for the divergence term in equation 8.1 to obtain the following equivalent
forms:

D ρ

D t
= 0 or ∇.~v = 0, (8.19)

and recalling that D/Dt is the derivative following the fluid motion.
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8.3 Thermodynamics Relations

Among the thermodynamic relations which can be considered as equation of state, we select
those that relate properties like internal energy and density to the temperature. As it is men-
tioned before, ρ = ρ (P, T ) and e = e (ρ, T ) are the best choice for the general form of equation
of state in buoyancy driven flows. Taking differentials from the general density equation yields:

dρ

ρ
= βT dp− β dT (8.20)

where βT and β are defined by:

βT (p, T ) =
1

ρ

(

∂ρ

∂p

)

T

; Isothermal compressibility coefficient (8.21)

β(p, T ) = −1

ρ

(

∂ρ

∂T

)

p

; Thermal expansion coefficient (8.22)

Using cyclic and reciprocity relations for two partial derivatives in equations 8.21 and 8.22, we
have:

(

∂ρ

∂p

)

T

.

(

∂p

∂T

)

ρ

.

(

∂T

∂ρ

)

p

= −1 ⇒
(

∂p

∂T

)

ρ

=
β

βT
(8.23)

The isothermal compressibility is defined by change of density due to pressure. In the ab-
sence of high convection force (i.e., low Mach number flows), hydrostatic pressure is the main
cause for pressure differences. Unless we are dealing with thick flow fields (like the atmo-
spheric boundary layer), the effect of the isothermal compressibility coefficient is much less
than the thermal expansion coefficient and therefore negligible [Arpaci and Larsen [1984]].

For ideal gases, βT and β take particularly simple forms. It follows immediately from the
equation of state, p = ρRT , that:

β =
1

T
(8.24)

βT =
1

p
(8.25)

8.4 Equations for internal energy and enthalpy

Differential forms of internal energy equations and enthalpy equation can be found in the ther-
modynamics textbooks [Cengel and Boles [1998]]:

de = Cv dT + ρ−2

(

p− T
∂p

∂T

∣

∣

∣

∣

ρ

)

dρ (8.26)

dh = Cp dT + ρ−1 (1− Tβ) dp (8.27)

where Cv(ρ, T ) and Cp(p, T ) are the specific heat at constant volume and pressure respectively.
They are defined as:
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Cv(ρ, T ) =

(

∂e

∂T

)

ρ

(8.28)

Cp(p, T ) =

(

∂h

∂T

)

p

(8.29)

Defining the enthalpy as h ≡ e+ p/ρ leads us to:

de = dh− ρ−1dp+ ρ−2p dρ (8.30)

By substituting equation 8.27 into equation 8.30 and replacing differentials by material deriva-
tives1 we have:

ρ
D e

D t
= ρ Cp

DT

D t
− βT

Dp

D t
+

p

ρ

D ρ

D t
(8.31)

The last term in the equation above can be replaced by −p (∇.~v ) using continuity equation
8.1. Now we can replace the internal energy derivative from equation 8.3 with the one in
equation 8.31. Considering the constitutive equations 8.7 and 8.11 for a Newtonian fluid with
no radiation and internal heat generation yields:

ρCp
DT

D t
= ∇.(κ ∇T ) + µ Φ + βT

Dp

D t
(8.32)

If we do the same thing with the internal energy equation 8.26 and use equation 8.23, we obtain:

ρCv
DT

D t
= ∇.(κ∇T ) + µ Φ +

T

ρ

(

β

βT

)

D ρ

D t
(8.33)

Using equations 8.24 and 8.25, these can be rewritten for an ideal gas as follows:

Enthalpy equation (ideal gas)

ρCp
DT

D t
= ∇.(κ∇T ) + µ Φ +

Dp

D t
(8.34)

Internal energy equation (ideal gas)

ρCv
DT

D t
= ∇.(κ ∇T ) + µ Φ + (RT )

D ρ

D t
(8.35)

8.5 A common problem: Cp versus Cv

It is commonly assumed that the appropriate form of the temperature equation (at least for low
Mach number flows) for heat transfer analysis is the enthalpy equation, equation 8.34, but with
the Dp/Dt term neglected; i.e.,

ρCp
DT

D t
= ∇.(κ ∇T ) + µ Φ (8.36)

It is not immediately obvious why this should be true, especially since the low Mach number
argument has been for incompressibility, which when applied to equation 8.35 leads to:

1This requires assuming each fluid particle is undergoing a quasi-equilbrium process.
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ρCv
DT

D t
= ∇.(κ ∇T ) + µ Φ (8.37)

These are clearly different in that one usesCp and the otherCv. This is not a problem for liquids
(in which they are equal), but it most certainly is for gases where they differ by 30-40% (e.g.,
for air γ = Cp/Cv = 1.4).

First notice that there is no fundamental inconsistency between the original equations 8.32
and 8.33. One can easily be derived from the other. So the problem clearly is in our approx-
imations, and in particular the approximation of incompressibility. It was noted above that
incompressibility can only be approximate in a thermally varying compressible fluid; in par-
ticular, from equation 8.18, Dρ/Dt ≈ −(ρ/T )DT/Dt. Substituting this into equation 8.35 leads
immediately to:

ρCv
DT

D t
= ∇.(κ∇T ) + µ Φ − (ρR)

DT

D t
(8.38)

But R = Cp − Cv. Using this and taking the DT/Dt to the other side lead immediately to
equation 8.36 with no other assumptions required. Clearly only the assumption of low Mach
number is required, with no corresponding assumptions about Dp/Dt. In fact, it can be further
deduced that Dp/Dt must also be negligible (relative to ρCpDT/Dt) since the energy and en-
thalpy equations must be the same.

For a nearly incompressible flow (Mach → 0), the viscous dissipation term in equation
8.32 is can also be argued to be negligible for most low Mach number flows. Therefore the
temperature equation which will be considered hereafter in this thesis is:

ρCp
D T

D t
= ∇.(κ∇T ) (8.39)

Before leaving this section it is worth nothing that there is an interesting dilemma for nu-
merical analysis. Experiments are interrogations of exact solutions of the Navier-Stokes equa-
tions, and their analysis must account for the fact that the flow knows it is not quite incompress-
ible (as shown above). This implies that theCp form of the temperature equation is appropriate.
But many CFD attempts begin by imposing strict incompressibility. Clearly for such attempts,
Cv is the appropriate choice, not Cp. The difference is quite substantial, and may account for
some of the difficulties in handling thermally varying flows numerically.

8.6 Boussinesq Approximations

We are going to make our biggest approximations in this section, so we have to be precise about
the type of flow which is of interest. The fluid can be liquid or gas but the density is assumed
to vary only with the temperature variation through the flow field. The major characteristic of
this type of flow is the buoyancy force acting on the material region of the flow with the density
of ρ in a quiescent surrounding environment with reference density ρ0. The direction of this
force is aligned with the direction of body force, which is assumed to be gravity in the case of
our interest. The reference density does not have to be constant everywhere, but it should be
time-independent. The density deviation from the reference value for our arbitrary material
region is:

ρ = ρ0 +∆ρ (8.40)
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By substituting this new definition into the momentum equation 8.2 we have:

(ρ0 +∆ρ)
D ~v

D t
= − ∇p + ∇. ~τij + (ρ0 +∆ρ) ~g (8.41)

If we choose our reference point in a place that temperature approaches a uniform value,
the convection term in the momentum equation vanishes and equation 8.41 reduces to the
hydrostatic equation for the flow at rest:

0 = − ∇ph + ρ0 ~g (8.42)

where ph is the hydrostatic pressure imposed by gravity. Let’s subtract equation 8.42 from 8.41:

(ρ0 +∆ρ)
D ~v

D t
= − ∇(p− ph) + ∇. ~τij + ∆ρ ~g (8.43)

In the equation 8.43, p is the actual static pressure at any given point and the pressure difference
(pm = p−ph) is the change in pressure that arises through the fluid motion. In an external flow,
this pressure difference is negative pm < 0 and is the source of the entrainment of the ambient
fluid into the flow. Choosing the correct reference point could be crucial if the flow field is big
enough to create a distinctive hydrostatic pressure gradient due to height difference. In some
cases the stationary layered regions of the fluid form far from the flow and the reference posi-
tion has to be considered within the same region.

The first of the so-called Boussinesq approximation is to assume flow to behave approx-
imately incompressibly. As noted above this must handled differently for experiments and
DNS. The experimentally realized flow knows it is not really quite incompressible, so Cp is the
appropriate choice in the thermal energy equation. But incompressible numerical solutions do
not, so the appropriate choice is Cv.

The second of the Boussinesq approximations is applied here: when two terms of the equa-
tion containing density difference (∆ρ) are compared. In the convection term at the left hand
side of the equation 8.43, the (∆ρ + ρ0) approaches to ρ0 in the limit of small difference com-
pare to reference density; i.e., ∆ρ ≪ ρ0. While on the right hand side, the buoyancy term just
depends on ∆ρ. Therefore the momentum equation for a natural convection flow with a small
temperature reference (hence small density variation) can be written in a simplified version:

D ~v

D t
= − 1

ρ0
∇(pm) +

1

ρ0
∇. ~τij +

∆ρ

ρ0
~g (8.44)

This approximation is a major help, from a theoretical point of view, for understanding the
importance of each term and their role in the Navier-stokes equations. But it may not make
sense to use it in a numerical computation where there is option to calculate the exact instanta-
neous density for each point of the flow. Therefore we should be careful to compare the theories
with the exact computations or experimental results, since the assumption may not be satisfied.

The Boussinesq approximation is summarized in two statements (Spiegel and Veronis [1960]):

• The density change in the flow is purely due to thermal effect, and viscosity and pressure
do not play any role.

• The density variations considered to be effective only when it is coupled to the body
force(e.g. gravity). In other terms, the density fluctuation is ignored.
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These statements are valid when the condition of (∆ρ/ρ0 ≪ 1) is satisfied. The first statement
leads us to a specific case of equation of state for density:

ρ∗ = ρ∗(T ∗) (8.45)

where ρ∗ and T ∗ are dimensionless variables of density and temperature defined as:

ρ∗ =
ρ

ρ0
, (8.46)

T ∗ =
T − T0
Tw − T0

This function can be expanded as a Taylor series around T ∗ = 0:

ρ∗ = 1 +
∂ρ∗

∂T ∗
T ∗ (8.47)

substituting dimensionless forms of density and temperature into the equation 8.47 leads to:

∆ρ = ρ− ρ0 = − ρ0β0(T − T0) (8.48)

Even though we chose T ∗ = (T−T0)/(Tw−T0) as the temperature variable in equation 8.45, the
replaced temperature difference in the buoyancy term is (T−T0). This shows the importance of
choosing right reference value for our specific case. Replacing equation 8.48 into the equation
8.44 leads us to:

D ~v

D t
= − 1

ρ0
∇(pm) +

1

ρ0
∇. ~τij − ~gβ0(T − T0) (8.49)

The third type of Boussinesq approximation can be made with regard to what values of
density are to be applied for computing fluid properties like kinematic viscosity, ν, and thermal
diffusivity, α. In fact, as will be seen in the next chapter, there is no simple answer to this
question, and the best choice is determined by what region of the flow is being analyzed.

8.7 Reynolds-Averaged Equations in Cylindrical Coordinates

From this point we use the index notation or expanded form of the equations to simplify the
understanding of each term in the equations. The axi-symmetric nature of the flow leads us to
use a cylindrical coordinate rather than Cartesian but the assumptions will be implemented in
general forms of the equations as long as it is possible.

The momentum equations for cylindrical coordinates with the flow and the gravity vec-
tor parallel to the axial direction have been given in the appendix B (equations B.17 - B.20).
These equations for a steady state flow without any azimuthal gradient ∂

∂θ are mentioned be-
low. The velocity components in axial, radial and tangential coordinate (x, r, θ) are denoted by
(u, v, w) respectively. (U, V,W ) represent the mean values for velocities in each direction and
u2, v̄2, w2, uv, uw and vw are the Reynolds stresses for the turbulent flow. The mean tangential
velocity is assumed negligible due to symmetry of the flow, therefore the term (−W 2/r) is omit-
ted. The azimuthal momentum equation only describes the relation of the tangential velocity
correlations (uw , vw) and is not used here.

Averaged Continuity Equation:
∂U

∂x
+

1

r

∂(rV )

∂r
= 0 (8.50)
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Averaged Momentum Equation in Axial Direction:

U
∂U

∂x
+ V

∂U

∂r
= −1

ρ

∂P

∂x
+

∂

∂x

(

ν
∂U

∂x
− u2

)

+
1

r

∂

∂r

(

r(ν
∂U

∂r
− uv )

)

+ gβ(T − T0) +

{

∂ν

∂x
.
∂U

∂x
+

1

r

∂ν

∂r
.
∂rV

∂x

}

(8.51)

Averaged Momentum Equation in Radial Direction:

U
∂V

∂x
+ V

∂V

∂r
= −1

ρ

∂P

∂r
+

∂

∂x

(

ν
∂V

∂x
− uv

)

+
1

r

∂

∂r

(

r(ν
∂V

∂r
− v2 )

)

+

{

∂ν

∂x
.
∂U

∂r
+
∂ν

∂r
.
∂V

∂r

}

− ν
V

r2
+
w2

r
(8.52)

The terms inside the curly brackets can be deleted for a constant viscosity flow. Considering
equation 8.49 in previous section, the reference values are chosen for density ρ, viscosity ν and
thermal expansion coefficient β in equations 8.51 and 8.52. The pressure in the momentum
equations is the difference between local static pressure and the hydrostatic pressure as men-
tion in previous section. The hydrostatic pressure is still present in buoyancy term. For the
energy equation in cylindrical coordinate the mean temperature value is represented with T
and the velocity-temperature correlations are ut and vt.

Energy equation:

U
∂T

∂x
+ V

∂T

∂r
=

∂

∂x

(

α
∂T

∂x
− ut

)

+
1

r

∂

∂r

(

r (α
∂T

∂r
− vt )

)

+
ν

Cp
Φ (8.53)

where α = κ/ρCp is the thermal diffusivity of the fluid. It is obvious that these equations are
coupled through the buoyancy term and can not be solved independently. In none of the equa-
tions above, for a Newtonian, incompressible flow, is the assumption of constant viscosity and
thermal diffusivity is necessary. But, as written, the reference density has been, and it appears
in the denominator of both α and ν.

For the type of flow we are interested in, the average values of velocities are very small.
Therefore the heat generated through viscus diffusion is negligible compare to the heat trans-
fer due to high temperature differences. Note that in the momentum equations, the viscous
dissipation is a characteristic of the turbulent flow and can not be ignored. In the energy equa-
tion 8.53, the last term (ν/Cp) Φ is negligible in the flow of our interest.
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Chapter 9

The Natural Convection Boundary
Layer Equations

This chapter summarizes the governing equations believed to be relevant to the natural con-
vection experiment next to the vertical heated cylinder performed herein. Originally it was
expected that our focus would be on testing the applicability of similarity analysis (e.g., ex-
tending and testing the theory of George and Capp [1979], Wosnik and George [1994], etc.)
Also it was hoped the measurements could be used for an extensive analysis of the compo-
nent Reynolds stress and kinetic energy equations. At very least it was expected to be able
to establish unambiguously the heat transfer law for the fully-developed turbulent boundary
layer next to a heated vertical cylinder. Unfortunately, as will be seen in the subsequent chap-
ters, the experiment appears to have developed a fully developed turbulent boundary layer at
only the uppermost measurement point, if even there. This pretty much precludes unequivo-
cal statements about the asymptotic heat transfer law. Moreover, even there the ratio of outer
to inner lengths scales will be seen to be too low for any asymptotic theory to be reasonably
evaluated. Worse, problems with the temperature measurements (due to the large thermal gra-
dients present) have preoccupied us with more fundamental (even primitive) questions about
whether the measurements and our interpretations of them are correct.

Therefore the primary equations of interest herein are not the equations for the turbulence,
but for the mean flow itself, none of which seem to have been considered in detail elsewhere
(for the axisymmetric flow conditions). Of particular importance are the equations very close
to the wall, so we can evaluate the accuracy of the shear stress and heat flux inferences from the
measurements of the mean velocity and temperature profiles. To do so we have had to include
in the analysis as well the variation of thermal properties in the near wall region. Also in order
to even establish the very nature of the flow and whether the near wall inferences make sense,
we have had to consider in detail the integral balances and evaluate the role of the stratification
of the ambient.

9.1 The Reduced (or Boundary Layer) equations

Equations 8.51 to 8.53, together with the incompressible continuity, equation 8.50 constitute
the basic set of equations which govern buoyancy-domintated flows. These contain, however,
a number of terms which are relatively small over most of the natural convection boundary
layer. A detailed scaling analysis has been carried out in Appendix D, in which it is concluded
that the following reduced forms of the averaged equations, together with the incompressible
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continuity equation, contain all of the most significant terms:

U
∂U

∂x
+ V

∂U

∂r
=

1

r

∂

∂r
r(ν

∂U

∂r
− uv) + gβ(T − T∞) (9.1)

+

{

∂

∂x

[

v2 − u2 −
∫

∞

r

w2 − v2

r′
dr′

]}

U
∂T

∂x
+ V

∂T

∂r
=

1

r

∂

∂r
r (α

∂T

∂r
− vt ) +

{

∂

∂x
ut

}

(9.2)

Note that the streamwise pressure gradient has been eliminated by integrating the radial mo-
mentum equation across the flow, which also introduces the v2 and w2 terms into the stream-
wise momentum equation. The terms in curly brackets at the end of each are streamwise
derivative of terms which are of second order in turbulence intensity relative to the others,
so could have also been neglected. But they have been retained for the moment since they can
make a contribution to the integrated momentum and energy equations because of the large
turbulence intensities in the outermost extremes of the flow. These equations are a consequence
of the Boussinesq approximation, where the thermal properties are to be evaluated at the am-
bient conditions at the same height, x. Slightly different approximations will be used when the
near wall equations are considered in section 9.4 below.

Since temperature differences from the ambient value directly affect the momentum equa-
tion (through the buoyancy term), it is of interest to rewrite equation 9.2 in terms of T − T∞.
In general, T∞ is a function of x, since it is virtually impossible to generate a laboratory flow
without some stratification. Therefore the most general (and most useful) form of an equation
for the temperature difference from the ambient temperature is given by:

U
∂[T − T∞]

∂x
+ V

∂[T − T∞]

∂r
=

1

r

∂

∂r
r(α

∂[T − T∞]

∂r
− vt ) +

{

∂

∂x
ut

}

− U
d T∞
dx

(9.3)

This can readily be converted into a buoyancy equation by simply multiplying by gβ. The
last term will be seen to be particularly important when applying the integrated buoyancy
equation below to experimental data, since it acts to add or diminish the net buoyancy just like
heat addition at the wall, depending upon its sign (c.f., Shabbir and George [1994], Beuther
[1980]).

9.2 Momentum and Buoyancy Integral Equations

By using the incompressible continuity equation for the mean flow, equations 9.1 and 9.3 can
converted into equations which can be integrated across the entire flow. These can provide par-
ticularly useful checks on experimental data (e.g., Shabbir and George [1994], Hussein et al.
[1994]), and for wall-bounded flows independent checks on the wall shear stress and heat flux
(e.g., George and Castillo [1997], George et al. [2000]).

Momentum integral equation: To develop the integrated momentum equation, first multiply
the mean continuity equation by U to obtain:

U
∂U

∂x
+
U

r

∂ (r V )

∂r
= 0 (9.4)
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Adding this to equation 9.1 and combining terms (using the inverse of the chain-rule for differ-
entiation) yields:

∂ U2

∂x
+

1

r

∂ r U V

∂r
=

1

r

∂

∂r
r(ν

∂U

∂r
− uv) + gβ(T − T∞)

{

∂

∂x

[

v2 − u2 −
∫

∞

r

w2 − v2

r′
dr′

]}

(9.5)

Note that the use of the incompressible continuity equation in this manner might also be ques-
tioned in view of the considerations of the previous chapter. But most of the contribution of
the convection terms (which are the ones modified by its use) are away from the immediate
vicinity of the wall, hence in regions where the flow can be considered truly incompressible
since the mean temperature variation is small (less than a percent from the ambient value in
the measurements reported subsequently).

Now multiplication by r and integration from the wall to infinity (including integrating the
last term by parts) yields the momentum integral equation as:

d

dx

∫

∞

R

[

U2 + u2 − 1

2
(v2 + w2)

]

rdr = −R τw
ρ∞

+

∫

∞

R
gβ∞[T − T∞]rdr (9.6)

Note that this is more than just the momentum integral (hence reference to it as the momen-
tum integral equation), since it contains all of the terms in the equation, including wall friction,
buoyancy and mean pressure gradient. The appearance of ρ∞ may seem paradoxical, since
τw = µw∂U/∂r|w . But this seems the most reasonable choice for the following reason: The
density occurs in the original equations multiplying the mean convection terms, which are the
terms in the integrals. The main contribution to both the integrals come from the region well
away the wall where the temperature variation is quite small; hence ρ∞ is the appropriate
choice. By contrast, the wall shear stress occurs, of course, at the wall where the temperature
difference is the greatest. Since it is actually the viscosity (not the kinematic viscosity) that de-
termines the wall shear stress (given the velocity gradient at the wall), using the wall value µw
to determine the wall shear stress there seems the most logical choice. By a similar line of rea-
soning, the value of β should be chosen at the ambient value, β = 1/T∞, because the primary
contribution of the buoyancy integral is over the bulk of the flow, not the wall region. We will
use similar considerations below when developing equations for the near wall region.

Buoyancy integral equation: A similar approach using the incompressible continuity equa-
tion can be used to develop an integral equation for the vertical heat flux (or equivalently, the
buoyancy). First multiply the continuity equation by T − T∞, then add it to equation 9.3 to
obtain:

∂ U [T − T∞]

∂x
+

1

r

∂ r V [T − T∞]

∂r
=

1

r

∂

∂r
r(α

∂[T − T∞]

∂r
− vt ) +

{

∂

∂x
ut

}

− U
d T∞
dx

(9.7)

Multiplication by r and integration from the wall to infinity yields immediately:

d

dx

∫

∞

R
(U [T − T∞] + ut)rdr = R

qw
ρ∞Cp∞

− dT∞
dx

∫

∞

R
Urdr (9.8)

The reasoning behind the choice ofCp∞ and ρ∞ is analogous to that used above for the momen-
tum integral equation. Both these properties enter the equation through the mean convection
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terms, the principal contribution from which are away from the wall. By contrast qw is evalu-
ated using the properties at the wall; i.e., qw = −κ∂T/∂r|w .

One important question remains: what value of β should be used if converting this to a
buoyancy integral balance equation by multiplying it by gβ. By applying the same criterion,
wall phenomena should be evaluated at the wall and vice versa, the choice should be β = 1/T∞
for the left-hand side and stratification integral; and β = 1/Tw for the wall heat flux term.
An interesting consequence of this that is the buoyancy balance is slightly different than the
energy balance in that relatively less buoyancy is added at the wall for a given heat transfer
rate (assuming, of course, that Tw > T∞).

9.3 The main (or “outer”) boundary layer

Following the same scaling approach as George and Capp [1979] for the natural convection
boundary layer next to a flat vertical surface, it is straight-forward to show that as the Rayleigh
(or equivalently, the Grashof or H-numbers1) increase, the viscous and conduction terms in the
equations for the mean flow become increasingly negligible over the entire boundary layer,
except very close to the wall.2 In fact, the higher the Rayleigh number, the thinner the region
next to the wall (relative to the overall flow) in which viscosity and conductivity are important.
As a consequence, at even the modest Rayleigh numbers achieved in the experiments reported
herein, over most of the boundary layer the viscous and conduction terms can be ignored. In
fact the measure of whether the turbulence is truly fully-developed or not is whether these
terms are truly negligible inside the location of the velocity maximum.

Thus the equations (to leading order in turbulence intensities), the so-called outer flow equa-
tions George and Capp [1979], which govern most of the fully-developed natural convection
boundary layer are given by:

U
∂U

∂x
+ V

∂U

∂r
= −1

r

∂

∂r
(r uv ) + gβ(T − T∞) (9.9)

U
∂T

∂x
+ V

∂T

∂r
= −1

r

∂

∂r
(r vt ) (9.10)

The corresponding outer temperature difference equation (including the stratification term) is:

U
∂[T − T∞]

∂x
+ V

∂[T − T∞]

∂r
= −1

r

∂

∂r
(r vt )− U

d T∞
dx

(9.11)

9.4 The near wall equations

Again using the scaling approach applied by George and Capp [1979], it is straight-forward
to show that very close to the wall the mean convection terms (the left-hand side of both of
the equations momentum and energy) are negligible. This includes the stratification term in
the temperature difference equation as well. Thus close to the wall (which means well inside

1The H-number is defined by George and Capp 1979 as H = GrPr2.
2It is important to realize that this is never true in the dynamical equations for the fluctuations, since viscosity

and conductivity always affect the smallest scales of motion providing the dissipation. The higher the Rayleigh
number, though, the less the effect of viscosity and conductivity on the turbulence scales producing the Reynolds
shear stress and turbulence heat fluxes.

70



CHAPTER 9. THE NATURAL CONVECTION BOUNDARY LAYER EQUATIONS

the peak in velocity for the flow considered here), the momentum and thermal equations (to
leading order in turbulence intensity) reduce to:

0 =
1

r

∂

∂r
r(ν

∂U

∂r
− uv) + gβ(T − T∞) (9.12)

0 =
1

r

∂

∂r
r (α

∂T

∂r
− vt ) (9.13)

It may seem strange to have the ambient temperature difference in the streamwise momentum
equation, but recall that it is removing the effect of the ambient static pressure gradient due to
gravity acting on the fluid.

George and Capp [1979] integrated the corresponding equations for a flat plate boundary
layer. From the temperature integral they identified the existence of a constant (total) heat flux
layer, and from the momentum integral a buoyant sublayer. For the constant heat flux layer, the
near wall equations integrated to:

− vt+ α
dT

dy
= α

dT

dy

∣

∣

∣

∣

w

= − qw
ρCp

(9.14)

where qw = −κdT/dy|w is the wall heat flux. The corresponding buoyant sublayer equations
were given by:

− uv + ν
dU

dy
+

∫ y

0
gβ[T − T∞]dy′ = ν

dU

dy

∣

∣

∣

∣

w

=
τw
ρ

(9.15)

The buoyant sublayer was the counterpart of the inertial sublayer (or constant ‘total’ stress
layer) in forced boundary layer flows. It was called the ‘buoyant sublayer’ because the ‘total’
stress was clearly not constant, but continuously modified by buoyancy across the layer. The
very near wall region for both the thermal and velocity sublayers was easily shown to be char-
acterized by linear profiles starting from the wall, the so-called conductive sublayer and linear
viscous sublayer for the velocity.

Examination of equations 9.12 and 9.13 make it immediately clear that there can be no such
regions in the annular boundary layer under consideration.3 Consequently the George/Capp
analysis is simply not applicable, at least without modification. Nor for that matter is any other
analysis or computation valid that is based upon the idea of a constant stress or heat flux layer.
In fact it will be shown below that even the familiar (and commonly assumed) linear regions for
the very near wall are at best the leading terms in the proper (logarithmic) near-wall solutions.

9.5 Constant heat flux and buoyant sublayers next to a cylinder

In this section we shall shown that the George/Capp ideas can be generalized to apply to even
this annular geometry. It will prove to be more convenient later if we use a slightly more
general form of the near wall equations in which the Boussinesq approximation is made locally
(instead of globally). These more general equations are given by:

3This is obviously true for all axisymmetric boundary layer flows, whether natural convection or forced. This
does not previously seemed to have been noticed, but it would very much affect the applicability (or lack thereof)
of especially wall-function approaches to the turbulence modeling and CFD of such flows.
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0 =
1

r

∂

∂r
r(µ

∂U

∂r
− ρuv) + g[ρ− ρ∞] (9.16)

0 =
1

r

∂

∂r
r (κ

∂T

∂r
− ρCpvt ) (9.17)

where ρ and Cp are to be evaluated at the local mean temperature of the flow. Note that the
conductivity, k, viscosity µ, have been used instead of their kinematic counterparts, ν = µ/ρ
and α = κ/(ρCp). To within these approximations, these equations are a complete description
of the near wall region in fully-developed4 high Rayleigh number natural convection boundary
layer.

It should be immediately obvious that these equations can both be integrated from the wall
to an arbitrary radial location, r, to obtain:

r(µ
∂U

∂r
− ρuv)− g

∫ r

R
[ρ− ρ∞]r′dr′ = µwR

∂U

∂r

∣

∣

∣

∣

w

= R τw (9.18)

r (k
∂T

∂r
− ρCpvt ) = κwR

∂T

∂r

∣

∣

∣

∣

w

= −R qw (9.19)

where the subscript ‘w’ means evaluation at r = R which is the wall location.

Thus the counterpart to the buoyant sublayer of George and Capp [1979] is one in which
the total stress plus buoyancy integral falls off inversely with radius, r; i.e.,

µ
∂U

∂r
− ρuv − g

r

∫ r

R
[ρ− ρ∞]r′dr′ =

(

R

r

)

µw
∂U

∂r

∣

∣

∣

∣

w

=
R

r
τw (9.20)

And the counterpart to the constant heat flux layer is one in which the total heat flux falls off
inversely with radius, r; i.e.,

k
∂T

∂r
− ρCpvt =

(

R

r

)

kw
∂T

∂r

∣

∣

∣

∣

w

= −R
r
qw (9.21)

9.5.1 Near wall temperature and heat flux: constant thermal properties

From equation 9.21 it follows immediately that for constant α = κ/ρCp that:

[

−〈vt〉+ α
∂T

∂r

]

=

(

R

r

)[

α
∂T

∂r

]

r=R

(9.22)

The mean temperature near the wall: Very close to the wall the turbulence contribution to the
heat transfer is negligible, so equation 9.22 reduces to:

α
∂T

∂r
≈
(

R

r

)[

α
∂T

∂r

]

r=R

(9.23)

This can be integrated directly to obtain:

4In fact this begs the question, since a fully-developed boundary layer can be defined to be one for which these
near-wall equations apply.
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T − Tw = R
∂T

∂r

∣

∣

∣

∣

r=R

ln(r/R) (9.24)

Thus the mean temperature at the wall varies logarithmically, instead of the usual linear be-
havior for plane flows (c.f. George and Capp [1979]). The logarithm can, of course, be ex-
panded around r = R to obtain the usual liner term as the first term in an expansion; i.e.,
T − Tw = dT/dr|w[r −R].

There has long been a question about how to scale the near wall temperature (c.f., George
and Capp [1979], Wosnik and George [1994], Wosnik [1994]). From equation 9.23 and the
linear expansion of equation 9.24 it is clear that the correct choice of a temperature scale and
length scale for Tw − T in the near wall region should involve the kinematic heat flux Fo =
qw/(ρCp) = −αdT/dr|w and α (since it occurs explicitly in the original equations). Most im-
portantly, there is no particular argument that can be made (at least at this point) that it should
involve Tw − T∞, gβ, or the wall shear stress, τw (or equivalently the friction velocity defined
below, u∗). Unfortunately Fo and α are not enough to define a temperature scale from dimen-
sional analysis alone, so the question must remain open for now. The temperature (or buoy-
ancy) integral of equations 9.7 and 9.8, which can be considered to be equations for the heat (or
buoyancy) flux, are largely determined at high Rayleigh numbers by the flow well outside the
near wall region. This would seem to indicate that the missing parameter in the temperature
analysis should come from the flow itself or its boundary conditions. But this would open up
all the possibilities above: Tw − T∞ (since that is driving the overall flow), gβ (since it occurs
in the equations), and τw (since as argued below it characterizes the effect of the flow on the
wall region). Of these only the latter is non-local, in the sense that it measures the net effect on
the boundary layer of all the heat which has been added below. In the data presentation of the
next chapter the wall temperature will be normalized using a temperature scale of Fo/u∗ and
a viscous length scale (from the velocity analysis), ν/u∗; but it should be noted that other pos-
sibilities would have worked equally well given the ambiguity left by the dimensional analysis.

The turbulent heat flux: Equation 9.22 can be solved for −vt to yield an equation for the tur-
bulent heat flux near the wall in terms of the mean temperature. Given the difficulties of mea-
suring anything near a wall, this can be of considerable value to experimentalists. The result
is

− vt =

(

R

r

)[

α
∂T

∂r

]

r=R

− α
∂T

∂r
(9.25)

As we move away from the wall, the conduction term rapidly vanishes leaving only:

− vt →
(

R

r

)[

α
∂T

∂r

]

r=R

≡ −
(

R

r

)

qw
ρCp

= −R
r
Fo (9.26)

Thus this is very unlike the planar problem. There is no constant heat flux layer, only one
in which the turbulent heat flux drops off as 1/r; i.e., vt → (R/r)Fo. Clearly this can be ex-
pected to be valid only out from the wall until the mean convection terms become important.
And this can be true only if the Rayleigh number is high enough for there to exist such a region.

9.5.2 Near wall velocity and Reynolds shear stress: constant thermal properties

Equation 9.20, the momentum equation near the wall, for constant thermal properties can be
written in terms of the temperature as:
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ν
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∂r
− uv − gβ
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∫ r
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∣

∣
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w
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)

τw
ρ

(9.27)

Near wall mean velocity: Close to the wall, the Reynolds shear stress is negligible (exactly
zero at the wall). Also the mean temperature profile varies logarithmically according to equa-
tion 9.24. Thus very close to the wall the equation reduces to:
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∣
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∣
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]

r′dr′. (9.28)

This can be readily integrated from the wall to obtain:
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r
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2
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(9.29)

Taylor expansion of the first term in the right hand side of equation 9.29 gives us a linear
term proportional to (r − R) times the wall shear stress (which sets the gradient at the wall);
i.e. U = [τw/µ](r −R). As is clear from the momentum integral, this is mostly imposed on the
wall by the flow in the main part of the boundary layer (which dominates the momentum inte-
gral). This is consistent with the recent reconsideration of the George/Capp theory for parallel
walls by Shiri and George [2008]. In the usual manner, a friction velocity can be defined as
ρu2

∗
= τw/µ and a viscous sublayer length scale as ηw = ν/u∗. Then non-dimensionalizing the

velocity and distance from the wall with them leads immediately to the familiar near the wall
linear profile U+ = (r −R)+.

The coefficient of the next term in an expansion near the wall depends on both the temper-
ature difference, Tw − T∞ and the buoyancy flux, g β dT/dr|w . The temperature dependent
(or buoyancy)terms can be considered to be analogous to forced pressure gradient boundary
layers (or pipe/channel flows) which are also as quadratic, since this term arises from the static
pressure gradient due to the density differences.

9.5.3 Temperature near wall: Variable thermal properties

It is straightforward to evaluate the effects of the temperature on the conductivity, viscosity,
and density very close to the wall. From equation 9.21 the temperature equation reduces to:

0 =
1

r

∂

∂r
r

[

κ
∂T

∂r
− ρCpvt

]

(9.30)

Integrating from the wall yields:

κr
∂T

∂r
− ρCpvt = κwR

∂T

∂r

∣

∣

∣

∣

w

(9.31)

Turbulent heat flux: In the wall region as long as the mean convection terms are negligible,
equation 9.31 can be solved to yield the turbulent heat flux as:

− ρCpvt = kwR
∂T

∂r

∣

∣

∣

∣

w

− k r
∂T

∂r
(9.32)
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where ρCp and k are to be evaluated at the local temperature. For gases this is given to an ex-
cellent approximation by the Chapman-Enskog relation: k/kw = (T/Tw)

1/2. Direct substitution
yields:

− vt =
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ρCp

{

kwR
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∂r
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∣

w

− kw
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]1/2

r
∂T

∂r

}

(9.33)

To within an excellent approximation the specific heat at constant pressure, Cp is nearly
constant over any range of interest, while the density varies inversely with temperature; i.e.,
ρ = ρw(Tw/T ). So in terms of the temperature and wall values only, vt is given by:

− vt =

{

αwR

[

T
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]
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∣

∣

∣

∣
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}

(9.34)

An exact near wall mean temperature with variable conductivity

To a first approximation, we ignore the ρCpvt near the wall, and very close to the wall write:
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The Chapman-Enskog relation for the conductivity variation with temperature is given by:

k

kw
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(9.36)

Substitution yields:
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or
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This can be integrated directly to obtain:

T 3/2 = T 3/2
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2
RT 1/2

w
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∣

w
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Solving for the temperature itself yields the near wall temperature profile including the
near wall variation of the conductivity as:
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T 3/2
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2
RT 1/2

w

∂T

∂r

∣

∣

∣

∣

w
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}2/3

(9.40)

where the second term arises entirely from the thermal variation of the thermal properties.
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Taylor expansion of temperature near the wall

It is interesting to Taylor expand the exact solution of equation 9.40 above from r = R; i.e.,

T − Tw =
∂T

∂r

∣

∣

∣

∣

w

[r −R] +
1

2

∂2T

∂r2

∣

∣

∣

∣

w

[r −R]2 + · · · (9.41)

The first and second derivatives of equation 9.40 are:
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Evaluating these at r = R yields:
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Thus the very near wall expansion is given by:
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9.5.4 Velocity and Reynolds shear stress near wall: variable thermal properties

The momentum equation near the wall can be written as:

1

r

∂

∂r
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[

µ
∂U

∂r
− ρuv

]

+ g(ρ− ρ∞) = 0 (9.47)

We replace ρ− ρ∞ with the temperature as follows:

ρ− ρ∞ ≈ [ρw − ρ∞] +
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w

[T − Tw] (9.48)

The reason for doing this is to be able to use the linear approximation near the wall (which
would not be valid if we expanded around T∞) . In this case: ∂ρ/∂T |w = ρw/Tw . (Note that
far from the wall we will use ρ∞/T∞ instead, since we want to expand about T∞ .)

Multiplying by r, then integrating equation 9.47 from the wall (including for the moment
the Reynolds shear stress term) yields:
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(9.49)
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The Reynolds stress near the wall: Equation 9.49 can be considered to be an equation for
the Reynolds shear stress, at least until the mean convection terms become important. This can
be quite useful for checking the internal consistency of experimental data. Rewriting it yields:
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By substituting r = R+ y for r and the expansion for dU/dy above, it is easy to say that the
presence of the buoyancy term introduces a quadratic term in the Reynolds stress. This is quite
different from the forced convection problem where the Reynolds stress begins as the cube of
the distance from the wall, but consistent with the constant properties solution derived above.

Mean velocity near the wall: Our goal is to integrate equation 9.47 from the wall. The
question is, which terms need to be retained to have a consistent expansion. From the above
〈uv〉 near the wall begins at least quadratically. Therefore in developing the near wall expansion
of U there is no point of including quadratic terms or higher, without explicitly dealing with
the Reynolds stress. Thus we will concern ourselves with only the linear terms, so we can skip
dealing with the Reynolds shear stress explicitly.

Dividing both sides by r and rearranging yields:
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We can rearrange the remaining terms as follows:
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Using µ/µw = (T/Tw)
1/2 this becomes:
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Substituting for T using equation 9.46 yields:
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The first term in the first brackets on the right-hand-side alone is the term we would obtain if
the viscosity were constant everywhere. The second term in the first set of brackets is the con-
tribution of the buoyancy. The second set of brackets on the right-hand-side is the contribution
from the thermal variation of the viscosity with temperature.

This result can be arranged to look more like the constant property without buoyancy by
factoring out the first time in the first brackets to obtain:
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We can see the role of the variation of the thermal properties more clearly if we apply a
binomial expansion to the second term to obtain:
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We will integrate a truncated version of this equation in the next section.

Expansion of the velocity very near the wall

It does not look possible to integrate equation 9.56 analytically, so it will necessary to integrate
approximate versions of it. We can end up with a form which looks like its constant viscosity-
no buoyancy counterpart in axisymmetric coordinates if we work with the approximate form
of equation 9.57.

Expanding equation 9.56 term-by-term yields:
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This can be readily integrated from r to R to yield our very near wall velocity profile as:
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w

ln(r/R) + · · · (9.59)

9.6 The constant turbulent heat flux layer

If the Rayleigh number is sufficiently high that there exists a region of the flow where the vis-
cous and conduction effects are negligible AND the mean convection terms are also negligible,
then (as already noted above) the governing equations for the mean momentum and thermal
energy for this region reduce to:
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− rvt = RFo (9.60)

−ruv = Ru2
∗
− gβ

∫ r

R
(T − T∞)r′dr′ (9.61)

It has already been noted above that this implies that in this overlap region (if it exists), −vt =
RFo/r.

It is clear from these equations that the only part of the boundary conditions imposed on
this region without modification is RFo, since the net shear stress is very much being modified
by the buoyancy integral. The only other parameter occurring in the equations at all is the
combination gβ. Thus both dT/dr and dU/dr can at most be functions of r, g β and R Fo. It
follows immediately from the Buckingham Π-theorem that:

dT
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= −K1

(R Fo)
2/3

(g β)1/3 r2
(9.62)

= −K1
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(g β R)1/3
R

r2
(9.63)

dU
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= K2

(g β R Fo)
1/3

r
(9.64)

where −K1 and K2 are at most constants. (The minus has been included for convenience, as
will be seen below.) Note that we have used dT/dr and dU/dr since the arguments would not
be valid for U and T − T∞ without explicitly accounting for the viscous and conduction effects
between this overlap region and the wall. In fact, these effects will determine the integration
constants.

These can be integrated directly to obtain the mean temperature and mean velocity profiles
in the overlap region as:

T (r)− T∞ =
Fo

(g β R)1/3

[

K1
R

r
+ A(Pr)

]

(9.65)

U(r) = (g β Fo R)
1/3 [K2 ln r/R + B(Pr)] (9.66)

where the possible Prandtl number dependence of the additive parameters is a consequence
of having to integrate from the wall where the reduced set of equations do not apply. (If in-
tegrating from infinity instead these would simply be constants.) Clearly, Fo/(gβR)

1/3 is the
temperature scale in this overlap region and (gβRFo)

1/3 is the velocity scale. Note that the loga-
rithmic dependence of the velocity should not be confused with the logarithmic very near wall
solution above. These have quite distinctively different origins and very different physics and
scaling. In short, at very high Rayleigh number we should expect to find two logarithmic regions
in the mean velocity profile: one at the wall, and another between the wall and the velocity
maximum.

If and when such a region should be observed is very much determined by whether the
ratio of inner to outer length scales is large enough. And that in turn is determined by whether
the Rayleigh number is high enough. As pointed out by Shiri and George [2008] for planar
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buoyant flows, experiments and DNS have fallen woefully short in this regard, since the ratio
of outer to inner length scales typically varies as Ra∗1/3 and Ra∗1/3 >> 1 has never yet been
achieved. Therefore it has really been impossible to test the theory. For this flow we have
already seen that the inner length scale is ν/u∗ for the velocity and α/u∗ for the temperature.
If we in the absence of an obvious alternative follow George and Capp [1979] and choose the
outer length scale as δU (defined by equation 12.5), then the requirement for this overlap region
to exist would be δ+U = u∗δU/ν >> 1. (This is exactly the requirement for the usual inertial, or
log, layer in forced wall-bounded flows). Unfortunately this criterion is not even marginally
satisfied for the experiment reported herein, much to our disappointment.
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Chapter 10

Design of the Experimental Facility

As previously mentioned in overview chapter, the original test facility was designed, built
and used by Persson and Karlsson (Persson [1994]) at Vattenfall Utveckling AB in order to in-
vestigate the natural convection boundary layer along a slender vertical cylinder heated by
circulating hot water inside. The cylinder was 10cm in diameter and 2.2m in height, and was
placed in the middle of a 1.8m× 1.8m× 2.2m cubical enclosure. A 5 cm opening at the bottom
of the enclosure allowed the cool air with the seeding for laser measurement enters the system.
The hot air was discharged at the top of the cubical through an outlet which was supposed to
prevent air recirculation inside the system.

They carried out two sets of measurements in the original experimental rig. The first at-
tempt was to measure mean temperature and velocity separately with two components LDA
system and a platinum resistance wire. The second attempt in the same measurement setup
included simultaneous measurement of the temperature and velocity, including their correla-
tion. The measurement in the first case was made at the height of 1.1 m from the beginning
of pipe (corresponding to Rayleigh number based on height of Ra = 7 × 109), and the second
measurement was at a height of 1.5m (corresponding to Ra = 1.4× 1010). Both of these values
were too low for a fully turbulent boundary layer within the facility, and the height clearly
needed to be increased.

Specification Original Rig Present Rig

Diameter of heated cylinder 10 cm 15 cm
Size of enclosure 1.8m× 1.8m 1.2m in diameter
Height of the cylinder 2.2m 4.5m
Highest measurement section 1.8m 4m
Entrance section 5 cm 12 cm
Outlet pipe size 25 cm 30 cm
Maximum working temperature ≈ 100 ◦C 80 ◦C
Maximum Rayleigh number 1.4 × 1010 1.7× 1011

Table 10.1: Original and Present Test Rig Specifications; (Persson and Karlsson [1996]).

After these preliminary experiments (reported as Persson and Karlsson [1996]), they re-
alized they also needed to make some modifications to the rig in order to ensure a uniform
entrance flow. The height of the inner (and outer shell as well) was also doubled in the hopes
of producing a Rayleigh number sufficiently high to obtain a fully turbulent natural convec-
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Figure 10.1: Turbulent Natural Convection Boundary Layer Rig Scheme.

tion boundary layer flow. The stratification observed in the enclosure and uncertainty about
the inflow uniformity was the motivation to redesign the tunnel with a controlled inlet and
outlet. Also in order to have a steady seeding level, a closed loop for the air was necessary. The
specifications for the original and modified rigs are summarized in Table 10.1.

The design of a new rig was initiated at Vattenfall AB and some parts of the rig, including
the pipe, the fiberglass tunnel and entrance section were built at Vattenfall based on the new
design. It was shortly after this that the rig was moved to Chalmers, coincident with the ap-
pointment of Rolf I. Karlsson as an Adjunct Professr of Experimental Fluid Dynamics in the fall
of 2000. Initial tests on the facility at Chalmers indicated there were still some problems with
the entrance flow, so this section was redesigned yet again. The manufacturing of the present
section was paid for by and built at Vattenfall. The master thesis work by Axelsson [2003] was a
part of this testing/modification process. It took several more years before a place to house the
modified facility could be established, but finally in 2005, the Turbulence Research Lab. started
installation of the new experimental facility.

10.1 Modified Test Rig Outline

The present facility (modified as described above) was installed in a two floor space laboratory
with the entrance section in the basement and a portion of the floor above removed to permit
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(a) (b)

Figure 10.2: Rig Installation; (a) The Entrance Section and Tunnel, (b) Collector Hood.

the upper part of the facility to extend through it.1 A schematic of the rig is shown in figure
10.1. A scaffolding was raised around it to allow access for the operator at various levels as
can be seen in Figure 10.2. The major modification from the original rig was the height of the
test section of the experimental rig. Since the Rayleigh number increases as the cube of the
boundary layer length (Ra ∝ L3), compared to the temperature difference which affects it only
linearly, it is more practical to use a long surface to get larger Rayleigh number. Using a more
viscous and dense fluid, like water, had serious drawbacks, especially when measuring with
optical methods. The index of refraction in water varies with the temperature fluctuation more
than in air, and makes it practically impossible to use laser Doppler anemometry.

Unlike the original facility, a spacious collector section was installed on top of the tunnel to
decrease the recirculation of hot air inside the rig and provide a more effective discharge of the
air from the test section. Figure 10.2 shows the rig installation (part a) and the collector hood
(part b) at the top of the tunnel. The 1.8 m × 1.8 m × 0.5 m section is connected to the return
pipe at the vertex and is separated from the main tunnel by a perforated plate to break down
any returning vortices.

A traversing system was designed to reach a vertical traversing span of 4m. The aluminum
structure, shown in picture 10.3, provided two horizontal axes of traverse, controlled by the
LDA system traversing unit, and the vertical traverse was operated by a manual control. The

1This was actually its third location since coming to Chalmers in 2000. The arrangement was not ideal, but was
the only possibility given the Department of Applied Mechanics space rent policies which would have taken most
of the VR research grant supporting the work.
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(a) Sliding Window for LDA Lens. (b) Vertical Traverse.

Figure 10.3: Traverse Structure.

measurements were carried out at three different heights of the pipe from tunnel’s floor; 4 m,
3 m and 1.5 m. At each of these heights, an access window had been cut into the outer shell.
Before measuring the laser probe was leveled using four adjustable feet of the traversing table.
It unfortunately was not possible to make traverses around the pipe at a given height, so the
axisymmetry of the boundary layer flow could only be assumed.

The velocity field was measured using a laser Doppler anemometer operating in back-
scatter mode, so that only one optical lens needed to be used for measuring both of the velocity
components. The precise positioning and adjustment of the laser measurement volume would
have been practically impossible if the laser probe had been traversed outside of the curved
window of the tunnel. Therefore a sliding flat window was designed (see figure 10.3) to pre-
vent any laser beam refraction due to surface curvature. The lens was placed inside a circular
opening of the slider and the sliding window was moved with the traverse table without touch-
ing the lens. The only drawback of this design was that there was a small non-circular section
on the tunnel wall at the measurement cross-section. This section was far from the heated wall
and did not effect the boundary layer flow. To prevent any geometric imbalance in the axisym-
metric design of the rig, the openings of the unused access ports were covered with a dummy
fiberglass wall while measuring the other sections of the boundary layer.

10.2 Return Chamber and Seeding Control

As it will be discussed in chapter 11, the choice of velocity measurement method (LDA) worked
best with closed loop of air circulating in the system so that uniform seeding of scattering par-
ticles could be maintained. For the experiments reported herein, hot air was collected inside
the hood and moved into the return chamber without the use of any blower. In other words,
the return system also was driven by natural convection. This return chamber was basically a
large room enclosing the outer cylinder of dimensions 6 m × 4 m × 3 m. Its function was to
gather the returning hot air so that it could be air-conditioned to maintain the temperature and
seeding level. Based on the heat transfer rate delivered to the system, a HVAC unit with the
cooling capacity of 12, 000 BTU was used to cool the returning chamber. To avoid any period-
ical change in the inflow temperature caused by HVAC controller, the air was circulated inside
the chamber using distributed fans. This arrangement produced a constant temperature cooled
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air which re-entered the tunnel through inlet section. The fans and air conditioning units were
placed far from the exit and entrance of the chamber to eliminate any artificial negative or pos-
itive pressure on the system. The size of the chamber was large enough to prevent any closed
loop circulation effects. Also the chamber was made of the plastic sheet which was not air-tight
so that it did not produce any periodic breathing.

The scattering particles used in LDA measurement were generated by SAFEX fog generator
2010. This device produced a dense white fog by evaporation and condensation of a water-
based fog liquid. The quantity of the fog could be adjusted in an automatic switching. The
device was turned on and off periodically, but since a change in the fog density over time
could produce a bias in the statistical measurement of the velocity, therefore the fog was in-
jected inside the return chamber and mixed using the fans to provide a uniform and constant
seeding level in the system.

The seeding particles were selected based on the size and the life time of the particle. The
SAFEX Fog Fluid Extra Clean produced the water-based oil droplet with the size of 1µm. The
estimated response frequency of the seeding particle, suggested by the producer, is 10 kHz and
the durability is between the 10 - 30min in a confined system. This size of the droplet is also
suitable for a low velocity measurement as the drag force should overcome the particle weight.
For a estimation of the particle time constant, pt, we can use the Stokes formula presented in
Buchhave et al. [1979]:

pt =
d2p
36 v

(2
ρp
ρf

+ 1) (10.1)

ρp and ρf are the particle and fluid densities and d is the particle diameter. For the particles in
this experiment, this corresponds to pt ≈ 2.5µs, which is much smaller than the time scales of
interest.

Selecting a particle size is a compromise between signal amplitude and the particle’s ability
to follow the flow. Larger particles will increase data rate, but will have a bias toward the
accelerating flows, e.g. error in high frequency turbulence measurement. Smaller particles will
reduce signal amplitude and data rate, but will follow the flow to higher frequencies. Because
the seeding droplets are generated with evaporation and condensation, the temperature in the
air differs with the density of the fog. That was the major reason to inject and mix the seeding
before conditioning the air flow into the rig.

10.3 Inlet Section Considerations

In the earlier designs, the problem of nonuniform inflow of air at the entrance of the rig led
to construction of an axisymmetric inlet section. Axelsson [2003] reported up to 15% deviation
from the mean velocity at the perimeter of the original design. The redesign is shown in fig-
ure 10.5. An annular contraction with three rows of screens was used to improve the quality of
flow and eliminate any possible large scale eddies. Four valves were installed in the connecting
pipes before the inlet section to adjust for a uniform inflow. These pipes were fed from the back
chamber of the rig with cooled and seeded air. When running the experiment with co-flow,
a fan was placed in the connecting pipe with a speed controller to adjust the inflow velocity.
Some test run were carried out to observe the effect of co-flow, and even the smallest forced
convection had considerable effect on the boundary layer. Therefore this fan was turned off for
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Figure 10.4: Inlet Section Contraction.

all of the experiments reported herein.

Figure 10.4 shows a sketch of the inlet section contraction with the position of the screens
behind the contraction. The contraction was made of fiberglass and embedded inside a stain-
less steel casing to provide the strength to hold the weight of the cylindrical tunnel. The metal
casing also acts as the diffuser for the inlet pipes from the side chamber (see figure 10.5). 14
vanes guided the air to enter the rig symmetrically toward the center of tunnel. The tunnel’s
floor was covered with a flat plexiglass section which the pipe passed through in order to make
a distinctive starting point for the vertical surface.

(a) (b)

Figure 10.5: Inlet Section Layout.
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10.4 Heating and Cooling of the Test Rig

The system transfers heat to the air from the cylinder’s wall in the middle of the tunnel. A water
pump, as shown in figure 10.1 circulates hot water through the pipe with a nominal flow rate of
≈ 2 kg/s at a constant temperature. A frequency convertor adjusted the speed of water pump
which controlled the water flow rate. This flow rate was chosen to maintain the pipe’s outer
surface nearly constant, by monitoring the wall temperature difference at the top and bottom
of the pipe with thermocouples. The highest preliminary estimation of the heat transfer rate
from the cylinder (based on the empirical data on flat surface 7.7) suggested an average value
of less than 1kW . Considering this initial guess, for the given flow rate, the temperature drop
in the water (and therefore wall temperature) can be estimated to be less than

∆T =
q

ṁ Cp
=

1000 [W ]

2

[

kg

s

]

× 4188

[

j

kg.K

] ≈ 0.1◦C (10.2)

This is well below the accuracy of thermocouple measurement method, which made it impossi-
ble to cross-check the boundary layer measurement values of heat transfer rate with the actual
value of energy provided. This was a significant shortcoming of the experiment, especially
given the problems of temperature measurement discussed later.

The measurement was designed to be carried out using an isothermal wall, therefore the
circulating hot water inside the pipe had to be kept at a constant temperature. Two heating
elements responsible for warming up the reservoir were connected to a controller box (see fig-
ure 10.6). The controller was built based on the proportional integral derivative controller (PID
controller), which is a control loop feedback mechanism of control. The feedback temperature,
measured by a thermocouple type K submerged in the water at the exit section of reservoir,
fed the controller as the temperature set point was fixed at 71◦C . The diagram 10.7 explains the

(a) (b)

Figure 10.6: Water Heater System; (a) Controller Unit, (b) Reservoir.
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controller algorithm.

The PID controller algorithm gives three separate functions of the measured value; the pro-
portional, the integral and derivative values. An error is calculated based on the fixed tem-
perature set point and the feedback temperature from thermocouple. The proportional value
determines the response proportional to the current error as P = Kpe(t). The integral value
determines the response based on the sum of recent errors; I = Ki

∫

e(t)dt. And the deriva-
tive value determines the response based on the rate at which the error has been changing as
D = Kdde/dt. The weighted sum of these three actions is used to adjust the current via a relay
to the power supply of the heating elements so that a steady-state can be achieved according
to:

V (t) = Kp e(t) +Ki

∫

e(t)dt +Kd
de(t)

dt
(10.3)

where V (t) is the output voltage, Kp is the proportional gain, Ki is the integral gain, Kd is the
derivative gain and e(t) is the error (difference between set point and feedback value). The
commercial PID controller, purchased from ELFA, was coupled with a three-phase relay to
be able to feed the required voltages into the heaters. The heaters were three-phase elements
connected in triangle formation, one with a 8 kW output for warm-up stage and a smaller one
with the output power of 1 kW , to run continuously.2

Figure 10.7: Proportional Integral Derivative Controller Diagram.

10.5 Radiation Between the Inner and Outer Cylinders

The arrangement of a two concentric cylindrical surfaces with different temperatures and emis-
sivities immediately allows for radiation heat transfer between these two surfaces. This will not
affect the flow (assuming the absorption by the scattering particles and air to be negligible). But
it will affect the overall energy balance, i.e., what fraction of the heating provided by the water
heater actually goes into the flow itself by conduction at the walls. Therefore it is useful to have
an estimate of its value.

By assuming a constant temperature boundary condition on the surfaces we can estimate
the net amount of radiation loss from the inner cylinder as (c.f., Incropera [2007]):

qrad =
σ(2πRL)(T 4

wi − T 4
wo)

1
ǫi
+ 1−ǫo

ǫo

(

R
Ro

) (10.4)

where σ = 5.76 × 10−8[W/m2.K4] is Stefan-Boltzmann constant, R & Ro are the radii of the
inner and outer cylinders respectively, ǫi and ǫo are the emissivities of the two surfaces, L is the

2The designing and building of these electronic instruments were by Lars Jernquist, whose help and interest
throughout the experiment was greatly appreciated.
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length of the cylinders, and the surface temperatures are denoted as Twi and Two.

In order to estimate of how much heat transfers from inner to outer cylinder by radiation,
we consider Twi = 70◦C (343◦K) and Two = 22◦C (295◦K) to be the constant surface temper-
atures. For the inner surface , black paint was used to eliminate the laser reflection, and it has
an emissivity of nearly a blackbody (ǫi ≈ 1). We assume the fiberglass outer surface to have an
emissivity of ǫo ≈ 0.8 ; (cf. Incropera [2007]). The radii of the inner and outer cylinders were
0.075 m and 0.6 m respectively. Substituting these values in the equation 10.4 gives us the ap-
proximate radiation heat transfer rate of qrad = 165W . Since the estimated energy transfer rate
from the inner cylinder was less than 1 kW , this is a significant fraction of the overall energy
balance for the rig.

10.6 Stability of the Facility

In order to insure that the facility was operating reliably and at stable conditions, the temper-
atures of the air and pipe wall were monitored continuously at different position. Because
the overall air velocity outside of the boundary layer itself was practically negligible, the only
parameter to monitor was the mean temperature of the air. A set of thermocouple were posi-
tioned at the entrance of the rig, at 4 m height and on the pipe surface and the system started
to work at its nominal condition. A measurement of this monitoring from the startup is shown
in figure 10.8.

The gradient of the temperature’s stratification was also monitored inside the rig, far from
the heated cylinder (r ≈ 50 cm) at four different heights of 1 m, 2 m, 3 m and 4 m using
thermocouples (see figure 10.8). The value of the temperature difference at each measurement
cross-section (∆T = Tw − T∞) was calculated based on the measured value of these thermo-
couples. The room temperature was also monitored throughout the experiment to document
any sudden change in the overall conditions of the measurement.
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Figure 10.8: Temperature stability monitoring, (a) at the inlet, surface of the pipe and ambient Air tem-
perature at height 4m, (b) in four different heights during the measurement.
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10.7 Accurate Positioning

In the boundary layer velocity measurement with LDA, the measured values should satisfy
the no-slip boundary condition. This means that the exact positioning of the probe could be
corrected just by shifting the velocity profile along the traversing direction. This is not the case
for measuring the temperature with cold-wire, or any other intrusive method. The heat con-
duction through the prongs or the connecting supports and the error in the measuring of the
exact value of wall temperature made it in practice impossible to correct the position based on
the temperature curve. Therefore the exact (or at least as accurate as possible) positioning of
the temperature measurement probe is essential.

A separate 3-D micrometer traverse system put on top of the probe holder for fine adjust-
ment. the probe holder was a one meter aluminum beam with a NACA profile cross section to
prevent vortex generation in the measurement section. Before each attempt at measurement,
the laser probe volume was positioned at the wall by traversing the laser beams adjacent to
the cylinder surface. The reflection of the laser beams could contaminate the signals from the
particles and compromise the measurement. In order to avoid any reflection, the entire sur-
face of the cylinder was painted in black using “Nextel Velvet Coating”. The expansion of the
structure due to heating and cooling of the system also required readjustment of the wall mea-
surement in every attempt.

The laser probe volume was adjusted relative to the wall by controlling the receiving signal
using an oscilloscope. After adjusting the laser, the cold-wire and thin thermocouple were
positioned next to the wall by the auxiliary micro-traverse and a microscope connected to a
CCD (see figure 10.9). The picture in the monitor of the microscope had an accurate scale
to measure the distance of the probe from the wall. The cold-wire could not be positioned
exactly in the laser measurement volume because the reflection from the prong affected the
LDA measurement. Therefore the cold-wire probe was placed at the closest position (≈ 150 µm)
above the laser beams’ intersection.

(a) (b)

Figure 10.9: Positioning microscope; (a) Cold-wire on scaled monitor, (b) Lens.

90



Chapter 11

Measurement Methods and
Methodology

This chapter describes the experimental methods used to measure the velocity and temperature
in the natural convection boundary layer experimental facility described in previous chapter.
Also the details of the criteria for selection of each method, the specifications of the equipment,
and the measurement procedure will be explained.

11.1 Introduction

A measurement system consists of four types of elements: sensing, signal-conditioning, signal-
processing and data presentation. In order to measure any property of the flow, it first needs
to be isolated from the microscopic and macroscopic structure of the medium in order to be
measured. This is done by the sensing element which is in the direct contact with the flow
and converts the true value of the property to an easy to use output, e.g. voltage, current or
frequency. The output represents an estimation of the true value based on the ability of the
sensing element to react to changes in the flow property. In this chapter we briefly go through
the errors and problems encountered while using the instrumentation and methods of mea-
surement in this natural convection boundary layer experiment.

All of the methods of measurement, as explained in this chapter have limitations regarding
the accuracy of the method. At the very first step each measurement method is chosen based on
the data specifications required to evaluate the theoretical studies. The instrument used in an
actual experiment is always a compromise between the accuracy requirements of the acquired
information and the availability of the instrumentation. There is always a drawback compared
to the its benefits of using any method or a tool. To interpret and use the results it is important
to be aware of as many errors and limitations of them as possible.

The overall goal of this investigation was to measure two components of velocity and tem-
perature simultaneously in the natural convection turbulent boundary layer. The overall con-
dition of the rig also had to be monitored by logging the temperature variation at different
positions in the facility. To accomplish this, several main criteria needed to be satisfied in se-
lecting the measurement methods:

• The need to measure with low mean velocity (< 1m/s) and high turbulence intensity
(over 100%) in parts of the flow.
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• The need for a non-intrusive anemometry method as possible to avoid disturbing the
flow.

• The need to make velocity measurements very close to a heated wall.

• The need to measure higher moments of turbulence properties accurately, with sufficient
frequency response and spatial resolution to avoid significant temporal and spatial filter-
ing.

The “gold standard” for the last requires that the measurement sampling volume should be
smaller than half of the Kolmogorov microscale¡ ηK , defined as:

ηK =

(

ν3

ǫ

)1/4

(11.1)

where ǫ ≡ u3/ℓ is the dissipation of the turbulence in the flow. An almost equivalent criterion
is that its largest dimension be smaller that the typical near-wall viscous (or conductive) scale,
ν/u∗ (or α/u∗) where u∗ is the friction velocity. For these experiments both these scales were
on the order of 0.3mm .

For the choice of anemometry method, the hot-wire option was ruled out since the heat
transfer from the wall and the high temperature gradients make it very difficult to calibrate (or
even position) the probe accurately. Also, if we (given a lack of choices) used a temperature
probe simultaneously with a hot-wire, the heat generated from the wire can contaminate the
flow temperature. Using a cross-wire to measure two components of velocity exacerbates the
problem, and also there is a loss of directional sensitivity at low velocities (c.f. Beuther [1980],
Shabbir et al. [1996]). There have been some attempts to compensate the deficiencies of this
method in measuring low velocity flows close to wall, by using v-shaped hot-wires (see Tsuji
and Nagano [1989a]), but since better choices were available with higher accuracy, we did not
try this method. Other intrusive methods based on the local pressure difference (e.g. 5-hole
probe) did not have the required sensitivity, response time or spatial resolution for this flow;
but also have serious problems due to buoyancy induced in them by thermal gradients (c.f.,
George et al. [1977]).

Particle image velocimetry (PIV) would have very helpful, especially for capturing the
unique nature of the large scale motions observed in the flow by eye using smoke, even though
implementation close to a surface would have been difficult. But the major reason was lack
of availability of a PIV equipment1 So by default the only optical velocimetry method used in
this experiment was laser Doppler anemometry (LDA). LDA is a non-intrusive method with
a high spatial resolution (∼ 50 µm). It has the disadvantage that the measurements are taken
randomly and with a sampling process that is correlated with the flow, thus complicating both
statistics and time-resolved measurements. We will discuss this measurement method and the
instrumentation in detail later in this chapter.

Two types of temperature measurement were utilized in this experiment. The first con-
sisted of the instantaneous temperature measurements within and across the boundary layer;
and the second consisted of the mean temperature of the surrounding (ambient) air and at

1The Turbulence Research Laboratory was about the only fluids lab in Sweden that did not have a PIV, in spite
of numerous proposals to acquire one. And unlike the Wänström [2009], it was not possible to move this facility to
the Danish Technical University to take advantage of their capabilities.
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surfaces of the boundaries. Optical thermometry methods are not suitable for temperature
profile measurements in a transparent medium such as air. Infra-red and liquid crystal ther-
mography methods can be used for surface temperature (e.g., Arroyo Osso [2009]), but along
with other techniques like photoluminescence thermography they suffer from a lack of tempo-
ral and spatial resolution. The only method that could measure turbulence fluctuations with
good measurement resolution and fast response time was the so-called cold-wire method: a
thin resistance wire connected to a constant current circuit. The cold-wire measurements were
complemented by mean flow temperature measurements using miniature thermocouples. For
monitoring the surface and ambient temperatures throughout the measurement and in many
places simultaneously, the most reliable and least expensive choice was standard thermocou-
ples. Both the thermocouple and cold-wire techniques proved to be quite unsatisfactory for
the boundary layer measurements. Although it is probably true for most experiments, it is es-
pecially true for this one: the results could have been substantially improved had we known
at the beginning what we know now, especially about application of these techniques in flows
with strong mean temperature gradients.2

11.2 Laser Doppler Anemometry

In the experiment we used the laser Doppler anemometry method to measure two components
of the velocity. The laser was an argon-ion, Coherent Innova 90, capable of producing up to 10 W
output in the range of 500 nm wavelength. Using a set of prisms and a Bragg cell, three pairs
of the laser beam were generated with the wavelengths of 514.5 nm (green), 488 nm (blue),
and dark blue with a smaller wavelength. The two first colors were used in this measurement.
The laser beams were carried through a fiber-optic cable into a optical lens which was focused
to create the measuring volume. During the measurement the output of the laser cavity was
set to 5 W which after passing through the optical sections and the transferring fiber optics,
the measured power in each individual beam was approximately 0.035 W. The diameter of the
beam entering the optical lens was 2.25 mm and it was expanded using one beam expander
with the ratio of 1.96 and a front lens expansion ratio of 1.55. Therefore the diameter of the
beam exiting the lens became:

Ed = 2.25 × 1.96 × 1.55 = 6.8355 mm

The angles between each pair of the beams were measured to be approximately β ≈ 10.6◦.
Using the beam diameter and the angle between two beams and the focal length of the probe
(f = 600 mm), the size of the measurement volume can be calculated as:

df =
4

π
.
λ
√

f2(1 + tan2(β/2))

Ed
≈ 55µm (11.2)

The fringe spacing can be estimated as:

δf =
λ

2. sin(β/2)
≈ 2.7µm (11.3)

The LDA probe lens was used in a back-scatter mode and was rotated 45◦ around the axis
of the lens, therefore each pair of the laser beam were measuring a combination of radial and

2Near wall temperature measurements was one of the many parts of this experiment where the absence of the
vast measurement experience of Professor Rolf Karlsson was keenly felt.
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streamwise velocity components. This arrangement had the advantage of receiving an approx-
imately equal sampling rate in both BSA’s, and avoids an optical error bias in the measurement
of a particular velocity component. The data were then converted to the actual value of each
component using a transformation matrix during the postprocessing. Other information about
the measurement setup and the seeding conditions of the flow were presented in chapter10. All
data were processed using the residence-time algorithms proposed by Buchhave et al. [1979]
and George et al. [1978] (see Velte [2009] for a comprehensive and recent review).

11.3 Acquisition of Simultaneous Data

In order to calculate the temperature-velocity correlations (ut , vt), It was necessary to syn-
chronize the data acquisition process of the LDA and cold-wire instruments. As already men-
tioned, the LDA generates velocity data that is randomly distributed in time, but the cold-wire
produces a continuous signal which is evenly sampled in time. To find a temperature sample
at very nearly the same time as the burst from the LDA, we need to have the sampling time
record of both data sets and match them against each other. Therefore both BSA and Wavebook
A/D converter should start sampling at the same time and keep the time with the same clock.

To avoid a gradual shift in the time signals, a circuit was built3 to provide a high frequency
signal (9.6 kHz), as an external clock, for both BSA and Wavebook. The BSA provides a trigger
signal when the first burst is detected by photomultiplier. This signal is usually used for syn-
chronization of two BSAs in multi-component LDA measurements. The signal was used as a
TTL trigger for the IO Tech Wavebook A/D convertor to ensure the simultaneous starting point
of measurement in both devices. In every acquisition block, the BSA starts from the beginning
to count the number of pulses from the external clock signal and stores the pulse number as
arrival time information for every data realization. A schematic of the measurement flowchart
is shown in figure 11.1.

As the measurement time interval is set to be constant for BSA, the Wavebook was also set
to sample the cold-wire data with the specified frequency for that time interval. The sampling
frequency criteria in Wavebook was the constant current circuit cut-off frequency (3.2 kHz).
The wavebook starts sampling when the signal from the TTL trigger comes from the BSA. The
equal time intervals between temperature samples make it possible to find the arrival time of
each sample. Both data sets from BSAs and Wavebook were saved with the information con-
taining arrival time and the value of the property. BSA also saves the transient time of each
sample as a weighting function for calculating the statistics of the velocity. Finding the coinci-
dent samples is done during the post-processing of the data.

11.4 Thermocouples

In this experiment thermocouples were used in four configurations:

• To measure and monitor at different positions along the surface of heated cylinder.

• To measure and monitor the air temperature at different places inside and outside of the
facility.

3Designed and built by Lars Järnqvist. “Trigger to Synchronize CTA with LDA – LJ020408”
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Figure 11.1: Measurement flowchart.
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• To measure and monitor the water temperature of the hot water reservoir.

• To provide a zero reference voltage for the other thermocouples.

The thermocouple is by far the most widespread type of temperature sensor in the world.
It is relatively inexpensive, robust and straightforward-to-use, and if used correctly, provides
quite accurate data. It was T.J. Seebeck in 1821 who discovered that if two dissimilar metals or
alloy wires are joined at both ends to form a circuit, an electromotive force (EMF) is produced
when there is a temperature difference between the junctions. The two junctions are called
the measuring junction and the reference junction. The magnitude of the Seebeck voltage, Es,
depends on the materials of two wires and the temperature difference between the junctions,
and is given by:

dEs = SA,B .dT (11.4)

where SA,B, the Seebeck coefficient, is dependent upon the materials of two wires: A and B.
Because there are tables for standard thermocouple materials, we can either use the tabulated
values for the Seebeck coefficients or calibrate the thermocouple with an accurate temperature
measurement device.

All the components of the measuring circuit that are inside the temperature gradient, in-
cluding the compensating leads and connectors, contribute a separate voltage. To make a cir-
cuit that produces the exact voltage correspondent to the temperature at the measuring junc-
tion, we should consider these three empirical laws when using a thermocouple circuit:

• The Seebeck voltage is not generated in a single homogenous material, even with a vari-
able cross-section, by applying a temperature gradient. The inhomogeneity can produce
such a thermoelectric current.

• The algebraic sum of the thermoelectric currents in a circuit of any number of dissimilar
materials is zero as long as all the parts of the circuit is placed in a uniform temperature.
Therefore a device for measuring the voltage does not contribute to thermoelectric current
generation, regardless of method employed, if the junction is isothermal.

• If two dissimilar metals produce a thermal EMF of E1 when the junctions are at temper-
atures T1 and T2, and a thermal EMF of E2 when the junctions are at T2 and T3, the EMF
generated when the junctions are at T1 and T3, will be E3 = E1 + E2. Therefore using an
extension wire with the same material of the thermocouple wires does not affect the net
EMF of the circuit.

The thermocouples used in the experiment for monitoring the temperatures were made
of J-type thermocouple wire provided by Pentronic AB. The thermocouple wires were made
of Iron (+) and Constantan (-) and covered with a resin coating to protect them from short-
circuiting. The measuring junction was made by twisting and soldering two wires to protect
the junction from rusting or contamination. A thin layer of soldering alloy was applied to the
junction so that the overall size of the thermocouple bead did not exceed 1 mm in diameter
and 3 mm in length. The length of thermocouple wires were long enough to avoid using any
extension cable.

Each thermocouple was coupled with a reference junction in order to create a zero-reference
temperature point as shown in figure11.2. Even though the measurement device used in this
experiment had a built-in CJC (cold-junction compensation), the use of an ice-bath provided
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Figure 11.2: Thermocouple circuit configuration with reference junction.

an ideal reference point with less error. Accurate measurement relative to the ambient temper-
ature was especially important since the momentum production by buoyancy was largely due
to relatively small temperature differences over most of the flow. The ice bath was made of
a 1.5 ℓit water container insulated with Polyurethane foam, filled with crushed ice and water.
Following Benedict [2005], a reliable ice-bath was provide with the exact water temperature at
melting point, the pieces of crushed ice used were small but not completely smashed. Also the
reference junction was placed at a depth of at least 12 cm and far from each side and bottom of
the container not less than 2.5 cm. The junctions were covered with the silicon based glue to
avoid short-circuit between them.

Three sets of National Instrument NI USB-9211A were used for the thermocouple mea-
surements. Each one provided 4 channels of 24-bit thermocouple input with a total sampling
rate of 12 sample/s and an input voltage span of ±80 µV . All the modules were placed in a NI
cDAQ-9178 chassis and connected to computer via a USB connection. A LabVIEW code was
written to control and log the data acquisition process of the thermocouples.

The thermocouples were calibrated in a hot water bath against a Pt-100 4 which was itself
calibrated by a providing company recently. Because the thermocouple beads were bare, to
avoid short-circuit between the thermocouples they were placed inside a small container filled
with a silicon based fluid (DOW CORNING 200 FLUID, polydimethylsiloxane PDMS) and
then submerged in the water bath. The calibration curve of each thermocouple in the tempera-
ture range between the ambient (∼ 18◦C) and 80◦C was used in the computer code to convert
the voltage to temperature directly. The position of thermocouples in the rig is shown in figure
11.3.

11.4.1 Fine-Gauge Thermocouple

It was desirable to have an independent measurement of the mean temperature profile of the
boundary layer to corroborate the cold-wire thermometry. Several unsheathed fine thermocou-
ple of typeK were connected together to measure the temperature difference (Tw − T ) directly
at different positions across the boundary layer using the arrangement illustrated in figure 11.2.
As shown in figure 11.5, the thermocouple and cold-wire probes were positioned on the same
traversing setup to measure at approximately the same radial position, but the position of the
thermocouple was nearly 1 cm above the cold-wire probe.

The size of the thermocouple wire used in the measurement was 75 µm, and the size of the
thermocouple bead was approximately 100 µm. The thermocouples were built by the provid-
ing company, OMEGA, but they were connected and installed in the laboratory. To insulate the

4Pt-100 is a temperature sensor based on measuring the resistance of a platinum element (Platinum Resistance
Thermometers, PRT), which the most common type (PT100) has a resistance of 100 Ω at 0 ◦C and 138.4 Ω at 100◦ C.
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Figure 11.3: Thermocouple positions on the experimental rig.

bare wires they were placed in a plastic shrinking sleeve and a ceramic tube to avoid rupture.
One of the junctions was fixed on the cylinder’s wall and the other was positioned in air far
away in the ambient in order to provide a direct measurement of the temperature difference.
This thermocouple setting was not calibrated in the water bath and did not use the zero refer-
ence ice bath, because we were just interested in temperature difference between two points.
The standard polynomial conversion factor, provided by OMEGA company, was used; i.e.,

T =

9
∑

i=0

Ci E
i (11.5)

To decrease the heat conduction through the thermocouple leads, they were bent 90◦ ap-
proximately 5mm above the junction. The junction on the wall also placed on the wall approx-
imately 10 cm above the junction and taped to the wall to avoid thermal shunting.

11.4.2 Wall Temperature Using Thermocouples

As shown in figure 11.3, thermocouples number 3 and 6 are measuring the cylinder’s wall
temperature at the top and bottom of the rig, and the fine-gauge thermocouple is measuring
the surface temperature at the same height as the measurement cross-section. In order to have
a reliable surface temperature measurement, we should consider some problems when using
thermocouples on the surfaces. The thermocouple generates an EMF current based on the
temperature of the junction, but the true temperature of the surface might be different than the
junction temperature because of the thermal shunting or heat dissipation. We discuss each of
these phenomena and suggest our solution for them.
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Temperature 0 to
Range 500◦C

C0 0.0
C1 2.508355 × 10−2

C2 7.860106 × 10−2

C3 −2.503131 × 10−8

C4 8.315270 × 10−10

C5 −1.228034 × 10−14

C6 9.804036 × 10−17

C7 −4.413030 × 10−22

C8 1.057734 × 10−30

C9 −1.052755 × 10−35

Table 11.1: Coefficients of the inverse function for thermocouple type K , used in equation 11.5.

Thermal Shunting and Heat Dissipation

Heat is transferred from the surface to the sensor through the thermocouple wires. This phe-
nomenon is known as thermal shunting. The sensor conducts heat away from the hot surface,
since the wires are better conductors of heat than the surrounding air. There is a temperature
drop in the wall temperature at the point where leads leave the surface. The temperature drop
is greatest when the material to be measured has low thermal conductivity. To avoid the prob-
lem, the point at which the sensor leaves the surface should be at a suitable distance from the
measuring junction (see figure 11.4).

Figure 11.4: Thermal Shunting

Surface versus air contact

Surface-mounted thermocouples also present another problem. If the thermocouple junction
is placed on the surface only a fraction of the junction is in direct contact with the surface,
and the rest of the sensor responds to the temperature of the surrounding air. To minimize
this problem, the maximum possible contact surface should be achieved between the sensor
and the surface. We used a thermally conductive silicone paste (OT-201 OMEGATHERM) to
increase the contact, and also to avoid any direct contact between the surface metal and the
bare thermocouple junction. The paste is thermally conductive (κ ≃ 2.307W/m.K) with a high
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electrical resistivity ( ρ ≃ 1014ohm.cm). Also it is critically important that the thermocouple
junction made as small as possible, so that it does not upset the heat balance of the surface and
so that the temperature gradient within the measurement junction is negligible.

11.5 Cold-Wire Temperature Measurement

To measure the fluctuating fluid temperature, it is customary to use a thin wire operated at a
constant current circuit with a low overheat ratio. Such probes are usually called cold-wires,
because they are cold compared to hot-wire probes in which the wire is heated by the circuit
to a much higher temperature than the ambient. The primary limitation on the cold-wire’s
temporal response is due to its thermal lag, which is in turn related to how much thermal
energy is stored in the probe relative to the difference in the rate at which it is being cooled
by the flow and heated by its very low current. This is a particular problem at low velocities
where the cooling rates can be quite small, as are the temperature differences between probe
and environment (since the heating current is low). The only way to get higher frequency
response is to make the wire very small. But to minimize end conduction effects, the aspect
ratio of the wire must be quite large (typically over 100). So the only solution is to make the
diameter of the wire very small. But the lower limit is about one micron diameter, both because
of the continuum limit (the frequency response does not improve) and practical manufacturing
considerations (smaller wires are very hard to make). Also the smaller the wire, the more likely
it is to be broken, so special care must be taken, both in the choice of materials and in the
manufacturing.

(a) (b)

Figure 11.5: Cold Wire Setup; (a) Measurement Arrangement, (b) Wire Etching Setup.

11.5.1 Selecting probes

Our first choice was to create our own cold-wire probes using Wollaston wire soldered or
welded onto a miniature hot-wire type probe body. Wollaston wire is a very thin platinum wire
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Figure 11.6: The cold-wire probe used for measuring instantaneous temperature.

(less than 1µm) covered by a thick layer of silver (typically 0.025mm ) to protect the platinum
wire from rupturing when it is mounted on the prongs. Wollaston wire can be soldered to the
prongs or welded using high current spot welder. Either of these methods has its drawbacks.
The silver coating does not stick to the tin, therefore a special soldering material is needed. On
the other hand, silver is a good electrical conductor, so that when using a spot welding method
the high current can create a heat shock on the platinum inside the silver. This can result in a
rupture that is not visible until we etch the silver.

After several unsuccessful attempts some probes were made using the etching facility shown
in figure 11.5. The soldered Wollaston wire was placed under a buret filled with a solution of
acid nitric. The outlet of the buret was small enough to make a continuous stream of acid, ap-
proximately 0.5 mm in width. A DC power supply was connected to the probe and running
acid was used to facilitate the etching process. The amount of current was adjusted to avoid
etching the silver too fast, because sudden removal of the part could rupture the platinum wire.
The biggest challenge was to remove the etched wire out of the acid stream without allowing
the surface tension of the liquid to break the wire.

It was a long process of trial-and-error, but in the end the quality of the probes we could
make with this method was not satisfactory. The 1 µm wire was not visible in the microscope
available, so the etched area could not be examined to verify the connection between the prong
and the platinum wire. Also some contamination of silver coating still remained on the etched
section. So we ultimately decided to use a standard 1 µm Dantec-Dynamics thermometry plat-
inum wire probe (type 55p31). Figure 11.6 shows the a photograph of the cold-wire probe used
in this experiment; the thin wire and supporting prongs. In the standard Dantec wires used
in this experiment, the platinum wire is directly welded to the prongs which resembles the
configuration shown. The length of the wire was almost 0.4 mm and the total resistance was
50.5 Ω at room temperature.

These probes, while of small diameter, had the disadvantage that the sensitive length ex-
tended all the way to the prongs. The reduction in spatial resolution was not a problem for
this experiment, nor was the thermal lag described above. Unfortunately we did not anticipate
the substantial reduction in frequency response due to conduction to the prongs. This would
not normally have been a problem with such probes. But because they were operating at much
lower velocities (with lower convective heat transfer and heating), the relative effects of end
losses (steady and unsteady) proved deadly. This problem is discussed in some detail in the
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Figure 11.7: Cold-wire calibration. (a) A schematic of the cold-wire calibration device. (b) A sample of
calibration curve measured in the calibration device.

next section.

In order to use the cold-wires for measurement, a constant current of approximately 0.15mA
was passed through the cold-wire probe so that a fluctuating voltage was generated by the
varying resistance of the wire due to the temperature fluctuations. A schematic of the constant-
current circuit used in this experiment is presented in appendix C. An IO Tech Wavebook 516
, 16 bits, sample and hold A/D converter was connected to the circuit to sample the continu-
ous voltage signal. The sampling frequency of the cold-wire was set to 3.2 kHz based on the
circuit’s frequency cut-off and the response time of the wire. An estimation of the wire time
response of the wire can be made using equation 11.7. More explanation about the errors in the
cold-wire measurement method and the response of a wire will be presented below.

11.5.2 Calibration

In order to calibrate the cold-wire for the range of temperatures in the experiment a device was
built using a heater and chamber as shown in figure 11.7. In this device a heater (a hair dryer)
connected to an adjustable voltage source was underneath the insulated chamber. For each
calibration point, the heater was turned on and off for a short period to heat up the system.
The rise in the temperature became stable after a few minutes, at which time the voltage of
the cold-wire was recorded against a thermocouple that was placed beside it in the calibration
chamber.

As it turns out, our best efforts to calibrate accurately were thwarted when using the cold-
wire probes (and thermocouples as well) very close to the wall. The problem, as discussed
in detail below, is that operating the probe in a region of strong mean gradient means that
the entire probe is not at uniform temperature. At the low velocities and currents near the wall
(and everywhere in a laboratory natural convection flow), the fraction of heat loss to the prongs
is not insignificant. This affected not only the average temperature along the wire (even at high
aspect ratio), but also its frequency response. It is a major short-coming of this experiment that
we did not anticipate this problem, nor could we correct for it in a satisfactory manner (at least
for the fluctuating part of the temperature).
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11.6 Detailed Analysis of Response of Cold-Wires

Cold-wires have traditionally been the choice for the temperature measurement in a turbulent
flow. Examples from just natural convection flows include George et al. [1977], Beuther [1980],
Shabbir et al. [1996], Shabbir [1987], Shabbir and George [1994]. The primary reason for their
popularity is the ability of the thin wire to respond to high frequency temperature fluctuations
in the flow. There have been extensive studies to specify the behavior of the wire in the flow (c.f.
Bruun [2002] and Perry [1982]). These studies we were well aware of. Unfortunately, until final
stages of the experiment, we were not aware of more recent studies focussing on the unique
problems that occur when cold-wires are used in strong temperature gradient environments
that occur next to surfaces.

11.6.1 Thermal Inertia of Cold-Wire in Uniform Environment

The thermal inertia (due to its finite heat capacity and the finite heat transfer rate to or from
it) of the wire and prongs prevents it from instantly adjusting to a change in temperature of the
fluid around it. If we ignore the heat generated by the small current (typically ∼ 0.1mA) used
in the constant current circuit and the radiation from the surrounding surfaces, the only source
of this temperature change would be the heat convected from the air and the heat conducted
to (or from) connecting prongs. Here we also assume that the entire wire is placed in an isothermal
fluctuating air flow which does not impose any temperature gradient along the wire. The one dimen-
sional transient thermal energy equation of a material element of the wire is (c.f., Tagawa et al.
[2005]):

∂T

∂t
= −1

τ
(T (x, t)− Ta(t)) +

κw
ρw Cw

∂2T

∂x2
(11.6)

where κw, ρw and Cw are the thermal conductivity, density and specific heat of the wire re-
spectively. The variable temperature of the ambient fluid is denoted as Ta(t) and T (x, t) is the
temperature distribution along the wire. The time constant for wire response is τ which is
defined as:

τ =
ρw Cw d

2
w

4 Nu κa
(11.7)

κa is the thermal conductivity of air evaluated at the film temperature. Over a small range of
velocity the value of time constant τ can be considered to be approximately constant. In the
range of (0.02 < Re < 0.5), Collis and Williams [1959] suggested the correlation below for
Nusselt number estimation:

Material ρ C κ
[kg/m3] [J/kg.K] [W/m.K]

Platinum 21460 133 71.4
Silver 10490 237 427
Alumel 8750 461 29.7
Chromel 8670 444 19.2
Constantan 8922 418 21.6
Tungsten 19250 133 178
Stainless 8055 480 15.1
Steel 302

Table 11.2: Physical Properties of Materials Used in Temperature Sensors.; [Benedict [2005]].
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Figure 11.8: Cold-Wire Schematic.

Nu = (1.18 + 2Kn− 1.10 log10Re)
−1 (11.8)

If we assume a constant molecular mean free path (λ ≈ 0.07µm) in atmospheric pressure air,
the Knudsen number is calculated to be (Kn = λ/dw = 0.07) for the 1µm wire. In the natural
convection boundary layer experiment, the mean air velocity does not exceed 0.5m/s, therefore
the Nusselt number can be estimated to be Nu ≈ 0.38 . Substituting the values of the table 11.2
for platinum properties, the 1µm wire time-constant is τ ≈ 62.6µs .

Therefore the estimated cut-off frequency for the wires used in this experiment based on
the equation 11.7 is equal to fc = (2πτ)−1 ≈ 2.5kHz. This should have been well beyond the
estimated highest convected frequency of interest of approximately 1 kHz. Note that this is the
classical estimation which is considers only the wire response in a uniform ambient. The effect
of the prong conduction has been ignored so far.

11.6.2 Effects of Finite Length

Now we consider a case of finite wire with the length of ℓw. Figure 11.8 shows a schematic of
a thin wire mounted on two prongs. The boundary conditions for the dynamic response of the
equation 11.6 are defined as:

x = 0 :
∂T

∂x
= 0 (11.9)

x = ℓw/2 : T − Ta(t) = −τp
∂T

∂t
(11.10)

This is for the case of uniform instantaneous Ta over the entire prongs and wire. Also in the
x = ℓw/2 boundary condition, the temperature at the tip of the prong is assumed to respond to

104



CHAPTER 11. MEASUREMENT METHODS AND METHODOLOGY

the fluid temperature only up to the first order (see Tsuji et al. [1992]) by a time constant τp.

Using Fourier integral, the equation 11.6 becomes:

∂2

∂x2
T̂ (x, ω) =

1 + jωτ

αwτ
T̂ (x, ω)− T̂a(ω)

αwτ
(11.11)

where αw = κw/ρwCw is the wire thermal diffusivity, j =
√
−1 and is and the Fourier integrals

for fluctuating air temperature and wire response temperature distribution are:

T (x, t) =

∫

∞

−∞

ejωtT̂ (x, ω) dω (11.12)

Ta(t) =

∫

∞

−∞

ejωtT̂a(ω) dω (11.13)

The solution of the differential equation 11.11 is:

T̂ (x, ω) = C1e
+Ωx +C2e

−Ωx +
T̂a(ω)

αwτΩ2
(11.14)

where C1 and C2 are the constants depending on the boundary conditions and Ω is defined as:

Ω =

√

1 + jωτ

αwτ
(11.15)

Imposing the first boundary condition simplifies the equation as C1 = C2 (symmetry of the
wire). If we define the average of wire temperature response over the length of wire as below:

T̂m(ω) =
1

ℓw/2

∫ ℓw/2

0
T̂ (x, ω) dx (11.16)

the frequency response of the wire can be obtained by finding the amplitude-transfer function,
as the wire average temperature response to the air temperature fluctuation input:

H(ω) =
T̂m(ω)

T̂a(ω)
(11.17)

The solution for equation 11.11 based on amplitude transfer function H(ω) for the prong
tip boundary condition 11.10 is given by Paranthoen et al. [1982] as:

H(ω) =
1

1 + jωτ
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(11.18)
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Figure 11.9: Amplitude Transfer Function H(ω) for a Cold-Wire Probe.

where

A =

(

1

2αwτ
[(1 + ω2 τ2)1/2 + 1]

)1/2

; B =

(

1

2αwτ
[(1 + ω2 τ2)1/2 − 1]

)1/2

(11.19)

A typical amplitude transfer function of a cold-wire, shown in figure 11.9, reveals that be-
tween the high-frequency cut-off (because of the wire thermal inertia) and the low-frequency
attenuation (caused by the heat conduction to the prongs), there is a constant region of fre-
quency response. The approximate value of Hp is suggested by Paranthoen et al. [1982] as:

Hp = 1− 2
ℓc
ℓw

(

η3 − 1

η2 − 1

)

(11.20)

where η = ℓb/ℓc and ℓc is the cold length given by (see Bruun [2002]):

ℓc =
1

2
dw

(

κw
κa

1

Nu

)1/2

(11.21)

ℓb is the thickness of the thermal boundary layer on the prong. When the velocity is low, the
length of ℓb can be appreciable compared to the length of wire ℓw. The experiments by Paran-
thoen et al. [1982] shows a value of 2ℓb/ℓw = 0.174 for the air flow with the the average velocity
of U = 0.5 m/s over a platinum wire of size 2.5µm. This effect made the measured value of
Hp becomes approximately equal to 0.66. For higher velocities (∼ 4m/s), the transfer function
measured by Paranthoen et al. [1982] for a 0.7µm platinum wire gives a value of Hp ≈ 0.95
while for a 2.5µm platinum wire is Hp ≈ 0.81.

The value above show the importance of the wire size and diameter-to-length ratio of the
wire. Unfortunately the wire length used in this experiment was not long enough to com-
pletely eliminate the low-frequency attenuation due to unsteady heat transfer to the supports,
even though the cut-off frequency of the wire (due to the thermal lag) should be expected to be
more than 1 kHz.

For the region of measurement with a very low velocity in the natural convection boundary
layer, Lecordier et al. [1982] mentions the significant errors involved in temperature measure-
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Figure 11.10: Schematic of Cold-Wire Prongs Exposed to a Temperature Gradient.

ment with cold-wires. The lack of any alternative method for measuring fluctuating temper-
ature leave us with a compromise with the accuracy of the results. On the other hand, Tsuji
et al. [1992] discusses the influence of the velocity and internal heat generation of the typical
cold-wire probe. For a 1µm platinum wire with a current less than 0.2 mA, exposed to a flow
velocity less than 1m/s, the gain varies within 0.1% and the time-averaged temperature differ-
ence estimated to be less than 0.1 ◦C .

The cut-off frequency of a resistance wire as shown in equation 11.7 is a function of its diam-
eter, but La Rue et al. [1975] suggests a constant value for wires less than 1µm. Measurements
by Tagawa et al. [2005] also shows that the gain in a 0.63µm platinum wire is close to one for
frequencies less than 1kHz. They suggest using a response compensation for the wires bigger
than this size. All these measurements have been carried out in high velocity flows and the
effect of very low velocities (< 1m/s) on the low-frequency response is unknown.

The constant current circuit designed for this experiment had a cut-off frequency of 3kHz
which samples higher than the fastest response of the wire to temperature fluctuations. To
avoid aliasing the Nyquist sampling frequency criterium is considered and the sampling rate
of 3kHz was chosen in the A/D converter, which is estimated to be more than double the fre-
quency response of the wire.

11.6.3 Prong Temperature Gradient

The equations above were based on the assumption that a uniform temperature fluctuation is
applied upon the entire probe. In the boundary layer experiment, the considerable temperature
gradient along the prongs (or the thermocouple leads) imposes a new boundary condition in
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Figure 11.11: Temperature Distribution Along the Prongs.

the energy balance of the measurement probe (see figure 11.10). The new boundary condition
(substituting equation 11.10) for the wire becomes:

Q̇cp(t) = 2κw(
πd2w
4

)
dT

dx

∣

∣

∣

∣

x=ℓw

(11.22)

This heat flux is equal to the heat conducted to the prong through the junction. Now if
we assume that there is a approximately linear temperature gradient along the prong (figure
11.11), The steady state energy balance for an element on the prong becomes:

d2Tp
dx2

=
4hp
κpdp

(Tp(x)− Tap(x)) (11.23)

where Tp(x) is the temperature of the prong, Tap(x) temperature of the air along the prong, dp
is the diameter of the prong (assumed to be constant) and κp is the prong thermal conductivity.

The linear air temperature sensed by the prong along the length Lp is assumed to be:

Tap(x) = Taj −
∆T

Lp
.x (11.24)

Changing the variable:

θ(x) = Tp(x)− Tap +
∆T

Lp
.x (11.25)

It follows that:
d2θ

dx2
= m2θ (11.26)

where:

m2 =
4hp
κpdp

(11.27)
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The solution is given by:

θ(x) = C1e
mx + C2e

−mx (11.28)

Using the initial conditions for this ODE:

x = 0 ; θ(0) = Tj − Taj = C1 + C2 (11.29)

Assuming the other end of the prong to be adiabatic:

x = Lp ;
dθ

dx

∣

∣

∣

∣

x=Lp

=
∆T

Lp
+
dT

dx

∣

∣

∣

∣

x=Lp

(11.30)

Using this implies that the solution is given by:

C1e
mLp − C2e

−mLp = Q (11.31)

where

Q =
1

m

dT

dx

∣

∣

∣

∣

x=Lp

+
∆T

mLp
(11.32)

Solving 11.29 and 11.31 for C1 and C2 gives us:

Tp(x) = Taj −
∆T

Lp
.x+ (Tj − Taj)

coshm(Lp − x)

coshmLp
+Q

sinhmx

coshmLp
(11.33)

Heat transfer from the junction to the prongs can be computed as:

q(x=0) = −2κpAp
dTp(x)

dx

∣

∣

∣

∣

(x=0)

(11.34)

This is equal to the averaged heat transferred from the air to the wire and end of the prongs:

q(x=0) = qj = hw(πdwℓw)(Tw − Taj) + 2hp(
πdp
4

)(Tj − Taj) (11.35)

Now consider the time average of the wire temperature to be the same as the junction tem-
perature (Tw = Tj), and also that the entire wire senses the air temperature as the junction. By
solving equations 11.34 and 11.35, we have:

dTp(x)

dx

∣

∣

∣

∣

(x=0)

= −∆T

Lp
−m(Tj − Taj) tanhmLp +

Qm

coshmLp
(11.36)

We can solve the equations for the temperature difference (Tj − Taj):

(Tj − Taj) =
(∆T/Lp) coshmLp −Q.m

(

2hwdwℓw + hpd
2
P

κpd2p

)

coshmLp −m. sinhmLp

(11.37)

We can assume an adiabatic boundary condition for x = Lp because heat transfer through the
insulated section of the support is much smaller than the bare section; thus:

Q ≈ ∆T

mLp
(11.38)

Combining equation 11.37 with 11.38 gives us:
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(Tj − Taj) = −Ψ.∆T (11.39)

where

Ψ =
1− coshmLp

Lp

(

2hwdwℓw + hpd
2
P

κpd2p

)

coshmLp −mLp. sinhmLp

(11.40)

Let us put some numbers in this equation by assuming the Reynolds numbers for wire and
prong to be:

Rew =
Udw
ν

=
0.5(m/s) × 1(µm)

1.8× 10−5(m2/s)
∼= 0.03 (11.41)

Rep =
Udp
ν

=
0.5(m/s) × 300(µm)

1.8× 10−5(m2/s)
∼= 9 (11.42)

By using the relation from Bruun [2002], the Nusselt number for the flow around a cylinder, in
the ranges 0.01 < Re < 10000 and 0.71 < Pr < 1000 is:

Nu = 0.42Pr0.2 + 0.57Pr0.33Re0.5 (11.43)

For wire the Nusselt number is Nuw = 0.48 and for prongs it can be estimated as Nup = 1.91.
Therefore the heat transfer coefficients for the wire and prong become:

hw =
NuwKair

dw
=

0.48× 0.028

1× 10−6
∼= 13440 ; hp =

NupKair

dp
=

1.91 × 0.028

300 × 10−6
∼= 178 (11.44)

Looking in the table 11.2, the thermal conductivities of the platinum wire κw = 71.4[W/m.K]
and stainless steel κp = 15.1[W/m.K] can be used to estimate m ∼= 397. The effective length of
the prongs which is exposed to the temperature difference ∆T is approximately Lp ≈ 4.5mm.
By substituting these values in the equation 11.40, Ψ = 0.42. Therefore:

(Tj − Ta) = −0.42 ×∆T (11.45)

The measured temperature difference in the wall region of the boundary layer reaches to
∆T = 20◦C for the length of the prong as Lp ≈ 4.5 mm. Using the correction of the equation
11.45, the real air temperature estimated to be 8.4◦C more than the measured value, which is
more than 13% measurement error just because of the heat conduction of the prongs.

A suggested method to decrease this temperature difference is to use a 90◦ bent prong to
keep the prong in an isothermal region. In practice, adjusting any type of probe in the region
with considerably large temperature gradient is very difficult and we should be aware of the
possible misalignments that leads to the same phenomenon explained above. Unfortunately
these problems were realized after the measurement program had been completed.

11.7 Thermocouples in Mean Temperature Gradients

Thermocouples are usually used to measure the mean temperature of the fluid because of their
slow response time. They are used for that purpose here as well. The reason they respond so
slowly is the finite thermal capacity of the mass of material that forms the junction, which is
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Figure 11.12: Schematic of Thermocouple leads Exposed to a Temperature Gradient.

substantially larger than that of cold wires. Therefore the temporal response of the thermo-
couples used in this experiment is not of particular interest, especially since their signals are
sampled digitally and time-averaged anyway. Also, their spatial resolution is not generally of
concern, except very close to the wall where a strong temperature gradient exists.

What turns out to be of great concern (unfortunately mostly in hindsight) is the fact that
they too, like the cold wires considered in the preceding section. must of necessity operate in a
strong mean temperature gradient near the wall. The problem, simply put, is that conduction
through the leads of the thermocouple can cause an error in the measurement. For reducing
the thermal shunting and thermal loads, as it mentioned in previous chapter, the leads were
connected to the isothermal wall for at least few centimeters. But when using the miniature
thermocouples for measuring the mean air temperature profiles we encountered an analogous
problem to that posed by the non-uniform temperature on the prongs of the cold-wires. Be-
cause the size and physical properties of the thermocouples are different than cold-wire probes,
we briefly study this effect on the thermocouple used in the measurement.

The schematic of a thin thermocouple used in the measurement is shown in figure 11.12.
We impose the same steady energy balance equation in a temperature gradient region as the
cold-wire. Equation 11.33 is still valid, but to impose the boundary condition at the junction,
we need to consider the new geometry. The heat transfer from the junction to the leads is:

q(x=0) = −2 κl Al
dTl(x)

dx

∣

∣

∣

∣

(x=0)

(11.46)

where all the parameters with the index “l” refer to the thermocouple lead. The heat conduction
is equal to the heat convection from air to the thermocouple bead:

q(x=0) = qj = hjAj(Tj − Taj) (11.47)
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The constant correction factor Ψ for the thermocouple becomes:

Ψ =
1− coshmLl

Ll

(

hjAj

2κlAl

)

coshmLl −mLl. sinhmLl

(11.48)

We assume a spherical shape of diameter dj = 100µm for the junction of the thermocouple used
in the experiment and dl ≈ 50µm as the diameter of the lead’s cross-section. The surface area
of the junction exposed to air is the sphere surface minus the two leads’ cross section, therefore
the ratio of two surfaces is Aj/Al = 14 .

Assuming the Reynolds number around the junction to be:

Re =
UDw

ν
=

0.5(m/s) × 100(µm)

1.8 × 10−5(m2/s)
∼= 2.7 (11.49)

and using the equation 11.43, we have Nu = 1.235 for the flow around the junction and Nu =
0.98 for the flow around the leads. The heat transfer coefficients for the junction and the leads
are:

hj =
NujKair

dj
=

1.235 × 0.028

100× 10−6
∼= 345.8 ; hl =

NulKair

dl
=

0.98 × 0.028

50× 10−6
∼= 548.8 (11.50)

The thermocouple used in the experiment is type K which has thermal conductivity ofKl =
19.2[W/(m.K)] for the Chromel alloy (90% Nickel - 10% Chromium), and Kl = 29.7[W/(m.K)]
for the Alumel alloy (95% Nickel - 2% Aluminum - 2% Manganese - 1% Silicon); (see table
11.2. For simplicity we use the average of the thermal conductivity for both leads and the
junction. Putting these numbers in the equation 11.27 gives us the value for m ∼= 1325.2. The
effective length of the thermocouple leads which is exposed to the temperature difference ∆T
is approximately L ≈ 4mm. Substituting these into the equation 11.48 gives us:

(Tj − Ta) = −0.2×∆T (11.51)

which is 20% error in the temperature measured by thermocouple compare to the actual air
temperature. These numbers provide a good estimation of the effect of lead conduction er-
ror, but we should be careful about using them directly for correcting the measurement. The
most important information in the equation 11.51 is the linear correlation between the error in
measurement and the temperature gradient imposed on the leads.
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Chapter 12

Results and Discussion

Although some experimental work has been done previously for the boundary layer close to a
vertical flat plate, as it was discussed in chapter 7, there is a lack of reliable data for cylindrical
surfaces. Therefore the primary goals of this experimental study were three-fold:

• To establish the friction and heat transfer relations appropriate to the natural convection
flow next to a heated vertical cylinder at high Rayleigh number.

• To establish the scaling laws (if any) for the inner and outer parts of the boundary layer.

• To measure the turbulence parameters to sufficient accuracy that they can be of benefit
for further theoretical and numerical analysis.

As noted in the preceding chapters, there has been considerable lack of knowledge (even
confusion) about even what the appropriate governing equations are. And there have also been
raised substantial questions about the methodology for temperature measurement, both that
employed previously and in this experiment as well. Therefore the first part of this chapter will
discuss the mean profile measurements for velocity and temperature, in order to try to glean
from them the values of the velocity gradient at the wall and the wall heat flux. These will
not only establish the scaling parameters, but will allow an evaluation of exactly what flow
conditions actually affected the experiment. Most important of these will be seen to be the
stratification, which although slight was very important. Then the turbulence measurements
will be presented and discussed.

12.1 Statistical Errors

As mentioned in an earlier chapter, the velocity and temperature measurement were synchro-
nized to produce the correlation of the temperature and velocity, even though one was analog,
one was not. To achieve this the measurement times for LDA, cold-wire and all thermocouples
were set to a fixed and common length. Each measurement point was sampled for 1000 s. The
cold-wire was sampled at a fixed sampling rate of 3.2 kHz, thus it produced a set of 3, 200, 000
samples for each point. The LDA doesn’t sample at a fixed rate, but rather relies on the ran-
dom bursts coming from the particles passing the control volume. Therefore the sampling rate
directly depends on the velocity region which is measured. Close to the wall and in the outer
part of the boundary layer the velocity is very low, so the data arrival rate is quite low. Near
the middle of the boundary layer the sampling rate is higher. For the regions close to the wall
evaporation of the particles is probably also important, so we have fewer and smaller particles.
This both makes the measurement very difficult and adds to the statistical errors. The outer
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Figure 12.1: Normalized mean velocity and temperature profiles across the boundary layer at 4 m, 3 m
and 1.5 m
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region of the boundary layer on the other hand gets a better sampling rate due to entrainment
because the particles are added to the flow from outside of the tunnel. The average of the high-
est sampling rate close to the peak of the velocity was around 200 Hz and the average of the
sampling rate close to the wall was close to 50 Hz. Note that data rate does not directly enter
the statistics, since all moments, including the cross-moments with the temperature sensor, are
computed with residence time weighted data. The frequency response of the thermocouples
were less than 1 Hz so there was no need to sample them at higher rate. The thermocouples
were used only to measure the mean temperatures.

It was estimated from the temperature spectra shown in Appendix E that the integral time
scale of the flow might be as long as 1s. Therefore in spite of the very long data records in time,
there were not so many independent realizations as in a forced flow. This could be a part of
the reason for the large deviations in the mean velocity profile outside the peak, since the tur-
bulence intensity increases (over 100%) as the mean velocity decreases. The mean temperature
profiles are much smoother, in part because they have already been smoothed by their large
time constants (already averaged) so their fluctuation level (especially for the thermocouples)
is much lower.

The variability of the estimator for the mean velocity can be estimated as (c.f., George et al.
[1978]):

ε2U =
2Tint
T

var(u)

U2
(12.1)

where Tint is the integral time scale and T is the total measurement time. The flow on average
had a turbulence intensity of 50%. Using the 1 s integral time scale estimate, the variability for
1000 s is calculated to be εU = 2%. For the turbulence second moments the variability is given
by:

ε2u2 =
2Tint
T

< u′4 > −(< u′2 >)2

(< u′2 >)2
(12.2)

Using a Gaussian estimation simplifies this to:

ε2u2 = 2× 2Tint
T

(12.3)

which gives the estimate for uncertainty of the second moment as εu2 = 6%.

The error in measuring the radial velocity component is more problematical because the
mean value of the radial velocity is much smaller than the streamwise component, even though
the turbulence intensity of the radial velocity is about the same. This increases the relative
measurement error substantially for the same measurement time.

12.2 An Overview of the Experimental Results

Figure 12.1 shows the mean velocity and mean temperature data taken at three different heights
(1.5m, 3m and 4m) in the natural convection facility described in earlier chapters. The mean
temperature profile for the 4 m height has been corrected as described in the next section. They
have been normalized in the traditional manner using the integrated velocity and temperature
boundary layer thickness, δU and δT defined by equations 12.4 and 12.5 below:
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δT =

∫

∞

R

[

T (y)− T∞
Tw − T∞

]

dy (12.4)

and

δU =

∫

∞

0

[

U(y)

Umax

]

dy (12.5)

In spite of the scatter, the plots resemble approximately what we expected for the natural con-
vection boundary layer next to a vertical cylinder.

Figure 12.2 shows the same mean velocity and temperature profiles, but plotted this time
in physical variables. Tables 12.1 and 12.2 summarize the conditions corresponding to each pro-
file. The first thing to notice about the physical variable plots is that the mean velocity rises
rapidly from the wall to its maximum, then rolls off slowly. The peak velocity has increased by
a factor of two, while the profile has also broadened by about the same amount. For the profile
at x = 1.5m, the profile appears to asymptote to a constant value, about 0.06 m/s. The profile
at 3m drops quite differently and it is not so clear whether an asymptote of about 0.08m/s has
been reached or not. For the highest profile the flow seems to continue to drop from about
r = 70mm all the way to the last point shown. It clearly does not reach an asymptote. In fact,
measurements taken all the way to the outer cylinder show that it reverses and becomes nega-
tive.

By contrast the temperature drops rapidly and monotonically from wall, so fast in fact that
almost all of the temperature drop (90 %) occurs with the first 10mm from the wall. This is well
inside the point at which the mean velocity peaks; and in fact, almost all of the velocity profile
is outside the peak. Table 12.2 summarizes for the various heights a number of parameters that
can be used to characterized the profiles. The values for δU and δT are from the integration of
the profiles shown, but the last one, δU , is really not converging by the last point but continuing
to increase nearly linearly with radius.

Finally note the temperature difference in the outer region. The temperature at the wall of
the heated pipe, Tw, was nearly the same for all experiments at about 70.4◦K, but more im-
portantly had a rms variation during each experiment of approximately 0.02◦K. The second
temperature, Tlastpoint was the temperature at the last point of traverse with the differential
themocouple, one junction of which was affixed to the surface of the heated pipe, and the other
traversed to produce the profile shown in the figure. Toppwall was measured with a fixed ther-
mocouple at each height, but about 10 cm away of the outer cylinder, and was also continuously
monitored throughout the experiments at all height simultaneously. These measurements had
an rms variation of approximately 0.1◦K. These temperature difference, together with the tem-
perature difference, Tw − Tlastpoint, are summarized in Table 12.1. There is a clear increase in
the ambient temperature from one height to the next (Figure 12.3). Also shown in the table are
the corresponding values of the Rayleigh and the Nusselt numbers (from section 12.4 below).

It is clear from the above that in spite of our best efforts to create a natural convection
boundary layer next to a heated vertical surface at very high Raleigh number, that we have
not succeeded. While the flow at the lowest location bears the closest relation to the flow we
wished to create, the mass integral even here beyond about r = 100mm starts to increase nearly
linearly. In fact it appears that we have created the developing natural convection flow between dif-
ferentially heated vertical cylinders. This is especially evident from the shape of the mean velocity
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Figure 12.2: Mean velocity and temperature profiles across the boundary layer at 4 m, 3 m and 1.5 m.
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Figure 12.3: Ambient temperature variation with height during measurements at the three different
heights.

Height[m] (Tw − T∞)[K] Tw[K] Tlastpoint[K] Toppwall[K] Rax Nux

4 41.2 70.3 29.1 29.2 1.689 × 1011 1344
3 43.6 70.6 27.1 28.0 7.469 × 1010 634

1.5 46.0 70.4 24.4 26.1 0.998 × 1010 302

Table 12.1: Summary of mean temperature data and Rayleigh/Nusselt numbers.

profile at the highest location (4m), where the profile continues to drop over the entire range
of measurement. This is, of course, quite disappointing for two reasons: first for the obvious
reason that we wanted to measure natural convection next to a vertical cylinder; and second
because if we had realized it earlier we would have approached the problem differently. Un-
fortunately it was only realized in the very last stages of this thesis.

In 1990 in a paper entitled “Governing equations, experiments and the experimentalist”
George [1989] stated in the abstract:

... the most important test of the understanding of any experiment is whether or
not the results are consistent with the equations and boundary conditions believed
to govern the flow. If they are not, then either the measurements are incorrect, the
equations or boundary conditions are wrong, or the experiment performed was not
the one believed to have been done.
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Height [m] δT [mm] δU [mm] Umax [m/s]

4m 10.5 126.7 0.499
3m 7.6 100.3 0.28
1.5m 6.7 66.1 0.235

Table 12.2: Integral Thickness of Velocity and Thermal Boundary Layers and Maximum Velocities.

And from the same author in his lecture notes from the experimental methods course taught
many times at the Danish Technical University:

Every experiment is really three experiments. There is the experiment you set
out to do. There is the experiment you thought you did. And then there is the
experiment you really did. The challenge is to bring these three into coincidence.

Clearly we did not do the experiment we set out to do. Almost all of the preceding chap-
ters on both theoretical analysis and experimental methodology were motivated by trying to
understand what we actually did, from the perspective of the experiment we thought we did.
It was our repeated failures to satisfy the integral constraints for a natural convection bound-
ary layer in an infinite environment in particular that brought us to the final realization. Thus
without them we would have never come to an understanding of the experiment we actually
did, the results of which are presented in the succeeding sections.

12.3 Differential Temperature with Thermocouples

The mean temperature profile at three different heights is shown in figure 12.2 and a more de-
tailed plot for the region close to wall is presented in figure 12.4. The temperature difference
values are calculated using the thermoelectric voltage polynomial function provided from ther-
mocouple’s technical specification.

The temperature profiles were corrected for the heat transfer through the thermocouple
leads as explained in chapter 11. In ”Case 1”, a 50 micron thermocouple wire was used and the
size of the bead was approximately 100 micron. The thermocouple used in the experiment was
type K and the estimated temperature correction factor given in equation 11.48 was Ψ = 0.32 ,
hence:

(Tj − Ta) = −0.32×∆T (12.6)

where Tj is the temperature that thermocouple junction senses and Ta is the true air temper-
ature around the junction. ∆T is approximated with the temperature difference between the
junction and end of the bare section of the inclined leads (L≈ 3mm) in the original temperature
profile. All the correction was based on this assumption that because the positioning error was
minimized using a scaled microscope (see chapter 10), the only cause for the error in the inner
region is due to conduction. We ignore the wall temperature error because the second junction
was connected to the wall for at least 10 cm above the measuring position.

As shown in figure 12.5, if we extrapolate the original temperature profile, it gives the tem-
perature difference (Tw − T ≈ 6.2) at the wall. The corrected estimation for the conduction
error passes through (Tw − T ≈ 0), which is the physical wall boundary condition for the tem-
perature. As the probe traverses outward, the air temperature gradient decreases, hence the
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(b) Log-Linear.

Figure 12.4: Close up of the temperature profile 12.2.
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Figure 12.5: Mean temperature profile correction for conduction, Case 1 ; Ra = 1.7× 1011

conduction error decreases; therefore the correction increases the slope of the curve.

In cases 2 and 3, the thermocouple wire size was 75 µm and the leads were bent to form a
“L” shape probe and it was placed parallel with the wall to minimize the heat conduction from
the junction. For these two cases no temperature correction were done for the conduction error
because the profiles satisfied the wall temperature boundary condition. The thermocouple for
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all three cases were positioned approximately 1 cm above the cold wire probe and traversed
outward together, as it is shown in picture 12.6.

Figure 12.6: Thermocouple and cold-wire positions.

12.4 Determination of Wall Heat Transfer Rate and Wall Shear Stress

The goal of this section is to use the theoretical results of chapter 9, together with the near
wall profile measurements to determine the wall heat transfer and wall shear stress. Even
though the flow has been shown to not be a reasonable approximation to a natural convection
boundary layer in an infinite environment, the near wall equations of the section 9.5 in chapter
9 are still applicable. In particular the scaling laws proposed and the functional form of the
mean velocity, mean temperature, turbulence heat flux and Reynolds shear stress should still
apply. The difference from a purely natural convection flow in an infinite environment will be
in the values of the friction coefficient and heat transfer coefficient defined using the maximum
velocity or Tw − T∞: these should be expected to be different since the near both τw and qw are
largely determined by the integral equations over the entire flow.

12.4.1 The near wall results

In section 9.5.1 the following exact solutions were were derived for the velocity and tempera-
ture near the wall:

U ∼= R
u2
∗

ν
ln(

r

R
) (12.7)

T − Tw ∼= R
Fo
α

ln(
r

R
) (12.8)
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(a) Velocity Curve Fit at Case 1 (4m)
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(b) Temperature Curve Fit at Case 1 (4m)
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(c) Velocity Curve Fit at Case 2 (3m)
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(d) Temperature Curve Fit at Case 2 (3m)
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(e) Velocity Curve Fit at Case 3 (1.5m)
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(f) Temperature Curve Fit at Case 3 (1.5 m)

Figure 12.7: Data and curve fits for the velocity and temperature profiles close to the wall. For the curve
fit values see table 12.3 .
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As also shown in section 9.5.1, these can be expanded to yield as a leading term the more
familiar forms of the planar natural convection boundary layer as:

U ∼= u2
∗

ν
y (12.9)

T − Tw ∼= Fo
α
y (12.10)

where we have defined y = r − R as the distance from the wall. By fitting either of these
to the mean velocity and temperature measured very close to the wall, these can be used to
determine the the mean velocity and temperature gradients at the wall. And from them the
wall shear stress and wall heat flux can be determined.

The mean temperature and velocity profiles near the wall for the three locations in the ex-
periment are shown in the plots of figure 12.7. Also shown on the plots are the best fit to the
logarithmic wall profiles of equations 12.7 and 12.8 which were fitted regressively to the first 4
- 6 points (including r = R) of the data. The mean temperature and mean velocity gradients
inferred from them, together with the corresponding wall shear stress and Nusselt number are
summarized in table 12.3. The thermodynamic and flow properties (ρ, µ, and k) were evalu-
ated at the wall temperature.

height dT
dy

∣

∣

∣

wall
qw Fo

dU
dy

∣

∣

∣

wall
τw u∗ t∗

[m] [K/m] [W/m2] [K.m/s] [s−1] [kg/m − s2] [m/s] [K]

4 13886 385.75 0.39 284.84 0.0056 0.075 5.21
3 9212 255.9 0.259 143.6 0.0028 0.053 4.87
1.5 9276 260.74 0.261 128.7 0.0025 0.050 5.18

Table 12.3: Heat Transfer and Near Wall Velocity Parameters.

Also shown in the plots are the corresponding linear relations of equations 12.9 and 12.10,
but using the values of the velocity and temperature gradients determined from the log fits.
The gradient values differed slightly (a few percent) when the linear relations were fitted re-
gressively instead. They are almost indistinguishable from their logarithmic counterparts, not
too surprising since the values of y << R. What is surprising though is that the logarithmic
relations do not capture at all the departure of the flow from the linear behavior. Clearly this is
a consequence of either the variable viscosity near the wall, or the emergence of the turbulence
Reynolds shear stress and turbulence heat flux.

12.5 Near Wall Scaling

A reasonable test for the validity of the wall shear stress and wall heat transfer rates is whether
they can be used successfully to collapse data beyond the immediate vicinity of the linear re-
gion from which they were determined. As pointed out the chapter 9 it is generally believed
that natural convection turbulent boundary layers at high Reynolds (or very very high Raleigh)
numbers are characterized by an region of constant total heat flux in which both inner and outer
scaling variables should work equally well. In the case of the developing flow measured here,
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there is no similarity theory for the outer boundary layer, so there is no definitive way to de-
cide what the outer length scales are. But for the near wall region, all of the scaling proposals
of section 9.5 of chapter 9 can be expected to apply, since this region is relatively insensitive to
the outer flow (which only manifests itself in qw and τw).

12.5.1 Near Wall Scaling of Velocity Moments

Figure 12.8 shows a plot of the mean velocity profiles for all three heights plotted in inner vari-
ables, U+ = U/u∗ and y+ = yu∗/ν. The value of ν was determined at the wall temperature,
and the values used for the viscous length scale, ν/u∗, were .39mm, .37mm and .26mm for
heights of 1.5 m, 3 m and 4 m respectively. The data collapse quite remarkably for y+ < 10,
but it is clear from the progression of the curves that the reason for them diverging is the in-
creasing Rayleigh number. In the fact the point of departure from the highest Rayleigh number
curve makes the emergence of the outer convection terms in the average streamwise momen-
tum equation, and hence the outer boundary of the constant heat flux region. The fact the
maximum mean velocity occurs at only y+ ≈ 10 − 20 makes it clear that in spite of the large
facility and high Rayleigh number, from the point of view of the turbulence this is not really a
fully-developed turbulence. Therefore there is no reason to expect the constant turbulence heat
flux layer solutions of section 9.6 chapter 9 to even be marginally observed, and they are not.
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Figure 12.8: Scaled streamwise velocity at three different heights.

Figure 12.9 shows the radial mean velocity component, plotted in the same inner variables.
Here the collapse is not as good, most probably because of the extreme difficulties in measuring
this component of velocity in any shear flow, much less near the wall. It is interesting to note,
however, that V immediately starts from zero and goes negative, as required.

Figures 12.10 through 12.12 plot the three components of the Reynolds stresses measured in
this experiment: the normal stresses u2/u2

∗
and v2/u2

∗
, and the Reynolds shear stress uv/u2

∗
. The

best collapse is for the radial component v2, which collapses over almost the exact range as the
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Figure 12.9: Scaled radial velocity in three different cases.

mean streamwise velocity. It would be tempting to interpret the less than perfect collapse of u2

as being a consequence of the evolving nature of the outer flow away from a near natural
convection boundary layer towards a channel flow between parallel cylinders, particularly
since all three moments at 4m show substantial departures from the other two outside of the
mean velocity peak. But this would not be consistent with the Reynolds shear stress plot of
figure 12.12 in which it is the middle position that deviates for the data closest to the wall. In
the plot for v2 is the position closest to the wall is slightly away from the others. In fact all
three moments have one curve which stands apart very near the wall, and it is the data from a
different location for each. Thus it is probably safest to conclude that the differences are most
likely due to slight differences in the alignment of the optical system for at least v2 and uv.
u2 is problematical for all boundary layer measurements at low to modest Reynolds numbers,
in large part because of the contribution of the flow from well outside the near wall (e.g., the
sloshing by the big eddies, the so-called in-active motions, c.f., Carlier and Stanislas [2005]).

12.5.2 Near Wall Scaling of the Temperature Moments

Figure 12.13 shows the mean temperature profiles measured by thermocouple plotted in inner
variables as (Tw − T )/t∗ versus yu∗/ν, where t∗ = Fo/u∗ = qw/(ρCpu∗). (Strictly speaking,
yu∗/α should have been used, but since the Prandtl number is nearly independent tempera-
ture and near unity the difference is slight, and it makes no difference for the collapse.) The
two lowest locations, 1.5 m and 3 m collapse quite nicely for all distances from the wall. This is
mostly because, as noted in chapter 8, most of the temperature drop occurs in the linear region
very close to the wall. Regardless, the overall collapse provides considerable confidence in the
validity of the scaling parameters, and especially the wall heat flux determination, at least at
these two locations.

The highest location, 4 m, deviates quite noticeably outside of y+ > 3 approximately. Orig-
inally we interpreted this to mean that at the lower heights the boundary layer was not fully-

125



Natural Convection Boundary Layers & Swirling Jets

10
−1

10
0

10
1

10
2

10
30

2

4

6

8

y+

<
 u

2  >
 / 

u *2

 

 

Ra=1.7E11
Ra=7.5E10
Ra=1.0E10

Figure 12.10: Scaled streamwise Reynolds normal stress velocity in three different cases.
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Figure 12.11: Scaled radial Reynolds normal stress velocity in three different cases.
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Figure 12.12: Scaled Reynolds shear stress velocity in three different cases.

developed. While that may indeed be true, we now know that in fact the flow has changed its
character dramatically with height and is probably moving toward being a channel flow. The
interpretation is even more complicated by the difficulties we had in taking the measurements.
It was the thermocouple at 4 m which was not bent and therefore had to be corrected for the
thermal gradient along the wires. And it was in the region of collapse that the largest correc-
tions were applied. Therefore it is our belief that this profile should be viewed with suspicion.
This is particularly problematical since we had hoped to use it to correct the fluctuating tem-
perature measurements at this height.

As mentioned in chapter 11, the temperature was measured simultaneously with a 1 micron
platinum resistance wire (cold-wire) and a pair of thin thermocouples, connected differentially
to measure the temperature difference (Tw − T ). Because the cold-wire measurements close to
the wall were complicated by the heat conduction along the prongs, it is been impossible (at
least to this point) to correct the data in a satisfactory manner. But it should be clear from the
analysis of that chapter that unsteady conduction to the prongs of cold-wires operating in low
velocity flows is a very serious problem, even in the absence of mean thermal gradients (and
even if only a portion of the wire is etched). Therefore we absolutely do not believe the rest of
the measurements of the fluctuating moments shown below. Why then are they shown? The
reason is to illustrate how good they look, and how easy it might have been to pass them off to
an unsuspecting turbulence (especially CFD) community. We were almost fooled!

Figures 12.14 to 12.16 show plots in inner variables of t2, ut, and vt respectively. Only
measurements from 3 m and 4 m are presented (since the last wire broke while doing the 1.5
m experiment). Note the excellent collapse in the near wall region. It would be very easy to
believe these measurements in the absence of a good reason not to. Aside from the esoteric
arguments about probe response, our first clue not to believe them came from the near wall
theoretical solutions for the turbulence heat flux of section 9.5.1, equations 9.25 and its variable
thermal properties counterparts. The exact solutions for vt are almost an order of magnitude
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Figure 12.13: Scaled mean temperature at 1.5m, 3m and 4m.

larger near the wall than the measured values shown in figure 12.16! A second clue that some-
thing is wrong lies the values of the rms fluctuating temperature itself, which is only about
3 − 4◦K, even in the region where the velocity gradient is quite steep and drops almost 30◦.
Interestingly and somewhat surprisingly, the ut/u′t′ coefficient peaks near 0.5 which is not far
from the values of 0.6 to 0.7 that have been observed for plumes (e.g., Shabbir and George
[1994]). The vt/v′t′ correlations also peak at about -0.07 in the near wall region, which again is
not far from that expected. This can both perhaps be explained if this correlation is largely de-
termined by the very large energetic scales which survive the filtering by the end losses. Thus
even if t2 is substantially diminished by the filtering, its normalized correlations are relatively
less attenuated.

128



CHAPTER 12. RESULTS AND DISCUSSION

10
−1

10
0

10
1

10
2

10
30

0.1

0.2

0.3

0.4

0.5

y+

<
 t2  >

 / 
t *2

 

 

Ra=1.7E11
Ra=7.5E10

Figure 12.14: Scaled temperature variance at 3 m and 4m.
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Figure 12.15: Scaled streamwise velocity-temperature correlation at 3 m and 4m.
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Figure 12.16: Scaled radial velocity-temperature correlation at 3 m and 4m.
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Chapter 13

Summary and Conclusions

The temperature and flow fields of what we had hoped would be a turbulent natural convec-
tion boundary layer flow along a heated vertical circular cylinder have been experimentally
studied using laser Doppler anemometry, cold-wire thermometry and thermocouples. Two ve-
locity components, radial and streamwise, were measured simultaneously with temperature.
The results of the experiment were presented, including the mean profiles of the temperature
and velocity across the boundary layer at three different heights, representing three Rayleigh
numbers of: Ra = (g β ∆T L3)/(να) = 1.7×1011, 7×1010 and 1010 . Also the higher order mo-
ments and temperature-velocity correlations are given in the turbulent region of the boundary
layer.

In fact, it appears that the flow at all locations, but certainly the highest Rayleigh num-
bers, was not purely a natural convection boundary layer, but one which developing into the
thermally-driven flow between two differentially heated walls. This was not anticipated. Nor
is it clear how to achieve as high (or higher) Rayleigh numbers in future experiments. The
water heater for the heated pipe is already near the boiling point, and also the temperature
differences are at the limit of what is reasonable with hot-air while still assuming incompress-
ibility. A much larger outer cylinder would possibly help, but at considerable difficulty in
managing and cooling the facility.

Further complicating this study was a problem with experimental methods for measur-
ing temperature, specifically the cold-wire thermometry. The problems encountered with the
thermocouples operating in a strong temperature gradient could have been solved had we an-
ticipated the problems, and in fact were solved (by bending the probe so it was parallel to
the wall) for the measurements taken afterwards (1.5m and 3m). But the problems with the
unsteady heat loss to the ends of the cold-wire do not seem to have a solution, in spite of a
straight-forward analysis of them. This caused a substantial reduction in the rms temperature
measurement, and a corresponding reduction in the velocity temperature cross-correlations.
These were very subtle problems to detect, and became obvious only by applying the near wall
Reynolds-averaged equations and noting that the vt cross-correlation was much too low.

In part because of our search to understand the measurement, new theory for the boundary
layer flow was established for buoyancy driven flow in cylindrical coordinates. Both temper-
ature and velocity in the near wall region in particular have logarithmic solutions instead of
the familiar linear ones of planar flows. In practice the differences from linear seemed to be
slight, although they did make a slight difference in the estimation of the wall shear stress
and wall heat flux. Solutions which included a temperature-dependent near wall viscosity and
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conductivity were also included. Perhaps most surprising of all was the recognition of the in-
consistency of carrying out numerical computations which assume incompressibility, but use
Cp in the thermal energy equation. Clearly either incompressibility must be relaxed (as it is in
the real world of experiments) or Cv must be used.
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Appendix A

Details of Measurement Window

The opening for laser probe traverse is shown in figure A.1. The probe tilted 3.5◦ to avoid
hitting the wall by one of the beams before the measuring volume approaches to the wall.

Figure A.1: The schematic for the traversing span in the measurement window.
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Appendix B

Momentum Equation in Cylindrical
Coordinate

The equations of motion and energy for a Newtonian incompressible flow are given in cylin-
drical coordinates (x, r, θ) (cf. Panton [2005]). The instantaneous velocity components are ṽx, ṽr
and ṽθ respectively in axial, radial and azimuthal directions. Assuming the gravity force acts in
axial direction, ~g = (−g, 0, 0), which also is the main direction of the flow. The flow is assumed
to be steady state therefore time variation (∂/∂t) terms are omitted.

B.1 Averaged Momentum Equations

Using equation 8.19 we get the continuity equation as below:

Continuity Equation:

∇.~v =
∂ṽx
∂x

+
1

r

∂

∂r
(rṽr) +

1

r

∂ṽθ
∂θ

= 0 (B.1)

Using equation 8.49 we get the momentum equations as below:

Momentum Equation in Axial Direction:

ṽx
∂ṽx
∂x

+ ṽr
∂ṽx
∂r

+ ṽθ(
1

r

∂ṽx
∂θ

) = − 1

ρo

∂P̃

∂x
+

2

ρo
∇.(µS̃x) + g β (T̃ − To) (B.2)

Momentum Equation in Radial Direction:

ṽx
∂ṽr
∂x

+ ṽr
∂ṽr
∂r

+ ṽθ

(

1

r

∂ṽr
∂θ

− ṽθ
r

)

= − 1

ρo

∂P̃

∂r
+

2

ρo
∇.(µS̃r) (B.3)

Momentum Equation in Tangential Direction:

ṽx
∂ṽθ
∂x

+ ṽr
∂ṽθ
∂r

+ ṽθ

(

1

r

∂ṽθ
∂θ

+
ṽr
r

)

= − 1

ρo

(

1

r

∂P̃

∂θ

)

+
2

ρo
∇.(µS̃θ) (B.4)

where ρo and To are the reference density and temperature and the viscous terms are defined
as below:

2∇.(µS̃x) ≡ 2
∂

∂x

(

µ
∂ṽx
∂x

)

+
1

r

∂

∂r

(

rµ(
∂ṽx
∂r

+
∂ṽr
∂x

)

)

+
1

r

∂

∂θ

(

µ(
∂ṽθ
∂x

+
1

r

∂ṽx
∂θ

)

)

(B.5)
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2∇.(µS̃r) ≡
∂

∂x

(

µ(
∂ṽx
∂r

+
∂ṽr
∂x

)

)

+ 2
1

r

∂

∂r

(
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∂ṽr
∂r
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+
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∂
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µ
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∂
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(
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r
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∂θ
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− 2µ
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∂ṽθ
∂θ
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ṽr
r2

)

(B.6)

2∇.(µS̃θ) ≡
∂

∂x

(

µ(
∂ṽθ
∂x

+
1

r

∂ṽx
∂θ

)

)

+
1

r2
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µr2(r
∂

∂r
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∂
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2µ(
1
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∂ṽθ
∂θ

+
ṽr
r
)

)

(B.7)

The assumption of constant viscosity is practical for swirling jet equations therefore these terms
change to µ∇2~v . In natural convection equations, the viscosity term should be kept inside the
divergence (∇.(µSij)) as µ varies with the temperature. The density variation effect in non-
isothermal flow is limited to the buoyancy term in equation B.2, using the Boussinesq approxi-
mation and a reference density ρo.

By using Reynolds decomposition in equations above, we divide each instantaneous velocity com-
ponent to its mean and fluctuation part:

Axial Component(x) : ṽx = U + u
Radial Component(r) : ṽr = V + v
Tangential Component(θ) : ṽθ =W +w

Temperature : T̃ = T + t′

Pressure : P̃ = Pm + p

where t and p are the fluctuating temperature and pressure and Pm is the local pressure minus
hydrostatic pressure. As long as Boussinesq approximation is used, we avoid decomposing
the viscosity(µ) to the mean and fluctuating components because the correlation of viscosity-
velocity adds too much complexity into the equations. Now we substitute these terms into the
momentum equations and take average:

Averaged Momentum Equation in Axial Direction:

U
∂U

∂x
+ V

∂U

∂r
+
W

r

∂U

∂θ
= − 1

ρo

∂Pm
∂x

+
2

ρo
∇.(µSx)

−
〈

u
∂u

∂x
+ v

∂u

∂r
+
w

r

∂u

∂θ

〉

+ g β (T − To) (B.8)

Averaged Momentum Equation in Radial Direction:

U
∂V

∂x
+ V

∂V

∂r
+
W

r

∂V

∂θ
− W 2

r
= − 1

ρo

∂Pm
∂r

+
2

ρo
∇.(µSr)

−
〈

u
∂v

∂x
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r

〉

(B.9)
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Averaged Momentum Equation in Tangential Direction:

U
∂W

∂x
+ V

∂W

∂r
+
W

r

∂W

∂θ
+
VW

r
= − 1

ρo

(

1

r
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−
〈

u
∂w

∂x
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∂w

∂r
+
w

r

∂w

∂θ
+
vw

r

〉

(B.10)

Here we use the sign < > to show the averaged terms in the equations. Using the continuity
equation to make the Reynolds Stresses involved in the equations yields,

Averaged Continuity Equation:

∂U

∂x
+

1

r

∂(rV )

∂r
+

1

r

∂W

∂θ
= 0 (B.11)

If we subtract equation B.11 from the decomposed continuity equation, we get:

Fluctuation Continuity Equation:
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+

1
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r

∂w
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= 0 (B.12)
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using chain rule:
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(B.13)

By substituting the averaged fluctuations in equations B.8 to B.10 with the new parameters in
equation B.13, we will have averaged momentum equations in cylindrical coordinate as:
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Averaged Momentum Equation in Axial Direction:

U
∂U

∂x
+ V

∂U

∂r
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Averaged Momentum Equation in Radial Direction:
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(B.15)

Averaged Momentum Equation in Tangential Direction:
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(B.16)

For a statistically homogeneous flow in tangential direction (∂/∂θ = 0), the averaged conti-
nuity and momentum equations in an incompressible, high Reynolds number, turbulent, round
jet flow with swirl can be reduced to the equation below:
Averaged Continuity Equation:

∂U

∂x
+

1

r

∂(rV )

∂r
= 0 (B.17)

Averaged Momentum Equation in Axial Direction:
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Averaged Momentum Equation in Radial Direction:
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(B.19)

Averaged Momentum Equation in Tangential Direction:
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(B.20)
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B.2 Transport Equations For Reynolds Stresses

In order to calculate the transport equations for Reynolds stresses in an incompressible, high-
Reynolds number flow, we subtract instantaneous momentum equations ( B.2,B.3 and B.4 )
from averaged momentum equations ( B.8, B.9 and B.10 ):
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+ gβt′ (B.21)
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(B.22)
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(B.23)

where t′ and s′ are the fluctuating terms. To create Reynolds Stress Equations we multiply each
equation above with a fluctuating component, then taking average and adding combination of
two equations. Using the continuity equation simplifies some terms:

• Avg (u× Eqn B.21) + Avg (u× Eqn B.21)
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+ 2gβut′ (B.24)

• Avg(v× Eeq.B.22) + Avg(v× Eqn.B.22)
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(B.25)
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• Avg(w× Eeq.B.23) + Avg(w× Eqn.B.23)
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• Avg(v× Eeq.B.21) + Avg(u× Eqn.B.22)
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• Avg(w× Eeq.B.21) + Avg(u× Eqn.B.23)
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• Avg(w× Eeq.B.22) + Avg(v× Eqn.B.23)
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APPENDIX B. MOMENTUM EQUATION IN CYLINDRICAL COORDINATE

The equation for the turbulence kinetic energy in cylindrical coordinate can be obtained di-
rectly from the normal Reynolds stress equations by adding them and defining k, the average
fluctuating kinetic energy per unit mass, as:

k ≡ 1

2
q2 =

1

2
[u2 + v2 + w2] (B.30)

The incompressibility condition (B.1) is used to eliminate the pressure-strain rate term.

Turbulence kinetic energy equation:
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In this equation we split the viscous term into the turbulence transport (or divergence) term
and dissipation term as below:

• Transport of kinetic energy due to viscous stresses:
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• Rate of dissipation of turbulence kinetic energy:
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(B.33)

B.3 Averaged Energy Equation

General energy equation in cylindrical coordinate for a steady state incompressible flow is cal-
culated using equation 8.32 in chapter 8 as below. We also neglect the density change due to
pressure changes since the flows we are interested in are subsonic flows.
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Energy equation
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The Laplacian operator and dissipation function are defined as:
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+ ṽr

)2

+ 2

(

∂ṽx
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All the fluid properties in this equation are depend on the temperature fluctuation. To perform
a numerical computation, one should consider calculating the correlation of fluctuating viscos-
ity, thermal conductivity and specific heat with respect to the local velocity and temperature.
In this study we are just performing the Reynolds decomposition on velocity and temperature
and pressure as in the momentum equations. Low velocity in the flow (M << 1) helps us
to neglect the heat generation due to viscous dissipation and omit the last term of the energy
equation.

Averaged Energy equation
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(B.37)

The equation governing the transport of the temperature fluctuation can be derived, similar
to the Reynolds stress equations, by subtracting the mean energy equation B.37 from the in-
stantaneous energy equation B.34, then multiplying with the fluctuating temperature (t′) and
averaging them. The result will be:

Mean square fluctuating temperature equation

U
∂t′2

∂x
+ V

∂t′2

∂r
+
W

r

∂t′2

∂θ
=

∂

∂x

(

α
∂t′2

∂x
− ut′2

)

+
1

r

∂

∂r

(

αr
∂t′2

∂r
− r vt′2

)

+
1

r2
∂

∂θ

(

α
∂t′2

∂θ
− r wt′2

)

− 2

{

ut′
∂T

∂x
+ vt′

∂T

∂r
+
wt′

r

∂T

∂θ

}

− 2α

{

<

(

∂t′

∂x

)2

> + <

(

∂t′

∂r

)2

> +
1

r2
<

(

∂t′

∂θ

)2

>

}

(B.38)

148



Appendix C

Description of Electronic Circuits

The electronic circuits for the temperature measurement were designed and built by Lars Jern-
qvist, who was formerly the electronics technician for the Department of Thermo Fluids. He
has now retired, but continues to help out, and has been of special value to this project.

Figure C.1 shows the schematic for the constant current circuit used for the cold-wire tem-
perature measurements. A small current (approx. 0.1 mA) passes through the thin platinum
wire and the output is the amplified voltage (×500) that is fed to WaveBook A/D convertor.
The changes in wire resistance are directly proportional to changes by the wire’s temperature
according to the relation:

R = Ro + αRRo(T − To). (C.1)

where Ro is the wire resistance at the reference temperature, To. So the fluctuating output
voltage is linearly proportional to the wire temperature when the current is constant. Ro and
αR (or αRRo) can be obtained by calibration as described in Chapter 11.
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Figure C.1: Constant Current Circuit for Cold-wire.
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Appendix D

Scaling Analysis of The Governing
Equations

D.0.1 Scaling of the Momentum Equations

An order of magnitude analysis have been applied to the governing equations in order to re-
duce the terms involved in describing the axisymmetric natural convection boundary layer
flow. As the flow adjacent to the wall induced by the buoyancy, the boundary layer generated
due to presence of the wall grows. The observations from the experiments suggest that both
thermal and velocity boundary layers thickness are smaller than the streamwise length scale of
the flow. Therefore the assumption of the thin boundary layer (∂/∂x ≪ ∂/∂r) is applicable. As
in forced boundary layer flow, the streamwise and cross-stream (radial direction) length scales
are considered L and δ respectively, where L ≫ δ. The velocity and temperature scales as also
defined as below:

U ∼ Us

T ∼ Ts (D.1)

u2, v2, w2, uv ∼ u2s

ut, vt ∼ usts

where Us is the mean velocity scale in axial direction and Ts is the mean temperature scale.
u2s and usts are also scales for Reynolds stresses and velocity-temperature correlations respec-
tively. The derivatives in the equations are scaled as below:

∂

∂x
∼ 1

L
;

∂

∂r
∼ 1

δ
(D.2)

Substituting in the continuity equation 8.50 we find the mean radial velocity scale as:

Vs ∼ Us
δ

L
(D.3)

Each term in the axial momentum equation 8.51 is represented by its respective scale as
below:
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The same thing is done for the radial momentum equation 8.52:
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Note that we took the viscosity out of derivative because we just want to estimate the scale of
each term, otherwise this is not a constant viscosity assumption. The order of magnitude of the
scalar parameter terms in the equation of motion is unknown for now. To keep the convection
terms in the streamwise equation, they should have the order of one in the scaling equation so
we divide all terms of two equations by U2

s /L:
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And for the radial momentum equation:
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(D.7)

where boundary layer Reynolds number defined as:

ReL =
UsL

ν

Now we have to decide which term with the same order of magnitude as 1 to be kept in
the equations. In a highly turbulent flow, the condition of δ/L < u2s/U

2
s is acceptable. This

means that in equation D.7 the left hand side terms are smaller than the Reynolds stress terms
on the right hand side, specially ∂(v2)/∂r. If the Reynolds number is considered sufficiently
large, the viscous terms are become negligible too. The other term to balance the surviving
Reynolds stress gradient has to be the pressure term. Thus the simplified radial momentum
equation becomes:

0 = − 1

ρ

∂P

∂r
− ∂v2

∂r
− v2 − w2

r
(D.8)
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Integrating the equation D.8 from r to ∞ yields to:

− 1

ρ
(p− p∞) = v2 +

∫

∞

r

v2 − w2

r
dr (D.10)
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where p∞ is the constant hydrostatic ambient pressure at the specific height. For turbulent
boundary layer flows the equation D.10 shows that the pressure inside the boundary layer is
controlled by the ambient pressure field and the radial Reynolds stress term plays a major role
to decrease the pressure with in the boundary layer. This slight cross-stream pressure gradient
is responsible for the entrainment of ambient fluid.

Equation D.8 highlighted the important terms in the radial momentum equation and the
pressure equation in the flow. Now we can substitute the pressure term in the streamwise
momentum equation by taking derivative of equation D.10 with respect to x:

− 1

ρ

∂p
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∂v2

∂x
+

∫

∞

r

1

r
(
∂v2

∂x
− ∂w2

∂x
) dr (D.11)

The streamwise pressure gradient in the equation D.9 can be replaced by the right hand side
of the equation D.11. As we expressed each term of axial momentum equation in the defined
velocity and length scales before, the new replaced terms containing ∂v2/∂x and ∂w2/∂x are
scaled as u2s/U

2
s which is smaller than the radial gradient of the Reynolds stresses in the axial

momentum equation by a factor of L/δ. In equation D.9, considering the scaling equation of
D.6, all the streamwise gradients are smaller than the radial gradient counterparts, hence we
can ignore them. The magnitude of the buoyancy term can not be determined and it should be
kept because it is the term responsible for momentum insertion into the flow. By assuming suf-
ficiently large Reynolds number, the viscous terms in the right hand side of the equation also
become negligible, but we keep the radial gradient viscous term to have at least one viscous
term in the equation. To have a turbulence term, (∂r uv/∂r) must stay in the equation, as we
require (L/δ ≫ 1).

The reduced streamwise momentum equation to the first order becomes:
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This is the equation that we work with from now on, but we also remember that the other terms
are contributing into the equation very little and they are not deleted.

D.0.2 Scaling of the Energy Equations

Finally we scale the energy equation 8.53 with the velocity and length scales as before and the
temperature as Ts. Substituting the scaling parameters in the energy equation and normalizing
them by convective terms weight (UsTs/L), gives the following orders of magnitude for each
term:
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Where Pe is the Peclet number and defined as:

Pe =
UsL

α
(D.14)
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It is obvious that in the right hand side of the equation, the radial gradient terms are L/δ
times bigger than the axial gradients, therefore the streamwise conduction term is considerably
smaller than the radial component. The viscus dissipation term is also less important in energy
equation since the fluid velocity in natural convection flow is slow and the heat generated by
viscosity is negligible. Both velocity-temperature correlation terms (ut & vt) are kept for the
energy balance integral across the boundary layer. Hence the reduced energy equation to first
order becomes:

U
∂T

∂x
+ V

∂T

∂r
=

1

r

∂

∂r

(

r (α
∂T

∂r
− vt )

)

+
∂ut

∂x
(D.15)
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Appendix E

Correlations of the Instantaneous Data

E.1 Temperature Spectra
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(d) S11(f) at y+ = 11.3

Figure E.1: Instantaneous temperature spectrum in different radial distances from wall, case 1, 4m.
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(a) S11(f) at y+ = 35.6
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(b) S11(f) at y+ = 72
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(c) S11(f) at y+ = 1943
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(d) S11(f) at y+ = 608
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(e) S11(f) at y+ = 950

Figure E.2: Instantaneous temperature spectrum in different radial distances from wall, case 1,
4m.(continue)
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(a) S11(f) at y+ = 0.8

10
−3

10
−2

10
−1

10
0

10
1

10
210

−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

|S
11

( 
f )

|

f −1

f −5/3

(b) S11(f) at y+ = 2
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(c) S11(f) at y+ = 4.7
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(d) S11(f) at y+ = 9.5

Figure E.3: Instantaneous temperature spectrum in different radial distances from wall, case 2, 3m.
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(a) S11(f) at y+ = 32
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(b) S11(f) at y+ = 137
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(c) S11(f) at y+ = 242
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(d) S11(f) at y+ = 512

Figure E.4: Instantaneous temperature spectrum in different radial distances from wall, case 2,
3m.(continue)
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Figure E.5: Comparison of the instantaneous temperature wavenumber spectra in the same normalized
radial distances from wall for two cases of 4m and 3m.
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E.2 Cross-correlations of Temperature-Velocity Signal

Table E.1: Cross-Correlation values in positive side, for case1 (4m height).

Position R<ut> R<ut> PTL† R<vt> R<vt> PTL
(τ = 0) peak (ms) (τ = 0) peak (ms)

y+ = 1.4 0.005 − − −0.0017 − −
y+ = 2 0.0132 0.0182 44 −0.0074 −0.00894 39.7
y+ = 3.8 0.0493 0.0579 32.5 −0.0213 −0.02354 30.2
y+ = 12 0.1287 0.18192 50.4 −0.0248 −0.0377 66.7
y+ = 37.5 0.1711 0.1784 25.4 0.0056 0.0111 15
y+ = 75.7 0.1639 0.1640 2.6 0.00066 0.0116 24.4
y+ = 203 0.1043 − − 0.00053 −0.01136 153
y+ = 637 0.0331 − − 0.0045 − −
y+ = 996 0.0067 − − 0.0035 − −
——————-
† Peak Time Lag
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Figure E.6: Cross-correlation of streamwise velocity and temperatureR<ut> in different radial positions
for case 1 (4m height).
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(d) R<ut> at y+ = 37.5 (close up)
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Figure E.7: Cross-correlation of streamwise velocity and temperatureR<ut> in different radial positions
for case 1 (4m height). continue
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Figure E.8: Cross-correlation of streamwise velocity and temperatureR<ut> in different radial positions
for case 1 (4m height). continue
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Figure E.9: Cross-correlation of radial velocity and temperature R<vt> in different radial positions for
case 1 (4m height).
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Figure E.10: Cross-correlation of radial velocity and temperature R<vt> in different radial positions for
case 1 (4m height). continue
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Figure E.11: Cross-correlation of radial velocity and temperature R<vt> in different radial positions for
case 1 (4m height). continue

166


	Abstract
	Acknowledgments
	Nomenclature
	Overview of the thesis
	Swirling Jet Experiment
	Natural Convection Experiment

	I Incompressible Swirling Jets
	Introduction
	What is a jet?
	Swirling Jets

	Theory of Axisymmetric Jets with Swirl
	Introduction
	Basic equations for the swirling jet
	Mass conservation
	Momentum Conservation
	Integral equations for axial and angular momentum conservation

	Basic scaling parameters
	Streamwise and angular momentum conservation
	The effect of mass addition at the source
	The role of swirl

	Equilibrium similarity implications for the far swirling jet

	Jet Experimental Facility and Measurement Methods
	Experimental Setup
	Swirling Jet Facility
	Boundary Conditions and Controlling the Experiment

	The Velocity Measurement in Turbulent Free Shear Flows
	Statistical Uncertainty

	Results of the Experiment 
	Exit Velocity Profiles
	Test Cases
	The mean streamwise velocity in the far jet
	Variation of Uc and 1/2 with x
	Streamwise momentum integral constraint on mean velocity

	The mean swirl velocity and angular momentum conservation
	Turbulence higher moments
	Reynolds stresses
	Third-order velocity moments


	Summary and Conclusions: Swirling Jet
	Overview of results
	Energy Balance and Dissipation
	Conclusions


	II Turbulent Natural Convection Boundary Layer Around Vertical Cylinder
	Introduction
	Heat Transfer
	Natural Convection
	Turbulent Natural Convection Boundary Layer
	Previous Experimental Investigations

	Basic Equations for Natural Convection
	Summary of Basic Equations
	Continuity Equation and Incompressibility
	Thermodynamics Relations
	Equations for internal energy and enthalpy
	A common problem: Cp versus Cv
	Boussinesq Approximations
	Reynolds-Averaged Equations in Cylindrical Coordinates

	The Natural Convection Boundary Layer Equations
	The Reduced (or Boundary Layer) equations
	Momentum and Buoyancy Integral Equations
	The main (or ``outer'') boundary layer
	The near wall equations 
	Constant heat flux and buoyant sublayers next to a cylinder 
	Near wall temperature and heat flux: constant thermal properties 
	Near wall velocity and Reynolds shear stress: constant thermal properties
	Temperature near wall: Variable thermal properties
	Velocity and Reynolds shear stress near wall: variable thermal properties

	The constant turbulent heat flux layer 

	Design of the Experimental Facility
	Modified Test Rig Outline
	Return Chamber and Seeding Control
	Inlet Section Considerations
	Heating and Cooling of the Test Rig
	Radiation Between the Inner and Outer Cylinders
	Stability of the Facility
	Accurate Positioning

	Measurement Methods and Methodology
	Introduction
	Laser Doppler Anemometry
	Acquisition of Simultaneous Data
	Thermocouples
	Fine-Gauge Thermocouple
	Wall Temperature Using Thermocouples

	Cold-Wire Temperature Measurement
	Selecting probes
	Calibration

	Detailed Analysis of Response of Cold-Wires
	Thermal Inertia of Cold-Wire in Uniform Environment
	Effects of Finite Length
	Prong Temperature Gradient

	Thermocouples in Mean Temperature Gradients

	Results and Discussion
	Statistical Errors
	An Overview of the Experimental Results
	Differential Temperature with Thermocouples
	Determination of Wall Heat Transfer Rate and Wall Shear Stress 
	The near wall results

	Near Wall Scaling
	Near Wall Scaling of Velocity Moments
	Near Wall Scaling of the Temperature Moments


	Summary and Conclusions
	Bibliography
	Details of Measurement Window
	Momentum Equation in Cylindrical Coordinate
	Averaged Momentum Equations
	Transport Equations For Reynolds Stresses
	Averaged Energy Equation

	Description of Electronic Circuits
	Scaling Analysis of The Governing Equations
	Scaling of the Momentum Equations
	Scaling of the Energy Equations


	Correlations of the Instantaneous Data
	Temperature Spectra
	Cross-correlations of Temperature-Velocity Signal



