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Abstract

This thesis presents part of the large research progranefuby the European Commission called
Wallturb: A European synergy for the assessment of wallulerce The main aim of this research
program is to create new experimental and numerical datal@sthe characteristics of turbulent wall-
bounded flows, especially turbulent boundary layers. Tha gpothat these databases will be used to
gain more insight into the physical mechanisms governieglimamics of these flows. This knowledge
is deemed essential for the future development of efficiadtghysical turbulence modeling strategies,
which are in turn crucial to aircraft and other industries $astainable development, especially under
the pressure of high oil prices and operational costs.

The signature experiment of Wallturb was the multi-ingestor, multi-system, multi-point investi-
gation carried out in the 20m test section of the boundargriagsearch facility at LML Lille, France
in 2006. This thesis is focused primarily on the part of tmaestigation which utilized the 143 probe
hot-wire array belonging to the Turbulence Research Laboraf Chalmers, and only on the two zero-
pressure gradient boundary layer experiments gtdR8800 and 19 100.

A new hot-wire calibration method was developed and utillif@ this investigation. The method is
based on a polynomial curve fitting approximation which egges the instantaneous velocity as a func-
tion of instantaneous voltage. The results showed that av@tond order polynomial approximation
yields very good agreement between the measured profileoputed profiles after the calibration)
and the reference profiles used in the calibration. The nde#tten provides an opportunity to do the
calibration on the fly as long as the convergence of the higkroroltage statistics can be satisfied.

The large scale motions of the turbulence were studied iaildesing two-dimensional two-point
cross-correlations maps on different planes within thesueament domain. It was observed that the
elongated correlations exist at every wall-normal posiabove the buffer layer. These elongated struc-
tures were relatively more significant in the log layer.

The investigation using the proper orthogonal decommsishowed that the POD (in conjunction
with Fourier analysis in the statistically homogeneous stationary directions) can effectively represent
the total kinetic energy with a small number of modes. At bedynolds numbers, it was possible to
recover almost 90% of the total turbulence kinetic energthiwithe entire boundary layer with only
four POD modes. The reconstructed velocity fluctuationsherspanwise-wall-normal plane show how
organized motions of turbulence with significant amountsrdrgy interact with each other across the
boundary layer. It was also possible to observe the interadtetween the inner and outer layers of
turbulence using these reconstructed velocity fields.

Keywords: Turbulent boundary layers, high Reynolds number, zerospresgradient, wind tunnel,
hot-wire, calibration, large scale structures, two-paimtrelations, cross-correlations, proper orthogonal
decomposition, Fourier decomposition.
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Chapter 1

Introduction

Turbulent boundary layers represent one of the most impuiftad flow problems. A boundary
layer is the thin layer of fluid closest to the wall when a floweleps over surfaces. Itis in this
layer that a flow is brought to rest by viscous stresses frarspeed in the freestream. Most
boundary layers of interest are turbulent. This is mainlgawse a great portion of industrial
flow related problems involve turbulent boundary layerg.(ehe flow over wings and bodies,
the flow inside pipes and ducts). Boundary layers are botbdmentally and economically
very important, because the thin layer turbulence is graa$ponsible for the skin friction
resistance of bodies.

1.1 Historical Overview

The turbulent boundary layer idea dates back to the beginoir20" century, when Prandtl
realized that the necessity of a viscosity-dominated #yet of flow in the vicinity of surfaces.
This thin region turned out to be governed by a separate hescrile, which characterized
changes in the wall-normal direction. This length scaléhesthioundary layer thickness. Re-
search has been conducted for almost a century on laminadboplayers. However, at high
Reynolds number the viscous forces are not large enoughnp dae disturbances, with the
result that the flow becomes turbulent (after a transientregalled transition).

Today, most of the industrially important boundary layestgems are high Reynolds num-
ber flows and therefore turbulent. The turbulent boundargrigroblem has proven to be quite
impossible to tackle with simple methodologies. Dependeancthe boundary and initial condi-
tions increases the level of complexity. Contrary to theilkmmboundary layer, the equations in
the turbulent case are not closed. The random charactermfitince makes the problem even
more difficult, so that we have to rely on statistical appneiions and experimental results.

One of the great interests in turbulent boundary layer rekaa to find similarity solutions,
which produce similar profiles for statistical quantitiésurbulent boundary layers, regardless
of the external conditions like freestream velocity, depahent length, boundary layer thick-
ness, surface friction force and so forth. This is espgcialportant because most of turbulence
modeling methodologies in computational fluid dynamicstaged on assuming similarity so-
lutions. Unfortunately, these approaches have not managashverge, and remain the subject
of great debate. The recent collections of papers by LudZamstillo (AIAA Journal, Vol 44,
2006) and Beverley J. McKeon (Philosophical Transactidriit® Royal Society A, Vol 365,
2007) provide the current state of the knowledge in almdsasgects of canonical turbulent
boundary layers. In addition to this, recent reviews firmm& on the scaling issues
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Structure of Turbulent Boundary Layers

of boundary layer turbulence and seconerMOO?}wem’rganized motions in wall
bounded flows briefly describe evolution of ideas, new fingiagd possible new directions in
wall bounded turbulence research. These volumes and repapers cover all of the recent
important contributions in the field with extensive reviefliterature. Therefore, there will be
no attempt made herein to repeat the content of these volantegapers.

1.2 Turbulence Structure

The large scale motions in turbulent flows have received ratteimtion since Townsend’s “large
eddy” hypothesis (sde_Townsend (1976)). These structuees fivst inferred from his obser-
vations of the long tails of the correlation functions of teeamwise velocity fluctuations.
Townsend regarded these motions as “inactive” and thouggmhtto be dynamically passive
structures. Obvious features of these large scales candsevelol by eye in nature and visual-
ized in laboratory environments. Even though quantifyimgse structured large scale motions,
the so-called coherent structures, has proven to be qdiiteutt it is now widely realized that
these organized motions are actually dynamically impaoraaad influence physical processes
within the turbulent flows. Examples include the transpbsaalars and momentum, turbulent
mixing, heat transfer, aerodynamic noise, drag, flow-iedinbration, etc.

The most important aspects of large scale motions in tunbldeundary layers were first
documented by Blackwelder & Kovaszny (1972), who suggestegdmade contributions to the
turbulence kinetic energy of 50%, and as much as 80% of thadteéy shear stress. These large
scale motions can range from one boundary layer thickess the scales on the order of ten
boundary layer thicknesses, or more. Some of the suggeshtenient and energetic structures
are, for example, low and high momentum streaks, bulgesihaj quasi-streamwise vortices,
and elongated structures in the log-layer, and even in thke wegion of the boundary layer.

1.3 The POD

Lumley @) introduced the proper orthogonal decompwsifPOD) into the field of tur-
bulence for the purpose of identifying and studying the dyica of the large scale energy
containing features of turbulent flows with finite total egyer The POD provides an optimum
deterministic description of the field, the so-called POgeeavalues and eigenfunctions. These
are the solutions obtained by seeking the largest projeatimo the stochastic velocity field of
turbulence in a mean square sense. Maximization of thegiroferesults in an integral value
problem (Fredholm integral equation of the second kindhich the kernel is the two-point
cross-correlations tensor of the stochastic velocity fiflde POD has also been found to be
very efficient at extracting the most energetic modes of thve 8nd ordering them according to
their energy content.

Even though the POD was introduced more than four decadeasago optimal and math-
ematical way of breaking the turbulence scales apartzatibn of the method took some time,
mainly due to difficulties associated with the measuremadt@mputation of the two-point
cross-correlations tensor. As pointed ou@d@lgﬁe)POD needs sufficient informa-
tion on the two-point cross-correlation tensor so that aflete space-time realization of the
turbulence velocity field can be obtained. Computation efdfoss-correlation tensor from the
measured velocities is also difficult in terms of computiogvpr and speed capabilities.

The first experimental work on wall-bounded flows that utitizhe POD was carried out in

a turbulent pipe flow in glycerin using hot-film measuremetiniques (Bakewell & | umléey
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(1967)). They used measurements along a radial traverisie iofy™ = 40. This was followed
more than a decade later by the more ambitious experim (1986), who used split-
film probes and measured the correlations in a plane trasest@the flow Almost concurrently,
IMoin & Mosel (1989) applied the POD to a database createddplitect numerical simulation
(DNS) of a low Reynolds number turbulent channel flow, andasted the most energetic
characteristics scales of turbulence. With the advent afware and software developments,
particle image velocimetry (PIV), which provides threesénsional velocity information on a
plane, has recently become a very useful tool in measurerétite two-point cross-correlation
with very high spatial resolution. These have been empldyetiu et all (1994,/2001) in a
channel flow experiment to produce data sufficient for penfog POD analysis. Numerical
studies which can be found in the literature also primariijize channel flow simulations.
There has been no research program carried out prior to theeported herein for analyzing
developing turbulent boundary layers using the powerfaiifees of the POD. In this sense, the
work described in this dissertation is unique, and the fpgliaation in this direction.

1.4 The scope of this thesis

This thesis is a part of the large research program fundetidfturopean Commission called
Wallturb: A European synergy for the assessment of wallulefice The main aim of this
research program is to create new experimental and nurhdatabases on the characteristics
of the turbulent wall-bounded flows, especially turbuleatibdary layers. The hope is that
these databases will be used to gain more insight into theigdlymechanisms governing the
dynamics of these flows. This knowledge is deemed essentidghé future development of
efficient and physical turbulence modeling strategiesctviaire in turn crucial to aircraft and
other industries for sustainable development, espeadigitjer the pressure of high oil prices
and operational costs.

The signature experiment of Wallturb was the multi-invgstior, multi-system, multi-point
investigation carried out in the 20m test section of the lgauy layer research facility at LML
Lille, France in 2006. This thesis is focused primarily oe fhart of that investigation which
utilized the 143 probe hot-wire array belonging to the Tilwhue Research Laboratory of
Chalmers.

The presentation of the thesis is as follows: The experiadesgtup and measurement de-
tails are described in Chapfdr 2. The calibration methoeldged in the course of this study is
introduced and discussed in Chajbfler 3. Chdpter 4 presergsile point velocity statistics and
spectra. The results of a two-point cross-correlationyais| together with the integral length
and time scales, are presented in Chagter 5. The theory pépmthogonal decomposition
(POD) and the results obtained using the POD theory will lzedeed and discussed in Chap-
ters® and7 respectively. Finally, in the last chapter, @, the results will be summarized
and some important findings will be emphasized. A detaileddiure review and current state
of knowledge together with historical development of thievant ideas are presented at the
beginning of each chapter separately.
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Chapter 2

Experimental Setup

Two high Reynolds number zero pressure gradient turbulemtdary layer experiments were
performed in the large LML (Laboratoire de Mécanique dé€l)ilvind tunnel in the course of
this study. The freestream velocities during the experimerere 10 and 5 m$ resulting

in Reynolds number based on the momentum thickness of 19ridQ&00 respectively. The
boundary layers were measured using a synchronized sydtstereo PIVs and a hot-wire
rake of 143 probes to be able to obtain both spatial and tisi@nyi of the turbulent velocity
fields. In this thesis, only the hot-wire rake data have béediad even though the complete
description of the set-up is described here. The experimhsatup and details of the equipment
are detailed in the following sections. Most of the inforioatgiven about the anemometers
and data acquisition in this chapter have been compiled &adethnical report written for the

Wallturb project (c.f.|Johansdan (2007)).

2.1 Large LML Boundary Layer Wind Tunnel

As it can be seen from the schematic of the wind tunnel in fiiflethe LML boundary layer
facility is a closed circuit wind tunnel whose dimensions 2L.6 m in length, 2 m in width and
1 min height. The last part of the wind tunnel, denoted by hendchematic, was equipped
with transparent glass walls to be able to provide an opticedss for measurements using laser
based methods. The opening following the honeycombs intti@&the test section was closed
during the measurements to be able to control the concemtrigvel of the seeding particles
in the wind tunnel more uniformly. The maximum achievab&segtream velocity for this wind
tunnel is about 10.5 m$ +1%. The very long test section provides a high Reynolds numbe
turbulent boundary layer about RReof 20 600. The boundary layer thickness at the end of
the test section is about 0.3 m at all freestream velociflé® flow parameters which can be
obtained in the large LML wind tunnel at different freestregelocities are compiled in table
2.
A Pitot tube with a Furness micromanometer is used to momiterfreestream velocity
of the wind tunnel. The tunnel’s constant freestream vgjozan be regulated within 0.25%.
The tunnel has a air/water heat exchanger in the end of thenrduct just before the plenum
chamber. The heat exchanger works as a temperature conttathich provides a uniform
flow temperature within an accuracy #0.3°C.

The boundary layer on the bottom wall in the entrance of tkegdection is tripped using
some three-dimensional roughness elements to increadbith@ess of turbulent boundary
layer. ' ' b5) observed no effect in timbulence statistics of the bound-
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Figure 2.1: Schematic of the LML wind tunnel: 1, plenum chami2, guide vanes; 3, honeycomb; 4,
grids; 5, contraction; 6, turbulent boundary layer develggzone; 7, testing zone of wind tunnel; 8, fan
and motor; 9, return duct; 10, heat exchanger (air/water).

ary layer due to tripping in the entrance. As mentioned eathe thickness of the boundary
layer at the measurement location which was 18 m downstréahedest section entrance is
approximately 0.3 m at both Reynolds numbers tested in thdys

The cross-section area of the tunnel is constant througheuést section. Previously, Car-
lier & Stanislas WS) studied possible effects of havingstant cross-section area such as
the inhomogeneity in the spanwise direction due to corndroes developing along the tunnel
and the pressure gradient in the streamwise directiongf@anvestigations on the turbulence
statistics in the spanwise direction revealed that thewe &ffects on the homogeneity f&10.35
m in spanwise direction around the symmetry line. In additmthis, the scaled pressure gra-
dients in wall units were found to be very small in comparisoather terms in the streamwise
component of the momentum equation and concluded to begilaeli

Uo oP/ox u, viu, e} oF 0 Re ¢t dt
(ms?h (PamY) (msh) m M ) M ) ) )
3 -0.057 0.115 136 0.35 1500 0.041 8171 4 0.02
5 -0.134 0.183 81 0.32 4000 0.035 11454 6 0.03
7 -0.240 0.249 59 0.30 5100 0.032 14500 8.5 0.04
10 -0.502 0.354 43 0.30 7000 0.031 20800 12 0.06

Table 2.1: Characteristics of LML boundary layer wind tureedocumented hy Stanislasall (2008).

2.2 Hot-Wire Rake of 143 Single-Wire Probes

A hot-wire rake of 143 single wire probes was used in this ptiodbe able to obtain both
spatial and temporal information about the turbulent bampdayer simultaneously. The rake,
manufactured by Laboratoire d’Etudes AérodynamiquesA(l.Poitiers, France, covered an
area of approximately 3030 cn?. All the probes were distributed on an array in a plane normal
to the flow as shown in figule2.2. The rake was comprised of tticaécombs staggered in
the spanwise direction, and each vertical comb carried §lesivire hot-wire probes and one
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(a) Hot-wire rake in place in the wind tunnel (b) Close-up of one of the comb at the wall

Figure 2.2: Hot-wire rake in place in the LML wind tunnel ardse-up of one of the combs at the wall.

double probe with two single wire sensors spaced logarithhlyifrom wall to freestream in the
wall-normal direction. The double probe was at the first waaitmal position very close to the
wall and was because of the limited spacing available. Theisg wires of the probes were
0.5 mm in length and 0.2m in diameter (see table2.1 for wire length and diameter ds wa
units, ¢ and d" respectively). The vertical combs were made of double smewentional
circuit boards. The thickness of the circuit boards was 18 nithis method for constructing
hot-wire rakes of many probes were previously used for Apdint measurement in turbulent
flows by/Glauserl(1987), Delvill 94) ahd Delvike all (1999). Special connectors were
used between the combs and 5 m long coaxial cables connéatihg hot-wire anemometers.
Special attention was given to the comb end of the coaxidesab prevent any interference
with each other.

The vertical combs were distributed symmetrically aroumel ¢center comb located in the
middle of spanwise width of the wind tunnel, correspondimg+0. Detailed drawings of the
hot-wire rake are given in appendd A. The symmetric pairshef vertical combs were dis-
tributed at+4 mm,+12 mm,+28 mm,4+60 mm,+100 mm andt-140 mm. The logarithmic
placing of each probe on the vertical combs from the wall tofteestream was 0.3 mm (cor-
responds to ¥ of 3.75 and 7 for low and high Reynolds numbers, respecfiyél mm, 2.1
mm, 4.5 mm, 9.3 mm, 18.9 mm, 38.1 mm, 76.5 mm, 153.3 mm, 23@1386.9 mm. These
coordinates in both spanwise and wall-normal directioestlae coordinates used for mechan-
ical design of the rake. There were some manufacturing ifepgons at the probe locations
particularly in the wall-normal directions in the viciniof the wall. The precise coordinates of
the probes were found as following: First, the tips of thebgowere illuminated with a laser
sheet, then a picture of it was taken using a high resolutomeca, and finally location of each
probe with respect to the wall was found. The uncertaintyndifig the precise location of the
probes was 0.03 mm with 95% confidence level.
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Figure 2.3: Anemometer circuit diagram

2.3 Hot-Wire Anemometers

An in-house developed multiple channel constant tempegdtot-wire anemometry system
was used for the measurements. Each channel comprised otat$me bridge, output and
sample-and-hold controls. The anemometer circuitry as/sho figure[Z.8 was based on sim-
ple and stable design given @lIQT(_’HQSZ) with the adddifosutput signal conditioning part.
The system was designed, manufactured and tested in thigda@f the Turbulence Research
Laboratory (TRL) in its previous incarnation at the Statavdrsity of New York at Buffalo,
see. Woodward (2001). Previously, Citringt all (1994),  Citriniti (1996), Jungl (2001) and
IGamarh[(2002) used and tested the system extensively. AtsedibylWoodwardt all (2001)
the anemometers were capable of measuring the proper apsetistics with very low noise
level better than commercial ones, with no significant thardrift over time and no cross-
talk between the channels. The anemometer system wentgth@womplete overhaul and
modification after moving into Sweden in 2001 using some ljghlity instrumentation ampli-
fiers, frequency compensation and cable inductance corapensThe adaptation to European
power grid system was realized by changing the power supplie

The anemometer system consisted of 144 channels (or andersjrdistributed in 9 racks
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carrying 16 anemometers on each of them. Every 3 racks,ah48tanemometers, were pow-
ered by a separate power source. Four power supplies foraddbbse 3 racks were used to
operate the anemometers. Two of these four were the mainrmsmueces with+-15 V and
—15 V outputs. In addition to these, two smaller power sugpliere used with adjustable
control output voltages. The second one operated as oufpat woltage, \c, to be able to use
maximum range of the A/D converter by tuning the anemomatgrud voltage.

Setup of the overheat ratio for TRL anemometer system asieqa below was different
than that for the commercial ones. The overheat ratio is éefas follows:

OHR— Run (2.1)

Rwe

where Ryn, hot resistance, andyR cold resistance, represent resistance of the sensor tire a
operating and nonoperating temperatures respectiveycold resistance of the sensor wire is
measured before operating the anemometer system, so ¢lfadtthesistance of the sensor can
be found for the desired overheat ratio using £q.](2.1). Tdtedsistance of the wire is set by
tuning the adjustable resistance in the Wheatstone bridge the probe is connected. This is
done by monitoring bridge top voltageyVand voltage across the sensor wirg, V

Total resistance of the wire, denoted by,Ran be computed using the measured voltage
across the wire as follows:

Ry = (2.2)

lw
where |y is the current passing the sensing wire angd=-RR:+Ryn. The current passing the
sensing wire is found by measuring the bridge top voltage:

(2.3)

where R is the fixed resistance of 23 in the Wheatstone bridge as shown in figuré 2.3. Using
the voltage across the wire, the total wire resistance igpced as follows:

Vi Vi
= R: = 25 2.4
v vtehi A v Ve 24)
Therefore, R becomes:
Ry = Re+ OHR X Ry (2.5)

Combining equatiors 2.5 ad P.4 results in:

oy,
Vo R.+ OHRX Ryr

(2.6)

VT and V4, are measured through the pin holes placed on each anemparededesired
overheat ratio is achieved by adjusting the voltage ratiegn{Z56) which was computed using
the LabView program. An overheat ratio of approximatelyd&a set for each channel for the
experiments carried out in the course of this study.
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Figure 2.4: DAQ architecture

2.4 Data Acquisition System

Figure[Z3 shows the architecture of the data acquisitistesy used in the experiments. Data
were sampled using a fast A/D converter with an on-boardge®ar and a buffer storing the
readings before spooling to the computer disk. A LabViewgpam was developed to be able
to control the entire sampling and synchronization proegssnong the different measurement
equipments.

A Microstar Laboratories DAP 5400a processor was used atattasacquisition board. This
was an on-board operating system optimized for 32 bit ojerat a PC expansion slot. It con-
sisted of an AMD K6-1ll + 400 Mhz CPU with PCI bus interface, 8 separate A/D converters
with 14 bits resolution. It provided 20 ns time resolutiordaimultaneous sample-and-hold
at a maximal sampling rate of 1.280° samples per second per converter with selective in-
put/output range. The DAP 5400a was connected to the anaokplane interface board,
MSXB 029, with 68-line round cable to expand the number ofncieds. Then the system
was connected to 3 analog input Microstar Laboratories esipa boards, MSXB 018. The
expansion boards were connected to each other by meandiokG&t ribbon cables. Each ex-
pansion board consisted of four 16 channel single-endexdemaors, and therefore multiplexed
64 analog inputs. With this architecture it was possibledonect and sample 192-64x 3)
channels at a rate of 52 kHz.

In these experiments the hot-wire anemometer output edtdgm 143 channels together
with tunnel temperature, tunnel dynamic pressure and sgnctation signal for the anemom-
etry system and stereo PIV systems were recorded at 30 kHitaimeously for 6 seconds long
blocks. Each anemometer was designed with a sample-add®@4) amplifier, SHC298, to
enable simultaneous sampling at all channels. A 12 bit giinput accuracy was possible for the
S/H amplifier with less than 1 acquisition time. The wide-band noise level wagsh\Qs.

An external clock was used to initialize the sampling andicthe sequence of sampling
and holding as shown in figute2.5. The sampling started vig¢hrising front of the control
signal which was about 104&. Due to 30 kHz sampling frequency, the time difference be-
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Control
signal

Sample Hold Sample

Y

10.2ps 23.1 ps Time

33.3 us

Figure 2.5: Control signal sequence.

tween two successive samples for each channel was|83.3 herefore, the maximum time
for hold phase and conversion was 2fslin total while the control signal was low before the
following rising front. As mentioned earlier the fastestgding rate for Microstar DAP 5400a
was 1.25¢10° samples per second per channel, correspondingtBne difference between
two successive samples. Since Microstar DAP 5400a has 8aep€D converters, the fastest
achievable data acquisition for the all channels in theesystas 1920.8/8=19.2ps, meaning
34 kHz maximum sampling frequency for all channels simwdtarsly. Since only 146 channels
sampled simultaneously with the maximum conversion spé@dBqus, total conversion time,
or the time between the samples from the first and last chenmak 15%0.8/8=15.2ps.

2.5 Synchronization of Measurement Equipments

An external clock with a special circuitry was designed aseldufor simultaneous sampling for
all the measurement systems employed in the experimengssifihal sequence of the operation
can be seen in figufe2.6. The steps of the operation can hitedeta follows:

1. Data acquisition was ready to start on the camera synidatoon signal (A) after the laser
warm-up signal (B) went low.

2. Atrigger signal was sent to initialize the PIV data recogg (C).

3. At the same time as the PIV starting to sample, a sequerncsevd to the A/D converter
to control hot-wire anemometers for data sampling (D). Ewane (D) went high, the
A/D converter scanned all the channels and sampled the data.

4. In order to make sure hat all the channels were sampledtammeously, a positive-edge
control signal (E) for the sample-and-hold amplifier wa® @enerated. When the mode
control was switched from hold-mode to sample-mode withptbstive-edge trigger sig-
nal, them sample-and-hold amplifier sampled the data ab@lthannels simultaneously
and held the signal until it switched to the next sample-maueing the hold-mode (low
phase of E), the Microstar DAP 5400a collected the data fieenchannels, and saved
them on the hard disk.

All trigger pulses (C, D and E) have a duration of approxiryal®.5 us. After the current
data blocks of 6 seconds was sampled, a re-activation tensgured that the system was ready
on stand-by and waiting for a new laser warm-up to start sengplf the next data block.
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A/D clock

| {

Sample and hold signal

Figure 2.6: Synchronization signal.

2.6 PIV Systems and Experimental Configurations

To be able to extract complete spatial and temporal infaonain the flow, two different com-
binations of synchronized PIV and HWR were set up. The firstséshown in figur€2]7) was
comprised of three stereo PIV systems and the hot-wire rdlm stereo PIV systems were
used to record a YZ plane located 1 cm upstream of the hotrake Each of these two PIV
systems covered a field of 30 cm in spanwise direction and 1homwall-normal direction.
The total area covered by the PIV systems was 3 cn? with a small overlap between the
two fields. The spatial resolution of each plane was 2 mm, mga20 and 40 wall units for
Reynolds numbers of 9800 and 19 100, respectively. Thessystems used a BM1:2150 mJ
dual cavity Yag Laser and 4 Lavision Image Intense PIV cameiith a CCD of 13761024
pixels and a sampling rate of 4 velocity field per second (YFA third stereo PIV system
was to record a streamwise-wall-normal (XY) plane in thenplaf symmetry (z0). The di-
mensions of the plane were 10 cm in streamwise direction &rairlin wall-normal direction.
Twice the spatial resolution for this plane was possible iug decrease in size of the plane.
This plane used a BMI 2150 mJ dual cavity Yag Laser and 2 Lavision Flowmaster PIV-cam
eras with a CCD of 12801024 and a sampling rate of 4 VF/s. Each PIV system recorded 16
samples during each block of hot-wire rake data.

In the second configuration as shown in figure 2.8, one higétitégn rate stereo PIV system
synchronized with HWR was used in the streamwise-spanwigglane to get both the spatial
and temporal information in the near-wall region. The fiaéisiew were 6.6<3.4 cn? located
at yt of 50 for the Reynolds numbers of 9800, and»4222 cnt at y* of 100 for the Reynolds
number of 19 100. The system was based on a Quantronix dugt 2a20 mJ YFL laser and
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Cameras 4 & 6

il

o Camera 1

Cameras 3 & 5

Figure 2.7: Setup 1: Synchronized 3 stereo PIV systems withirtdf 143 probes.

Camera 7

Laser sheet

-

u Camera 8§ 4 ’

Figure 2.8: Setup 2: Synchronized high repetition sterabgystem with HWR of 143 probes.

two Vision Research Phantom V9 cameras of 160P00 pixels sizing 11.511.5pum? each.
The operational number of pixels for the experiments wetecs884x592 pixels in the high
Reynolds number case and 57820 pixels in the low Reynolds number case. The sampling
frequency of the high repetition PIV system was 3000 VF/sthe high Reynolds number
experiment. The sampling frequency was then decreasedO® \IB/s for the low Reynolds
number case. In both cases 40 samples were recorded ducingpleak of hot-wire rake data.
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Uo.(ms 1) Re Configuration HWR blocks PIV records
10 19100 HWR+ XY +YZ 600 9600
10 19100 HWR+ XZ 1100 110x40
10 19100 HWR+ XZ 1blockof2.29s 6880in2.29s
10 19100 HWR 613 0
Total: 2314
5 9800 HWR+ XY +YZ 600 9600
5 9800 HWR+ XZ 1100 110040
5 9800 HWR+ XZ 1blockof1.96s 2943in1.96s
5 9800 HWR 620 0
Total: 2321

Table 2.2: Number of synchronized hot-wire rake blocks aivtrBcordings collected during the exper-
iments.

2.7 Data Recorded

Table[Z.2 summarizes the amount of data recorded duringxterienents at the two different
Reynolds number with the two different configurations of H\&iRJ stereo PIV systems. For
the first setup (figurE=2.7), 600 blocks of hot-wire data tbgetvith 600< 16 velocity fields by
the PIV were recorded for both Reynolds numbers. Following tase, 1100 blocks of hot-
wire data were recorded with the second setup (e.g., flg&)esinultaneously with 110040
velocity fields, provided by the high speed stereo PIV syst&he same number of blocks of
data was collected at both Reynolds numbers in this confignraln the end one block of
synchronized data was recorded by the high speed stereoyBt¥ns with the full memory.
This provided 6880 time resolved velocity fields of 2.29 rddength for the high Reynolds
number case, and 2943 time resolved fields of 1.96 s recogthiéor the low Reynolds number
case. In addition, after completing the synchronized nreasents, 613 and 620 blocks of hot-
wire data were recorded alone for the high and low Reynoldshaus respectively.

2.8 Seeding Particles

Poly-Ethylene Glycol was used as seeding fluid during thesoreanents. The size of the parti-
cles was of the order of im. There was no evidence of contamination of the hot-wirssen
during the experiment, nor in the calibration constantsagreement with the earlier experi-

ments ot Buchave (19779), Chatellier & Fitzpatrick (20059 &winget al. (2007). Evidence of

no contamination can be seen in appeidix C.
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Chapter 3

Calibration of 143 Hot-Wire Probes I n Situ

A method forin situ calibration of hot-wires in a turbulent flow is presented.eThethod is
particularly convenient (even necessary) for calibratarge probe arrays, like the 143-wire
boundary layer probes of the WALLTURB experiment. It is lmhe@ polynomial expansion
of the velocity statistics in terms of voltage statisticsoaiginally described bm
(1989). Application of the method requires knowing refeprofiles of the mean velocity
and higher order central moments (with the array in placéh@turbulent velocity at the probe
location at only one freestream velocity. These were obthin our experiment by a stereo
PIV plane just upstream of the probe array. The accuracyefriathod is remarkable, even
though it is a nonlinear calibration scheme. Both the praoedor implementing the method
and sample results are presented in the chapter.

3.1 Introduction

Modern optical measurement techniques (especially sohave opened new opportunities
for obtaining spatial information about turbulent flows. tBu spite of the rapid advance of
optical measurement techniques, the hot-wire anemonsesétiithe first choice of researchers
when high frequency response and temporal information erfldw are needed, especially
when the turbulence intensities are not too high30% typically). Our primary interest in
WALLTURB has been to combine multi-plane stereo PIV withemdive rakes of hot-wire
probes so that temporally resolved hot-wire data can be tasadgment and even animate the
more slowly sampled spatial and multi-component infororatrom the PIV. Unfortunately the
facility being used and the design of the probe array did Hotvdt to be removed (or at least
moved to a region of uniform, low turbulence flow) for the usesternal calibration. This
chapter discusses one of several challenging aspectssahti@stigation: how to calibrate the
hot-wire rakesn situ.

There has been vast amount of research conducted on the basie equipment, output
data interpretation and calibration since the constanp&ature anemometer was introduced
into the field in the 1960’s (see Perty (1982); Bruun (1998 kcellent reviews). A great deal
of attention has naturally been devoted to development@irate calibration methods of the
hot-wire probes. Calibration is particularly importangclause the linearization of the output
voltages from the anemometers can only be accomplished gsiefficients provided by the
calibration curves.

The conventional way of calibrating the hot-wire probe sessequires placing the probes
into a laminar flow in a well-controlled laboratory enviroant; then finding the functional re-
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lation between anemometer output voltage and the velotityegprobe location. The reference
velocity must be simultaneously measured by an indeperdiante, often by a Pitot-tube in
close proximity. This procedure is repeated at different/fleelocities and should cover the
entire range of velocities (mean and fluctuating) which roagicur during the experiment. De-
pending on the accuracy requirements, there are sevesahalives for converting voltages to
velocity. Look-up tables are commonly used, but these camolbb@ore accurate than the indi-
vidual measurements. Significant improvements in accucacybe obtained by curve-fitting
using regression techniques. Common curve fits are vamgto King'’s law (where voltage
squared is written as a fractional power of velocity, usuaar 1/2) or polynomial curve fits
(where the velocity is written as powers of the voltage (Ugua 4th order). Since the pri-
mary uncertainty in calibration is usually in the velocitydanot the voltage, the latter approach
is generally more accurate. But none of these calibratiberses work very well if velocity
realizations are obtained in the experiment that are ocaitbiel range of calibration.

Performing the hot-wire calibration by the conventionakinoelology is difficult to impos-
sible in some experimental configurations, due to mechhrestictions, space limitations or
simply the absence of a non-turbulent calibration facilitipis is especially true when hot-wire
rakes of many probes are used for multi-point measuremersurbulent velocity field. Hot-
wire rakes (with up to 139 hot-wires) have been used in axisgtric mixing layers, planar mix-
ing layers, axisymmetric wakes and axisymmetric jets tolide & extract spatial and temporal
information on the turbulent field simultaneousl| ' %elville

itriniti Igbal

et al.(lﬁéﬁgg %ﬁﬁm & EEE[E oL ;
& Thomas )). All of these applications involved freeahflows, where it was possible to

move the hot-wire rakes around and the probes could be atdifhrat least a few at a time, in
the laminar flow. For example, Citriniti & George (2000) anthdet all (2004) divided their
rake of 138 probes into five group, fitting each into the lamowibration jet and performing
the calibration of one group at a time.

The situation is more difficult in turbulent boundary layeperiments using the hot-wire
rakes of many probes in the wind tunnel, as for example the sakwn in Figurg 2.2(). One
of the biggest problem in this case was that it may not be plesgd move the rake into the
laminar flow which exists outside of the turbulent boundaryelr. Nor was it even be possible
to traverse rake to a region of the tunnel where the flow wafotmi Therefore, we had no
choice but to perform the calibration inside the turbulemwfilvhen the rake is in place.

This problem was first realized MM%) and he sugdemnin-situ calibration
method, or the so-called stochastic calibration, usingwn@ference mean velocities measured
by an independent device at the probe location. The methsahmewhat similar to the quasi-
linear hot-wire calibration technique proposedlby Geagall (1989). It finds a functional
relation (polynomial in this case) between the known refeeamean velocities and the statistics
of the anemometer output voltages including both the meliag@and the higher order central
moments of it. The highest order of voltage statistics nédde calibration depends on the
order of polynomial function chosen.

The reference mean velocities (or profiles) in Breuer’s metlwhich are assumed to be
known, must have been obtained either in advance beforakieas in place, or from measure-
ments just upstream of the probes when the rake is in place fofmer method assumes that
the existence of hot-wire probes do not create any blockage flow. On the other hand,
if the hot-wire rake is comprised of many probes, some blgeki®a the flow is unavoidable.
Therefore calibrating the hot-wire rake against mean veéscobtained in advance before the
rake is in place can lead to errors in calibration coeffigethie to changes in mean velocity
profile created by the rake itself. These errors can be gigtefeant, especially in the high
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turbulence and intermittent regions in the flow, becauserbthod forces the coefficients to
fit to a different mean velocity distribution than actualkists. In some cases, however, if the
blockage is not too severe, the blockage manifests itsalfpagential flow disturbance affecting
primarily the mean velocity distribution, while leavingetturbulence fluctuations unaffected (at
least locally). This can, of course, be justifi@zghosterioriby simply comparing the measure-
ments before and after the rake is inserted. Such was thercageexperiments as detailed by
Coudertet all (2007). We also developed a simple blockage model basedrapler poten-
tial for characterizing the effect of the rake on the flow. Tiheckage model showed that the
effect was only potential flow disturbance affecting the mealocity leaving the turbulence
unaffected (see Coudest all (2007) for further information and complete justification)

In the course of this study, we have developed and perfornmesivan situ hot-wire calibra-
tion method using simultaneous particle image velocim@®ty) and hot-wire rake measure-
ments. The new method is based on only one single refereeestfeam velocity at each probe
position, together with the higher order voltage statsstiomputed over the recorded signals at
the same location. The proposed calibration finds the begédii (in the least-squares sense)
to both the mean velocity and central moments of velocithatdrobe location.

3.2 The Method and Application

Following/Georgeet all (1989), the instantaneous velocity,can be expressed as a polynomial
function of instantaneous voltage,ds follows:

2

=Y a@ (3.1)

whereN is the order of the polynomial expansion amgdepresents the calibration coefficients.
Typically n<4, but in out experiments=a2 proved to be sufficient. If we s&t = 2, Eq. [31)
becomes:

(i = ag+ a1 8+ axé” (3.2)

Expressing instantaneous quantities as summation of mehfiletuating parts, the so-called
Reynolds decomposition, we obtain following relations: U +u andé= E + e, whereU and

E are the ensemble averages of velocity and voltage respBgtndu ande are the fluctuations
about the mean values which can be writtenlas: (0) andE = (&). (Note that( ) represents
ensemble averaging, and reduces to time averaging in arsigyi process by the ergodicity
theorem.) Averaging Eq[{3.2) yields the mean velocity ¢éiguan terms of voltage statistics:

U =ag {1} +ay {E} +ap {E* + (")} (3.3)
~—~ ~—~ —_——
() (] (0]

Velocity fluctuations about the mean velocity can be ob@imgsubtracting the mean velocity,
Eqg. (33), from the instantaneous velocity, Hq.X3.2); i.e.

u=ae+ay{2Ee+ € — (¢?)} (3.4)

Second and third order central moments of velocity are gikespectively, by:
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() = af (&) +2a12 {2E(e?) + (€°)} (3.5)

(WB) = af(e) +3afa{2E(e’) + (") — (¢7)%} (3.6)
P v
+3a125 {4E2(€%) + 4E(e") — 4E(e)% + (&%) — 2(°) (")}
(s
+a3{8E°(e%) + 12E2 (") — 12E%(€?) + 6E (%) — 12E(e%) (€°) + (&) — 3(e") () + 2(&)°}

J/

-~

]

By grouping the right hand side of the Eq4.{3.8),k3.5) dndl)(3ve obtain the following
nonlinear system of equations:

U = am+ai@r+axp (3.7)
(W) = afgs+2a13o( +a50s (3.8)
(W) = ajgs+ 3acax; + 318508 + a5 (3.9)

This nonlinear system of equations can be solved for thérdion coefficients using a
nonlinear solver in a least-squares sense. The most inmpaliféerence calibrating the wire
using this method is that the calibration is based on onlyfoeestream velocity. There is no
need to change the tunnel (or calibrator) speed and registegsponding output voltages for
each calibration point. This method requires two thingsmean velocity together with the
second and third central moment of velocity at the probetiosaand (i) central moments of
the output voltage of the anemometer, up to sixth order md¢hse.

High order statistics of the output voltage are crucial t® pinoposed method, but can be
achieved by collecting sufficiently long data using a higbotation analog/digital converter.
The highest order of voltage statistics required dependb@nrder of polynomial fit which is
set by Eq.[[311). Special care has to be taken for the accofabg calibration coefficients by
ensuring the statistical convergence of high order momeDése must be taken to insure that
clipping of the voltage output by the A/D converter does ritgict the higher voltage moments.
Thus the probability distribution function and the momerstrbutions should be carefully
examined.

Any nonlinear solver working in a least-squares sense caséafor computing the calibra-
tion coefficients. These kind of solvers are already avhalabsome matrix based programs. A
Matlab function called "Isgnonlin” with Levenberg-Marguih method was used in the present
study. Due to nonlinearity in the system of equations,ahitonditions to start the computation
are important and should be chosen properly.

3.3 Results

To demonstrate the performance of this proposed methalratibns of single hot-wire probes
were performed at two different wind tunnels speeds, 10 temd 5 m s*, corresponding to
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Figure 3.1: Comparison between velocity statistics of PiM &ot-wire anemometer measurements.
Squares represent the PIV results used for the calibrafigmobes, and stars represent the results of
calibrated probes from the measurement.

Reynolds numbers based on momentum thickness of 19100 &dd@8pectively. The probes
were placed in the wall normal direction on a vertical comlenaf double-sided circuit board.
This vertical comb was a part of an hot-wire rake of 13 veltcanb and 143 probes, in total,
distributed on a spanwise-wall-normal plane as shown if2Ei¢a).

Simultaneous measurements were performed using botlelpartiage velocimetry (PIV)
and hot-wire anemometry rake. PIV planes were normal torgesfream direction and placed
1 cm upstream of the hot-wire rake (see Couderall (2007)). High order velocity statistics
were achieved by collecting 9600 velocity field at a sampfiegjuency of 4 velocity field
per second (VF ). Expressing velocity as a second order polynomial fumctib voltage
required accurate computation of the moments of voltageougitt order. The convergence
of statistics was ensured by checking the tails of both gribihadensity function (p.d.f.) and
p.d.f. multiplied by power of fluctuating voltage from 2nd@th, as shown in the following
section.

Figure[3 compares the reference profiles of mean velowtt mean square (rms) of
velocity fluctuations and third order moments used for tHbaion, together with the corre-
sponding profiles based on the results obtained from thavivetprobes during the experiments.
Figured3.1(a) and 3.1{b) show the profiles for freestrealocitg (U,) of 10 m s and 5 m
s 1, respectively. The conversion from voltages to the velegitvas done by the coefficient
provided the proposed method. As it is seen, there is anlert@lgreement between the PIV
and hot-wire anemometer results. Further comparison weeepeerformed by checking the
fourth order central moment of turbulent velocity ag Wf 10 m st and 5 m s, and are
presented in Figsf 3.2{a) apd 3.2(b), respectively. Theeagent between the PIV data and
hot-wire data close to the wall is not as good as the mean iglsecond and third moments
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Figure 3.2: Fourth moment of velocity field. Squares repreBdV; stars represent hot-wire probes.

shown in figuref 3.1(R) afid 3.1 b), but these results arelyrhst to a convergence problem of
the fourth order central moment obtained using the PIV dathe near wall region. To be able
to quantify the agreement between the PIV and hot-wire @ataputing the relative error was
performed for mean and r.m.s. velocity, third and fourtht@moments of turbulent velocity

using the formula given below:

Yu = \7UHV¥J;3P'V\ (3.10)
Y a = |MHV¥UE>L/§7>P'V| (3.11)
Y = |<U3>H<Vt:3;p<|\ljs>mv (3.12)
Yy = |<U4>H<Vt:4;p<|\lj4>mv (3.13)

Computation of theY" using the calibration based on only one block of data regutie
approximately 1.3%10~* for mean velocities, 0.008 for r.m.s velocities and 0.080third
moments of the turbulent velocities. Even though the calibn was performed only one block
of the data with 180 000 samples, it is very clear that thécatiion works accurately with very
small errors. The error computed for the fourth central musevas about 0.150, which is
higher than the other three moments, however, still smdler& are two reasons for relatively
higher error in comparison of the fourth order momentsh@ ¢onvergence problem of the PIV
data for the fourth moment, (ii) the fourth order moment abtuent velocity was not included
in performing the calibration as it can be seen in EQs] (E373) and[3.D).

3.4 Accuracy and Applicable Range of the Method

The calibration method developed in the course of this stedyires up to 6th order central
moment of output voltage read through the anemometers. dineeyence of the statistics is
necessary for successful implementation to be able torobhigh accuracy in the calibrations.
As it can be seen in Eqs.[{B.3)-(B.6), the higher order cknmi@anents of the voltage are
used to compensate the velocity fluctuations around the wedanity. Therefore, lower order
moments, such as mean, variance, third and fourth momeaysa prucial role in the calibration
since they account the variation around the mean.

20



CHAPTER 3. CALIBRATION OF 143 HOT-WIRE PROBES

Figure 3.3: Probability distribution function, p.d.f., ebltage in high turbulence region. Circles repre-
sent the actual p.d.f. computed from the data; solid lineesgnt the best Gaussian fit to the data in a
least-squares sense.

The variability for 1" moment estimator, as given by EG{3.14), can be studiedéstiyate
the convergence of high order moments computed for a givarddength:

g, 2var(e) 2 (&) - (e (3.14)
T (2 T ()7

wherel andT represent the integral time scale and the record length esorement in time.
The ratio, 2/T, equals to number of effective samples separated by twiéntegral time
scales of turbulence, which means total number of uncaeelsamples within the measure-
ment time window. Therefore, number of samples the stesisite computed over is the most
important parameter for the convergence of the statisticthe present work, we recorded the
anemometer output data in 6 second long blocks. Each bladleiced 180 000 samples be-
cause of sampling frequency of 30 kHz for each anemometemehaln total, we stored more
than 2000 blocks of data at each Reynolds number tested mitigetunnel.

1 2

p(e) \/Z_[Gexp( &?/20?) (3.15)
Figure[3.B shows a typical probability density function nEenometer out voltage from the

rake. The computation of p.d.f. in this figure is based on dfl§0 blocks of measured data
(which is less than half of the data stored), correspondingpiproximately 200 000 integral
time scales with 100 000 uncorrelated samples effectivehtriouting to the convergence of
statistics. Here open circles, open squares and solid liesept the computed p.d.f. directly
from the data, computed Gaussian p.d.f. computed usindEtB)and the best Gaussian fit to
the data using EqL{3.]L6). (Note that the coefficients a, bedigl [3.16) are found in the sense
of least squares method.) As it can be seen in the figure, thdalken over 1000 blocks have a
distribution very similar to the Gaussian one.

p(e) = axexp—(e—b)?/c?) (3.16)
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Using Eq. [3IK) for the® central moment, which is needed for the calibration method
developed here, shows that accurate measurement of thenb2tlent is required to be able to
obtain high accuracy in the computation of the 6th centrai@iot of anemometer output. This
requirement can be seen in the numerator of EqQ.13.17) as/belo

2
€% = % (% — 1) (3.17)

One useful and easy way of checking the convergence of thst&tsis to study the actual
p.d.f.s and their moments (e.gxp(e), €xp(e)...., €>xp(e)) as shown in figure3.4. Areas
under these curves, which can be computed by taking theraitef the ordinate over the
abscissa as given by Eq.{3.18), are equal to the moments ofitiput signal{e"):

(@ = /_ o:oe”p(e)de (3.18)

In figure[3.4, computed moments from the data, Gaussiankdittn and the best Gaussian
fit in the least-squares sense are given by blue, red and lheskrespectively. These figures
show a remarkable convergence of statistics (even for tHerd@ment). The fact is that the
moments are similar to the Gaussian distribution up to therddment, and the clipping by
analog/digital conversion is not a problem at all. (Note tigping due to A/D devices is one
of the problems for obtaining higher moments.) Departuremfthe Gaussian behavior are
more clear for the odd moments higher than order 7, but the ;xaments are closer to the
Gaussian distribution for the higher modes. We can utitieerélations documented by Lundley
(1970) to compute the even moments for a Gaussian diswibas given in Eq13:19):

nlg"
e = 22(n/2)! (3.19)
whereo is the root mean square of the recorded output voltége; v€2). The variability
of the estimator for the moments up to 6th order can direalgdmputed using EqL{3114) by
plugging the central moments obtained from EG._(.19) (é§) = 0, (e*) = 30%, (€®) = 150°
and so on). Computation of the variability for the 6th momehbutput voltage yield€s
equal to 0.0212, meaning 2.12% error in the 6th central mowfeoutput voltage. (Note that
we also performed computation of the variability of the mstior for the 6th central moment
by using the computed 12th and 6th central moments from tteatal it resulted in 0.0206,
meaning 2.06% error.) As it has been mentioned before, tmplste data sets stored during the
experiments provide approximately 200 000 uncorrelatespsas for each Reynolds number
tested. This means that the variability of the 6th momenhefdutput voltage can be reduced
to 0.0150, meaning 1.50%. Therefore, the data studied swtbrk is capable of providing
accurate statistics with high convergence.

As mentioned in the introductidn 3.1, one interest in depiglg these calibration method
is to utilize it quickly (or for shorter time records) to tal®ssible changes in calibration
into account due to the laboratory environment (e.g., antliEmperature) or measurement
equipments (e.g., thermal drift). Therefore, the calibramethod has been applied for shorter
records instead of the whole record. To be able to show pegbce of the calibration method
in different regions of turbulent boundary layer, one préioen a highly turbulent region close
to the wall and one probe from intermittent region very cliosine freestream have been studied
as shown in figures3.5 ald B.6 respectively. Open squarssmirthe probability distribution
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Figure 3.4: Product of output voltage and its powers and gividby distribution given in figurd_3]3.

Circles represent the actual p.d.f. computed from the dastoutput voltage and its powers; solid line
represent the best Gaussian fit to the data in a least-sceemss.

of the moments up to the order 6 obtained from only one blodatd containing 180 000 sam-
ples. The open circles in the figures are the Gaussian diitibcomputed using Eq_(3115) for
the root mean square of the output voltage for the same bible&.figures show that the con-
vergence of the probability distribution of moments up tdear6 is satisfactory for both highly
turbulent and intermittent regions to be able to apply théhoddeveloped here. Therefore, the

method has been found to be applicable for each block of @atdtimg almost an on-the-fly
calibration scheme.

We further study the time history of the coefficients proddsy this nonlinear calibration
method as shown in figufe=B.7. The results presented hereafeur different regions of
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Figure 3.5: Moments of probability distribution functiohtbe anemometer output voltage near the wall
up to 6th order. Blue squares represent the actual p.d.fpetad from the data; red circles represent
Gaussian distribution computed using Hq. (B.15) for theesdata.
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Figure 3.6: Moments of probability distribution functiofithe anemometer output voltage in very in-
termittent region of the turbulent boundary layer up to @itheo. Blue squares represent the actual p.d.f.
computed from the data; red circles represent Gaussiarbdisdn computed using EqC{3115) for the
same data.

turbulent boundary layer, namely (a) near-wall layer, (ilg-layer, (c) outer-layer and the in-
termittent part very close to the freestream, at two difieRReynolds numbers. The calibration
coefficients for 500 different blocks showed fluctuationsuad its mean in both the near-wall
layer and log-layer. On the other hand, the calibrationfaoehts in the outer layer showed
different patterns, indicating that the calibration iscasensitive to the intermittent nature of
the outer layer of boundary layer. In the outer layey at0.759, the coefficients show a linear
trend for low Reynolds number case measured here, see[figl{icd.3rhe linear trend is differ-
ent for different coefficients so that when they combinedetbgr for converting voltages into
velocities, they compensate each other and provide theaoralues for velocities. The same
is true for the high Reynolds number case, however, the caits shows some randomness
from blocks to blocks. On the edge of turbulent boundarydasgey close to the freestream,
the coefficients obtained for both Reynolds number also shdwear trend over the blocks.
Again their slopes are organized in a way that they comperesath other to provide correct
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Figure 3.7: Time history of the calibration coefficientsdke by blocks for four different regions of the
turbulent boundary layer. (a) Near wall, (b) Log-layer, @ter layer, (d) Very close to the freestream.
Blue solid lines represents the calibration coefficientsigh Reynolds number case £4-19 100); red
solid lines represent the calibration coefficients of lowiR#ds number case ({J=9800).

results. This behavior is attributed to higher demand orreékerd length required for conver-
gence and accuracy in the intermittent parts of the turlbldeandary layer. As we increase the
record length, the random behavior disappears and actuatiyerges to the value which can
be obtained if whole 2000 blocks of data are utilized to cotaploe coefficients.

The range of validity of the calibration coefficients hasrbstidied for four different regions
of the turbulent boundary layer at both the Reynolds numbensidered here. FigurEs 3.3(a)
and[3:8(0) present instantaneous and fluctuating velsaitienputed by both the calibration
coefficients obtained from the data recorded at the samstfezen velocity (blue solid lines -
correct coefficients) and the calibration coefficients wigd from different freestream velocity
(red solid lines - incorrect coefficients). As it can be saethe figures, using the calibration
coefficients obtained from 5 nT$ freestream velocity for converting the voltages recorded a
10 m s'! freestream velocity underpredicts the instantaneousitglat all layers of turbulent
boundary layer except for the probes located on the edgeedfdundary layer (y d) at which
the prediction is very much larger than the actual veloci®n the other hand, coefficients
obtained from 5 m st freestream velocity test and used for conversion of vokageorded at
10 m s freestream velocity test yields remarkable agreementhéfiuctuating velocities. It
is also possible to observe similar agreement for all thbgs@cross the boundary layer. When
coefficients computed for the 10 m’scase are used for converting the voltage output from the
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Figure 3.8: Comparison of instantaneous and fluctuatingcitgl converted from voltage using calibra-
tion coefficients obtained first at the correct referenceaigt and another freestream velocity. Blue
solid line show the correct velocity signal created using ploper coefficients. Red solid line show
the velocity signal converted using some other calibratioefficients obtained at a different reference
velocity.

test case of 5 ms freestream velocity, neither the instantaneous velaiia the fluctuating
velocities show any agreement. The velocities lineariz#dgicalibration coefficients obtained
in a from 10 m s case produce overpredictions for all probes except the engalose to
the freestream. We also notice a completely reverse sotuédr the probes placed on the edge
of the turbulence boundary layer at 5 mtdreestream velocity. The instantaneous values in
this case are much lower than the values obtained using tlectaalibration coefficients.
Clearly the calibration coefficients must be obtained f& same freestream velocity tested
in the experiments. Use of calibration coefficients obtdiaedifferent freestream conditions
other than the reference one should definitely be avoided.

3.5 Summary and Discussions

A hot-wire calibration method in the turbulent flow has beeasented in this chapter. The
method is useful when there is no possibility of performingwentional calibration of hot-wire
sensors by means of a laminar flow field. The proposed mettsarees the polynomial curve
fitting approximation to express instantaneous velocitg &snction of instantaneous voltage.
There is only one freestream velocity needed in this metsote the method employs the
higher order velocity statistics instead of obtainingeliént freestream velocity versus voltage
relations.

High order statistics of voltage are also required to be thieplement the method. There-
fore, special care has to be taken to avoid clipping of tHe tdithe probability distributions
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Figure 3.9: Mean velocity and r.m.s. velocity profiles frootlbPIV and HWR. Squares: PIV at HWR
probe location, Stars: HWR. Inserted numbers within p&esis represent the vertical comb numbers
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and ensure the convergence of the voltage statistics. jprésent study, instantaneous velocity
is expressed as a second order polynomial function of item@ous voltage. Therefore, central
moments of voltage up to sixth order are provided with goadiescy. The results showed that
even the second order polynomial approximation results rienaarkable agreement between
reference and measured profiles of mean velocity, root nepzars of velocity fluctuations and
higher moments of turbulent velocity. Therefore, theredsiaed in this experiment to use third
or fourth order polynomial functions, thus avoiding the @es for higher order voltage statis-
tics (see figur€319 for mean velocity and r.m.s. profiles &mhevertical combs of the hot-wire
rake at two different Reynolds numbers). This is undoulytbéicause of the lower turbulent
intensities of boundary layers (typicaky30%) than in many free shear flows.

The calibration coefficients when applied smaller dataesdtgbit some fluctuations in time
from block to block. This is due to the random nature of théigtias computed over the win-
dow length taken in time. Three coefficients of the calilmatscheme, however, act together
to compensate each other to produce the correct valuesstanitaneous velocities. The range
of velocities the calibration can be applied is limited bg tieference velocity, freestream ve-
locity in the boundary layer case, at which the experimergscarried out and the calibration
coefficients are obtained.

This methods was also found to be very useful way to comperieatthe thermal drift
of anemometers with time and/or mean ambient temperaturatieas in the flow during the
experiment. The proposed method provides an opportunitiptthe calibration on the fly as
long as the convergence of the high order voltage statistiosbe satisfied. The calibration
scheme can be executed for different blocks of hot-wire ttatarrect the coefficients. There-
fore, corrections due to the changes in physical conditeamsbe eliminated by the proposed
method.
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Chapter 4

Single Point Statistics and Spectral
Analysis

4.1 Introduction

The results reported in this dissertation were a part of thkifpoint, multi-system experiment
described in chaptél 2; in particular, the hot-wire part.dAne primary goal of the measure-
ments was to establish the spatial and temporal structuhedfigh Reynolds number turbulent
boundary layer by taking time-resolved data from many gosimhultaneously over a flow area
comparable to the dimensions of the boundary layer itselfe T43 hot-wire array was op-
timized for this purpose, at some compromise to the mearciglstatistics (as noted in the
previous chapter). Nonetheless, the single point stedilstjuantities from this experiment are
of some interest: both in their own right, and because thafirco that the single point statistics
are consistent with those that would have been measuredwtithe probe array in place. For
these purposes, mean velocity profiles, root-mean-squasy yelocity profiles, profiles for the
third and fourth central moments of turbulent velocity fial@ presented for all measurement
locations. In addition, the spectral characteristics ahldorbulent boundary layers are studied
by means of power spectral densities (or frequency speartchjpre-multiplied one-dimensional
wave-number spectra. Comparisons are made of the curgaits@ith previous measurements
in the same wind tunnel. Note that correlation functiontegnal length scales and integral time
scales are presented in the next chapter, which focuseg tnwadkpoint statistics of the turbulent
boundary layer.

4.2 Streamwise Velocity Moments

As described in detail in chaptdrs 2 did 3, a hot-wire raked8fgingle-wire probes was used
for the experiments investigated in this thesis. Thesegwatere distributed on 13 vertical
combs spanning in the spanwise direction. Each of the @tamb had 11 probes spaced log-
arithmically in the wall-normal direction from wall to thegfestream. This resulted in a matrix
of probes 1k 13 on the plane normal to the freestream flow. The hot-wire ka#s synchro-
nized with PIV systems as shown in chagier 2. The experimeets carried out at Reynolds
numbers based on momentum thickness of 9800 and 19 100. Regs®lds numbers were
achieved 18 m downstream of the wind tunnel test sectioraeogr with operating freestream
velocities for the tunnel of 5 nisand 10 m &.

The mean velocity profiles, rms velocity distribution, theind fourth central moments in
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this section were computed using 1000 of 6 seconds long blofcitata at both Reynolds num-
bers. Each block of data contains 180 000 samples, and a 368ahialing frequency was used
throughout the experimental campaign. This block lengttinte corresponds approximately
to 375 and 250 integral times scales for high and low Reynoloisber cases respectively (see
B.21). This provides accuracy of the estimator for the medacity, using Eq. [[3.4), better
than 0.094% and 0.115% within the highest turbulence intensgion for Reg of 19 100 and
9800 respectively. The maximum error in the estimator fer lighest moment discussed in
this section, the fourth order central moment of the stremmwurbulent velocity fluctuations,
is less than 0.770% and 0.943% for freestream velocitie® of 51 and 5 m & respectively.

FigurelL.2 shows the scaled mean velocity profiles with isoating parameters at different
spanwise locations where each of the vertical combs waggla@\ote that uis taken from
tablel Carlier & Stanislas (2005).) Each vertical comb ispreed in a separate figure, because
there is essentially no collapse of the mean velocity pofieross the homogenous direction.
This is due to the blockage introduced by the hot-wire raledusr the measurements. The
blockage by the rake was quantified by Coudgril. (2007), who found that it creates a poten-
tial flow disturbance which affects only the mean velocitgfpes while leaving the turbulence
unaffected. This blockage effect can be seen easily in stdbfrom (a) to (I) in figuréZ12 by
comparing the profiles against the black solid lines whiehtee same in every subplots. The
black solid line is the velocity profile obtained using then\ariest formulation for the mean
velocity profile as given by Eql{4.1):

y: 2
Ut(y") = v 0
/o L4/ 1+ 4[ky* (1- exp—y+/ch))

where standard values fer 0.41, anct™, 26, are used for computation. The black and magenta
dots represent the measurements_of Carlier & Stahisla§00 Rey of 20 600 and 11 500
respectivelyl_Carlier & Stanislas (2005) performed the sneaments in the same wind tunnel
used in this study. They used single hot-wires to obtairgeocity profiles, which essentially
provides very good agreement with Van Driest profile. Theelalnd red lines show the velocity
profiles obtained from the PIV measurements performed ongneeter upstream of the hot-
wire rake for the high and low Reynolds numbers tested résedc (Note that the PIV data are
used for calibrating the wires as discussed in chdpter 3.open squares denote the hot-wire
data at the probe positions for high (blue) and low (red) R&snumbers.

As it can be seen in the figures, there is a very good agreeneénebn the PIV data and
hot-wire data. (Details and quantization of this agreencantbe found in chaptét 3.) On the
other hand, the blockage effect on the mean velocity prafibvious, especially in the middle
of the rake. The blockage is negligible for the vertical carfdrated in both end of the rake in
the spanwise direction, see figuted 4.2(a,b,I&m). The m®#ixhibit a logarithmic region of at
least a decade i even in the presence of the blockage.

Figured4B[4]4 arld4.5 compare the scaled root-meanesygakacity distributions, scaled
third order central moments, and scaled fourth order cemtaanents for each of the vertical
combs respectively. The lines in these figures are produocedthe same data used by Carlier
& StanislasmS). All the lines across the rake in the spsadirection are identical to make
comparison possible. We did not place the profiles of diffespanwise locations in one figure,
because the wall-normal positions close to the wall desifitan the design points, making it
difficult to read the figures.

Since inner variables, viscosity, and friction velocity, y, are used for normalizing the
axes in these figures, there is a very good collapse in the walklayer. By contrast, there is
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a deviation between the profiles in the outer layer of tunbub®undary layer, consistent with
the different Reynolds numbers sincedyv differ by a factor of 2. This is especially notable
for the rms velocity profiles and fourth order central morsentiote that the boundary layer
thicknessesd and 6, are nearly the same for both Reynolds numbers and the raticctoon
velocity and freestream velocity, AU, is almost identical. The latter is especially important
since it means that the outer scaling parameters from alpeting theories are identical.

4.3 Frequency Spectra

Freguency spectra of the streamwise component of the fliregutairbulent velocity are shown
in figures[ZH-ZP for the high Reynolds number case and indgfd TIFZT3 for the low
Reynolds number case. The spectra are grouped accordihgitomall-normal position, so
that each of the figures has 13 curves in the spanwise directimes indicating the ® and
k>3 are also drawn in the figures to be able to compare the sloghs spectra with theory.

The frequency spectra computed here are based on 1000 lbbdeda collected during
the measurements, yielding 3% statistical error in theregbor for the spectra. Each block
contained 131072 217 samples instead of 180000 (which is the recorded numbenusles in
each block) to be able to use fast Fourier transformatioi Effficiently. This resulted in 4.37
second long blocks, hence a frequency resolution of 0.023Adz2nentioned in Balakumar &
Adrianﬁb, long records of velocity signal at sufficigritigh sampling frequency is needed
for capturing the contribution due to the very-large scdlenotion which appears in the very
lower end of the wave number (or frequency) spectra.

As mentioned in the experimental setup chapter, the sampieguency in the experi-
ments was 30 kHz throughout the measurement campaign. gheditifrequency of interest
in most turbulence experiments corresponds to the comrepist the probe ofrRtimes the
Kolmogorov microscalejg; i.e.,

- 2my

fu (4.2)
where f; and U are highest frequency at which the turbulence kinetic gnéigsipates and the
local convecting flow velocity. The Kolmogorov microscatediefined as:

174 (4.3)

Nk = (v3/e)

wheree is the rate of dissipation of turbulence energy per unit m@sslier & Stanislas (2005)
made estimates of in this flow from both PIV and hot-wire data using the assuoipif
local isotropy. Using their estimates, the highest fregyeof interest in this experiment was
predicted to be 10 kHz, and would be observed at arotiraf 0 (actually near where the peak
of the rms velocity fluctuations is found). Therefore, in@rtb to satisfy the Nyquist criterion,
a sampling frequency of 30 kHz is chosen.

The finite length of the sensing wire of hot-wire probe, hogreacts as a spatial low-pass
filter, since the sensing wire only resolves scales largen tivice the wire length. The wire
cut-off frequency, as suggestediby Glauser & Ge 1@@P)be defined as follows:

_ Y
~ 20,

where £ and/,, are the wire cut-off frequency and the wire length respedtivin turbulent
boundary layers, the convection velocity increases froenwthll to the freestream, so the wire

fo (4.4)
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Figure 4.1: Comparison of wire cut-off frequency and highfesquency of turbulence at dissipative
scales. Triangles represent the wire cut-off frequencyiaBes denote the highest frequency computed
using isotropic turbulence assumption.

cut-off frequency also increases in the wall-normal dimett Figurd 4]l compares the wire cut-
off frequency with the highest possible frequency in thectpen (using the aforementioned
isotropic turbulence estimates). As can be seen in the fidi®), the wire is able to resolve
all the scales at each wall-normal position in the boundayer for Rg of 9800. For the high
Reynolds number case, the wire resolves all the scales afi@fe800, but near the peak in the
turbulence intensity it only resolves to abous®,. This is not of concern in this work, because
the aim of this investigation is to study the large scalergetec features of turbulence, hence
low frequency (or wavenumber) motion. Furthermore, we wapdigital filter at 3 kHz and

1 kHz for high and low Reynolds number experiments to remawereise sources at higher
frequencies. Special care was taken in digitally filtering signal and a precisely zero phase
distorting digital filter is applied to the signal. This waspecially importantin cross-correlation
analysis and in building the two-point cross-spectral ¢e@s the kernel of proper orthogonal
decomposition integral equation. The cut-off frequencyg wat optimized for each channel of
hot-wire anemometry, therefore we observe slight diffeesnin the high frequency end of the
spectra.

We have detected some negligible low frequency noise ingbetsa due to the electronics.
These noise contributions are found at 278 Hz and its harea@ti558 Hz and 834 Hz. The
noise is only detectable in the outer layer of turbulent latzum layer, where the turbulence
level goes down significantly so that the noise becomes appaiThe noise found in these
frequencies is in the form of a spike with no significant areder the spike. We have also
observed some noise, also in the form of spikes, very closketdreestream. In the spectra
shown in figure§416-4.1 3, these spikes have been removederigrgy due to these spikes was
less then 0.07% and 0.20% of the total turbulence kineticggneat the low and high Reynolds
numbers respectively.

The spectra shown in figures¥.6-4.13 are grouped accorditigetr wall-normal position
on the vertical rakes as mentioned above. Therefore, itpeard to have a collapse of the
spectra from the same wall-normal position in the homogeseélirection. On the other hand,
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the positions of the probes relative to the wall varies shigtiue to mechanical manufacturing
imperfections. The variation is relatively larger esplgitor the first three probes closest to
the wall. This is why we observe some variations in the spantthe spanwise direction.

One common feature of all the frequency spectra shown irethgsres is that they have a
flat region in the very low frequency part of the spectrum, atidbff monotonically as the fre-
guency increases (like those observed in one-dimensipeats of homogenous turbulence).
This will be seen to be of some interest in the next chapimem 0) states:

“..., we know that, if B| (r) is nonnegative, the corresponding one-dimensional

spectrum, ﬁ_)(kl) (its Fourier transform sic), will have its maximum at thegamni,
while if the one-dimensional spectrum has its maximum elteae, B (r) will have
negative regions.”

Note that the inverse is not necessarily true, and we wile@ttisee negative regions in the
streamwise velocity correlations.

There is some limited evidence for the existence of a sdeeinge where the spectra decay
ask! as suggested, for example, by McKeon & Morrison (2007). Fer high Reynolds
number case, only figute3.7(a)'(= 100) exhibits about a decade of decay at a rate very close
to k! slope. For the low Reynolds number case, however, it is plessi see almost one decade
of k! range at ¥ of 55 and 114 as shown in figuies4.11(a&b).

The spectra shown in this chapter reveal some interesting &out the ®'® range. First of
all, there is no such a range beloWwy 220 for the high Reynolds number case, and 230 for the
low Reynolds number case as shown in figlirek 4.7 (bjandl 4.6eKjoectively. Development of
the k3 range begins to be observed atof 445 for Re of 19100. We see approximately two
decades of 3 range in the outer layer of the boundary layer at this highriils number.
The picture is the same for the lower Reynolds number studidte course of this thesis. The
k3’3 range exists atyof 465 and above. These observation suggest that therdlpdtuao
significant inertial range, meaning there is no true sejmaralf scales, below approximately y
of 450. This is consistent with the arguments of George & il@$1997) and George (2006)
for the existence of a “mesolayer” in which the viscous stiesnegligible, but the energetic
scales of turbulence are still influenced by the viscosity.

4.4 Premultiplied Spectra

The premultiplied one dimensional wavenumber spectraeo$tteamwise velocity fluctuations
versus streamwise wave number are presented in figurk 4Helfr@quency spectra and fre-

guency can be converted into one-dimensional Wavenumla:etrspFl(ll)(kl)) and streamwise
wavenumber (K respectively using the Taylor’s frozen field hypothesks,, i

U
Fiik) = >SSu(f) (45)
kg = 3—"f (4.6)

Cc

where U is the local convecting velocity anflis the frequency. Each subplot of figure 4.14
contains the premultiplied wavenumber spectra of both Blelgnumber cases at the same y/
in the wall-normal direction.
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We observe broad peaks at the very low wavenumber end of émeyttiplied spectra for
the high Reynolds number experiment developing*abfy100. Between ¥ of 100 and 890
(=0.13") there is a peak in the spectra arourld€ 1, which corresponds to wavelengths

of approximately @. This is certainli in agreement with the wavelengths sugilsy Kim &
Adrian L’ITBD) for pipe flows a zin__(ZbOY) tvannels and boundary layers.

The peak starts moving towards the lower end of wavenumbar ¥vall-normal position of 7Y
to 100y". The peaks do not move much within the log layer and move tjigbwards higher
wavenumbers in the outer layer.

Figure[4TH also shows that the premultiplied spectra daaleuter variables collapse out-
side of the overlap region, (g) - (k). Also the spectra from plosition in the viscous sublayer,
(a), have the same shape but differ by a factor of 2, almostigxhe difference id* between
the two experiments. Thus, as expected, these spectradsfama do) collapse when plotted
using inner parameters for normalizatierand u.. There is no scaling, however, that will col-
lapse the spectra in the overlap region, (b) - (f), sincedtmes/e very different shapes. This
provides strong support for the idea this overlap regiora@ly a composite of the inner and
outer regions, and not independent of either, at least d@é fidéynolds numbers. Whether it
can be considered in the limit to be a function of onjyandy as commonly assumed (c.f.,
IMcKeon & Morrison (2007)), or uand U, (as argued by George & Castillo (1997)) cannot
be established from these experiments since the ratit)l is the same for both Reynolds
numbers.

4.5 Summary and Discussion

In this section single point statistics obtained using tbewvire rake have been presented.
The measured data by means of some velocity profiles werecatlapared with the previous
measurement done in the same facility. The effect of bloekagthe mean velocity profiles
was also shown in this section. Single point spectral amatgyeal some important findings.
The k! range is found to be very small in a very narrow region of thbulent boundary layer
aroundy™ = 100, which might be attributed to the Reynolds numbers dest¢his study. The
k>3 range, according the figures presented here, starts dawglaiper y of 220 and becomes
an important part of the spectra aftérgf 450. The premultiplied spectra collapse in the outer
layer of turbulent boundary layer. The flat region in the pu#iplied spectra is seen only
near approximatelyy= 100 for both of the Reynolds number studied here. Also tfferdnt
shapes of the spectra in the overlap region suggest strarigpendence on Reynolds number
consistent with different inner and outer velocity regidmsthis developing flow.
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Figure 4.2: Normalized mean velocity profiles. Blue squaned lines: Hot-wire and PIV at Be=19 100 respectively, Red squares and line: Hot-wirg
and PIV at Rg =9800, Black and magenta dots: Measurement by Carlier & 8&n{2005) at Re=20 600 and 11 500 respectively, Black line: Van

Driest velocity profile. (a):3 =-0.46, (b):-0.33, (c):-0.20, (d):-0.09, (e):-0.04, @013, (9):0, (h):0.013, (i):0.04, (j):0.09, (k):0.020;@.33, (m):0.46
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Figure 4.3: Normalized root-mean-square velocity profite8)'/2/u,. Blue squares: Hot-wire data at )e19 100, Red squares: Hot-wire data at
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Figure 4.6: Frequency spectra of the first, second and tbwgd of hot-wire rake about §/of (a): 0.001,
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denotes the frequency spectrum of turbulence at diffeigantwise location.
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spectrum of turbulence at different spanwise location.
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Chapter 5

Two-Point Cross-Correlation Analysis

5.1 Introduction

The large scale motion in turbulent flows has received mutdn@bn since the Townsend’s
“large eddy” hypothesis (see Townsend (1976)). Thesetstres were first inferred from his
observations of the long tails of the correlation functidrsseamwise velocity fluctuations.
Townsend regarded these motions as “inactive” and thoungimh tto be dynamically passive
structures. They contained approximately 20% of the tencg kinetic energy and made no
significant contribution to the Reynolds shear stress dgetall wall-normal component of ve-
locity fluctuations occurring at these large scales. Olwieatures of these large scales can be
observed by eye in nature and visualized in laboratory enments. Multipoint measurements,
phase averaging and conditional sampling techniques hese &mployed to investigate these
large scale motions, as researchers have tried to extraetinformation about these structures
other than just shapes of them. Even though quantifyingettrsictured large scale motions,
the so-called coherent structures, by the aforementiorettiods has been proven to be diffi-
cult, it has been realized that these organized motionscialyy dynamically important and
influence physical processes within the turbulent flows. nipias include transport of scalars
and momentum, mixing, heat transfer, aerodynamic noisg, diow-induced vibration, etc.

Recent experimental and numerical studies on the large &eatures of wall-bounded tur-
bulent flows have revealed some important results regatmginematics of these structures.
Advancement of particle image velocimetry (PIV) as a meas@nt tool and the possibility of
conducting high-resolution direct numerical simulatigPNS) in large computational boxes
have made it possible to address some of the open questiatedréo these large scale struc-
tures. Even though there have been many laboratory expatsraed numerical simulations,
most of them have actually been performed at small or intdrate Reynolds numbers. How-
ever, turbulence scales in wall-bounded flows have a gre@tyaanging from the viscous
length to the boundary layer thickness. Furthermore, thrgtion also is a function of the
Reynolds number so that the higher the Reynolds number,réatay the difference between
sizes. Since most of the industrially important problenes ldgh Reynolds number flows, it
is very crucial to perform high Reynolds number experimemtd simulations to be able to
address these issues correctly.

A recent and detailed review hy Adrlah (2007) provides theent state of knowledge on
the large scale organized features in wall bounded flowss& lege scale motions can range
from one boundary layer thickness to the scales on the order of ten boundary layer thickness,
or more. Some of the suggested coherent and energeticisscre, for example, low and
high momentum streaks, bulges, hairpins, quasi-streagwvadices, and elongated structures
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in the log-layer, and even in the wake region of the boundaygil. The most important aspects
of large scale motions as documented by Blackwelder & Kawag2972) are their contribu-
tions to the turbulence kinetic energy, such as approxima@o of the kinetic energy due to
streamwise fluctuations, and almost 80% of the Reynolds stesss in the outer layer of the
turbulent boundary layer.

Early investigations by Favret all (19572, [1967) on the large scale structures of turbulent
boundary layers using two-point space-time correlatiatyais documented a large aspect ratio
of the space-time contour lines along the mean flow diredboith upstream and downstream).
They also noted transverse and lateral dimension of thesgaied contour lines being on the
same order of magnitude. Even though the long tails of autelaiion functions indicated
long structures in the streamwise direction, two-pointsggtime correlations provided a better
picture of the dimensions of these scales. For this reasomas¢nayet all (1970) utilized
the two-point space-time correlations maps for very lorpsations: first identify the largest
scale of motions, and second to suppress the contributibemall scale structures. Their
study revealed that individual bulges in the turbulent lotarg layer were three-dimensional
and elongated in the streamwise direction. These elongatectures were on the order of the
boundary layer thickness with an aspect ratio of 2:1.

These long structures in the wall bounded flows created a mamedeficit, which is usu-
ally referred as low speed streaks. Klieeal. (1967) showed the low speed streaky structures
in the near wall region and came up with a proposal descrithieg relation to ejection and
sweep phenomena. The break-up of streaks in the near wadhrager being lifted-up were
thought to be a main turbulence kinetic energy source in #d& wall region. These obser-
vations supported the counter-rotating vortices propdseBakewell & L umley (1967) of a
dominating large scale structure with significant amourtudbulence kinetic energy. The low
speed streaks are associated with long quasi-streamwitseegy which are actually the legs of
the hairpin vortices proposed by Theodarsen (1952) as aeotstructure of turbulence in the
near wall regionl(Hommema & Adrian (2002)). The long quaséamwise vortices induce a
velocity field around itself, resulting in low momentum fldirdm the near wall moving upward,
hence forming low-speed streaky structures.

PIV measurements of a turbulent boundary layer from theebuéyer to the top of the
log layer byl Tomkins & Adrian|(2003) revealed the large sdale speed structures in the
streamwise direction as the dominant feature of turbuleddeey were also able to identify
the difference between the near-wall streaky structurdshaghly elongated low speed (or mo-
mentum deficit) structures of the log layer. The latter ons ¥eaind to be larger than 500
viscous wall units in the spanwise direction, which is fivaeds larger than the spacing of low
speed streaks in the near wall region as documentéd by Kiiaé (1967). Similar observa-
tions were documented by Ganapathisubrareaall (2003/2005) using PIV measurements in
the log layer of turbulent boundary layers. These very ldoggated structures have been at-
tributed to the packets of hairpin vortices, which are fotmbe the Iargest source of Reynolds
shear stress within the log layer ; Tomkins
& Adrian (2003/2005): Ganapathisubram (2003)). These findings supported Head &
BandyopadhyayL(_’I__9_Bl) who essentially visualized thersios of hairpin vortices into the
outer layer.

Recent findings on the large scale elongated structuresitothlayer suggest that these
low speed streaks may have a length scale up to twenty boutayar thicknesses (or channel
width and pipe diameter). The PIV images collected by theegrpents mentioned above had
a finite window on the order of one boundary layer thicknesgshese elongated structures ex-
ceeded the limits of the windows. Therefore, hot-wire orfilot anemometry measurements
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in connection with the Taylor’s frozen field hypothesis haeen carried out to find out about
the length of these energetic features of the wall bounddmlience. In this context, Kim &
Adrian ) studied the large scale features of turbydgre flow within the log layer using
hot-film measurements. They documented that the streanumiggrm momentum zone had
wavelengths up to fourteen pipe radii, and hence named ttesgures Very Large Scale Mo-
tions (VLSM). They also proposed a conceptual model for th&M in connection with the
hairpin vortex and vortex packets. According to this piefWWLSM appear once the vortex
packets line up in the boundary layer and connect the low m&umeregions of each of these
packets. Following this study, Guatd al. (2006) investigated the large and very large scale
of motions in the turbulent pipe flow using cross-hot-film m@@ments and smoke visualiza-
tions. They also noted VLSM having wavelengths more thatesix pipe radii. They made a
distinction between the very large and large scale motiook that the latter had characteristic
wavelength of two-three pipe radii. One of their importantlings was the turbulence kinetic
energy and Reynolds stress largely carried by these veyg krale motions. In particular, 50%
of the turbulence kinetic energy and more than 50% of the Blegnshear stress are carried
by these very large scales, consistent with the earlierreagens of Blackwelder & Kovaszhy

). More recently, meandering of the very large scaldanaf wall bounded turbulence
revealed that the size of these large scales might go up to@adary layer thickness, channel
width or pipe radius| (Hutchins & Marusic (2007); Mongy al. (2007)). "Hutchins & Marusic

) also showed how deficient the single point statistiesor capturing the VLSM and its
meandering features. Like the experimental studies shpthie VLSM in wall bounded flows,
the very large DNS simulation by J. Jimenez and his grouprtegsimilar findings from the

numerical experiments on the fully developed channel fleag. (delAlamo & Jimenez|(2003);
delAlamoet all (2004)).

The current study aims to investigate these large and vegg lscales of motion in a high
Reynolds number turbulent boundary layer using the novelhe rake of 143 single wire
probes. Most of the aforementioned investigations are leynRlds number experiments, and
as pointed out earlier, there is a clear need for investigatiese large scale structures and
understanding their kinematical and dynamical propentieshigh Reynolds number turbulent
boundary layer. The current study also aims to fill the gapben these intermediate Reynolds
number and high Reynolds numbers. The large LML wind tunnatipes a very thick bound-
ary layer of about 30 cm with resolvable small scales. Thewicg rake with many probes
distributed on an array enables us to look at both spatialtemgboral characteristics of the
turbulent boundary layers by means of multiple-point crosselation analysis. The results
presented in this chapter are of two-point cross-coratiobserved in a turbulent boundary
layer at Reynolds number based on momentum thicknegs odR&9 100 and 9800.

5.2 Computation of Two-Point Cross-Correlations

The two-point cross-correlation tensor for turbulent baany layers in a Cartesian coordinate
system can be written as follows:

Ri,j(x7xl7y7yuzuz/7t7t <U|(X y7Zt X/ )/ Z/t (51)

where the subscriptsand j present different components of fluctuating turbulent eyo(u, v,
w). Hereu, v andw are the turbulent velocity components in the streamwisé;weamal, and
spanwise directions respectively) represent the ensemble averaging, adenotes different
spatial positions in X, y, z coordinates and a different tingénce the turbulent boundary is
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stationary in time, and statistically homogeneous in ttemspse direction, the two-point cross-
spectral tensor is a function of separation in these doesti Sincert =t' —t andAz=Z7 —z,
therefore Eq.[{R]1) becomes:

R.i(%X, %Y, 02,1) = (Ui(x,y,zt)uj(X,Y,z+ Azt + 1)) (5.2)

Due to stationarity, Fourier transformation of the twosgaiross-correlation in time yields
the two-point cross-spectral tensor which can be writtelned@w:

S,j(xvxjvyv)/7sz f) :/ ﬁi,j(Xv)(vyvyvAZ?T)eiizndeT (53)
wheref is the frequency correspondingto

Considering only one downstream position results in tngathex = X' in Eq. (&3) as a
parameter. Thus, EJ_(%.3) reduces to:

Si0Y.02. 1) = [ R (.Y, 02 1)e 2t 54)

As mentioned in the experimental setup section (chaptdre)ot-wire rake was comprised
of single wire probes, hence only the streamwise compori¢atmilent velocity was measured.
Therefore, the subscript@nd j in the equations above will be omitted for simplicity.

The analysis technique following the equations listed teé@an be described as follows:

1) Instantaneous streamwise velocities were measured3gbdiat simultaneously by the
hot-wire rake which was also synchronized with stereo-Bistems.

2) Fourier transformation of velocity signals was perfodme time for finite size record
length:

T/2

Az 1) = [ ulyztje 2t (5.5)

~T/2
whereT is the record length for each block of data taken into Fouremsformation. Even
though the length of each block of hot-wire data was 6 secaovitts 180,000 samples, for
computational efficiency each block was divided into mowcks with 16,384 samples corre-
sponding to 0.55 seconds record length each. A fast Fouaesformation (FFT) algorithm
was used to obtain the Fourier coefficients.

3) These steps were repeated for all possible configurabtaired from the hot-wire rake
which was 143 =20,449 in our case.

4) Two-point cross-spectral estimates were computed ardehsemble (or block) averag-
ing was performed:

51,1(}/,)/,2,2/, f) — <u(y7z7 f)l_Jr (y7zl7 f))
where( ) and* represent the ensemble averaging and complex conjuggtectasly. In this
study the total number of blocks was 1000, resulting in 3%reof the estimator for the two-
point cross-spectral tens@, 1(y,Y,z Z, ).

5) To map the two-point cross-spectra from frequency dorbaitk to the time domain,
inverse Fourier transformation was performed to obtainttt@ point cross-correlation as a
function of separation in time;

(5.6)

T/2 i2mft
RuY.220 = [ sy 22 neds (5.7)
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6) The frozen field hypothesis of Taylor is implemented ano-pint cross-correlation with
separatiox in streamwise coordinate was obtained:

Rl,l(AX7y7yuzuz/) = Rl,l(yuylazazlar = _AX/UC) (58)

where U is the convection velocity. As documentediby Krogsadll (1998) using two-point
correlations in a turbulent boundary layer, the local mealoaity is a good approximation to

the convective flow velocity. A recent study by Dennis & Nit«¢2007) on the use of Taylor’s
hypothesis showed how accurate the field can be represesitggithe frozen field idea, and it

was found to work very well in the log-layer of wall boundedak

5.3 Two-Point Correlations in the Streamwise - Spanwise Ptae

In this section we present streamwise-spanwise (XZ-pleoeelations. The correlations were
obtained for constant wall normal positions, meaning thay’y Spanwise coordinate of the
reference probe was always-@. The data, or the correlation maps, are the two-point eross
correlation coefficients defined as follows in its most gahrm as:

pl ]_(AX,Ay, AZ,T) — R]_’]_(X, X,,y,yl,Z,Z,,t,t,> — <U1(X, y7 Z,t)Uj_(X/,y,Z,,t/» (59)
’ Ri1(X, XY, Y,z Zt,t) (u1(x, Y,z t)ui(x,y, z t))
This was simply computed by dividing the two-point crossrelations by its maximum value
on the plane, which was found when the separation in spacgraadvere zero. The maximum
value in each two-point correlation map is one, therefoeeatttual maximum correlation found
in each plane will be displayed separately below.

Figured &l an8 2 presents the two-point cross-corelatbefficients in the XZ-plane.
The first figure shows the correlation contour lines frofmo§ 7 to 1805 & 0.29) for the high
Reynolds number case. The second figure shows the corretaiefficients for the last three
wall-normal locations closest to the edge of the boundargriaSince these are the correlation
coefficients, the maximum value found in each of these figigels representing the value
for the correlation of the probe by itself at the same instamime, or at the same streamwise
location (with use of Taylor’s hypothesis). Therefore sgégures should be discussed together
with figure[&5, where a slice through the real correlationtoar lines atAz =0 is performed
along the x direction for different wall-normal position3he peak found in each of these
figures represents the denominator of £Q.1(5.9), which igdin@nce of the streamwise velocity
fluctuations at the corresponding wall-normal position.

As it can be seen in the figures, the size of the positive ciogls contour lines within
the viscous sublayer is quite limited betweef.5d in length in the streamwise direction, and
+0.25 in width in the spanwise direction. We observe almost no tnegaorrelation in the
planes shown in figurds%.1(a&b). The contour lines are #ligllongated in the streamwise
direction. Elongation of the contour lines becomes moreals/as the plane moves away from
the wall. Once the plane is above the buffer layer, shown uréig.1(c), very long elongated
correlations appear. These elongated large correlatiotoucs are negative, which actually
corresponds to the long tails of autocorrelation functiobserved by Townsend (1976).
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Figure 5.1: Two-point cross-correlation coefficients (Wl&ne) at constant wall-normal positions agRe
of 19 100. The figures present the correlations between titeedocated at-z0 and the probes at the
same Y location on each plane. (a)y=7, (b) y" =22, (c) y" =50, (d) y" =100, (e) y =220, (f)

y =445, (g) y- =890, (h) y* =1805, y= 0.25. Red contour lines denote positive values [0.025 0.1 0.2
0.4 0.8 1.0]; Blue contour lines denote negative value®29-0.05 -0.075 -0.15 -0.20].
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Figure 5.2: Two-poaint cross-correlation coefficients (Jl&ne) at constant wall-normal positions. The
figures present the correlations between the probe locatedleand the probes at the same wall-normal
location on each plane at Ref 19 100. (a) y= 0.59, (b) y= 0.759, (c) y= 0. Red contour lines denote
positive values [0.025 0.1 0.2 0.4 0.8 1.0]; Blue contouedidenote negative values [-0.025 -0.05 -0.075
-0.15 -0.20].

The contour lines representing the correlation coeffisigiet wider in the spanwise direc-
tion as the plane moves within the log layer towards the fream. If the strength of the two-
point cross-correlations are not taken into account, tbegated structures exists everywhere
in the turbulent boundary layer from the top of the bufferdato the freestream (or simply in
the region where outer equations are the governing equafitormean momentum equations).
Figure[®5 shows that within the log layer, the maximum pesitorrelation on the plane is
between 0.5 and 0.6. This suggests that the upper part obghlayer and the bottom part of
the outer layer are the regions with the strongest elongeggdtive correlations. In this region,
the ratio of the smallest correlation (largest blue cotietg to the peak af\x = Az=0 has its
maximum value, meaning they are very strong relative to tagimum correlation. Even at
the wall-normal position of 0& as presented by figureb.1(h), there is significant streaugth
length in these structures elongated in the streamwisetuire

Since the turbulence intensity goes down substantiallyerupper part of the boundary layer
(as shown by the peaks of the two-point cross-correlatinrigjure[2.5(i,j&k), the correlation
coefficients presented in figuteb.2 demonstrate the wealafake correlations in the region
of half of the boundary layer thickness to the top of the baupdayer compared to the other
XY-planes within the log layer. Interestingly, the footmis of the elongated structures still exist
in the second half of the turbulent boundary layer. The lastplanes close to the freestream
show some oscillation in the contour lines. This is mainlg do two reasons; first very low
level of turbulence at these wall-normal positions so thatteonic noise becomes visible and
correlations are very sensitive to the disturbances franirdestream only, and second the high
level of intermittency in the region. Even though the statsspresented here are computed over
1000 ensembles, the oscillations are still present, stiggethat the source of oscillations is
not lack of samples. In fact, the same electronic noise®aistach probe; however, due to high

55



Structure of Turbulent Boundary Layers

levels of turbulence and correlation, they do no appearerfijures.

5.4 Correlations in the Streamwise - Wall-normal Plane

Figuredd&.B anf 8.4 present the two-point cross-correlataefficients of the high Reynolds
number case in the same fashion as shown in figiurds 5.1 ahdHef the contour lines
show the two-point cross-correlation coefficients on thesshwise-wall-normal plane located
at z=7Z' =0. Each of the subplots presents the cross-correlationpatmn using one reference
probe and all the other probes in the wall-normal directioih@ same spanwise location, thus,
Az =0. Note that the abscissa shows the streamwise distan¢eypstream and downstream,
and the extent of the axis increases as the reference probesraway from the wall. This is
due to increasing convection velocity from wall to freeatre

One interesting observation is that the contour lines ferXi-plane are confined into a
relatively small field within the buffer layer, which is castent with figure[Gll(a&b). The
smallest area covered by the contour lines is found for theepwint correlations computed
using the probe closest to the wall as a reference probenasecseen in figured.3(a). The cor-
relation contours cover larger areas as the reference pnokes away from the wall. Similar to
the previous XZ-plane correlations, elongated correteticovering almost the entire boundary
layer are observed once the reference probe is in the l@g-tayd above. The area covered by
the contour lines representing the positive correlationghe plane is always larger than that on
the XZ-plane. This is attributed to the velocity gradierdttbxists along the wall-normal axis.
Higher convective velocities with an increasing wall-natmistance result in faster propagation
of the information for higher wall-normal position. The etimportant large scale structure
is the bulge, which shows up in the shape of the positive aorioes. In the log layer, the
positive correlations denoted by red contour lines suggesength scale on the order of five
boundary thicknesses in the streamwise direction and upr®libundary layer thicknesses in
the wall normal direction.

Similar to the elongated structure correlations found @XB-plane, negative correlations
appear above the buffer layer. They get stronger as theereferprobe moves into the log
layer and the bottom part of the outer layer. Since the vabfiise contour lines and the peak
values on each of the figures are the same as in fifures 5[IAndessee the same elongated
structures; however, they are clustered in this case, Becaach XY-plane covers the entire
boundary layer.

Figure[E4 displays important features. First of all, therelation values at each subplot
is very small compared to the ones obtained in the log layevelRheless, they show how
the intermittent flow in the outer region of boundary layebtlence penetrates into the entire
boundary layer, including the near wall region.

A better picture of the relative strength of these elongatadelations with respect to the
peak found on each XZ-plane, together with the relative sfabe peaks among themselves,
is provided by figuré®]5. Even though there are long taildha ¢orrelations for within the
buffer layer, their magnitudes are very small in comparisaihe peaks found at the other wall-
normal positions, see for instance figured 5.5(a&b). In tigeldyer, the magnitude of the tails
becomes larger, but in the negative direction. Also the paskes go down, hence the relative
importance increases significantly. The last three crestiems obtained from the planes above
half of the boundary layer thickness are substantially En#ian the others presented.
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Figure 5.3: Two-point cross-correlations (XY-plane) aflz The figures present the correlation between
the probe at one wall-normal position and the rest the prabdéise same spanwise location atgRé

19 100. (a) y =7, (b) y" =22, (c) y" =50, (d) y" =100, (e) ¥ =220, (f) y" =445, (g) y =890, (h)

yT =1805, y= 0.23. Red contour lines denote positive values [0.025 0.1 0.D@B4..0]; Blue contour
lines denote negative values [-0.025 -0.05 -0.075 -0.120]0.
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5.5 Correlations in the Wall-normal - Spanwise Plane

Two-point cross-correlation coefficients for the wall-mad-spanwise (YZ) plane of the high
Reynolds number experiment are shown in figlres 5.6[add Shéselfigures represent the
correlation coefficients computed for a reference probeadhthe other probes on the same
plane. The reference probe is always aDzand moves from the wall to the freestream. The
scale used in each of the subplots is the same, and varieedret®.1 and 1. The cross-
correlations are normalized by the maximum correlationnensame plane, which is the same
as in the previous figures, simply the variance at the poitii@feference probe. The y axes in
the figures are normalized by the viscous scaje,

Figuredh.b(a&b) present the results within the buffer tayfehe turbulent boundary layer.
We see very a very narrow correlation between the first twbgsdocated at’yof 7 and 22 and
the third probe on the same row located ab§50. The correlation between these two positions
in the buffer region is very large because the maximum vagaof fluctuating velocity is also
found in this region. The correlation does not extend veryrfaither the spanwise direction
or in the wall-normal direction. Once the reference probev@sao y of 100, we see the
development of correlations between the probes, coverlaggar field on the plane. Since the
variance within the log layer does not change much, we caoleda that the largest structures
are found in this layer. Above'yof 100 and below of wall-normal distance of 8,2he large
scale motions are quite active as can be seen in figures F)&raL.T(a&b).
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The correlations within the outer layer as shown in figlréklhc,d&e) seems to be con-
fined only into this region. There does not appear any sigmificorrelation between the outer
layer and inner layer. This is somewhat confusing becausdlifficult to observe any of the
large scale or very large scale motions on the two-pointscoosrelations constructed on these
planes. This might be due to how the computation is perfornibd contour lines are obtained
using the cross-correlations between each and every pisdxtio the rake. Some subset of
these correlations are presented in figlired 5.3-5.4. Tolbe@mbompute the correlations on the
YZ-plane, the two-point cross-spectra between differeabges are integrated over frequency,
which finally produced the two-point cross-correlationshagero time-lagtr =0, as given by

Eq. (&10).

RYY.2Z.1=0) = [ Sualyy.27,f)df (5.10)

The integration smears out the details and yields an aveiagee. Therefore, in this plane we
do not observe the previous finding about the elongated krgle structures.

Figure[58 shows the cross-section along the spanwisetidimeiaken from the two-point
cross-correlation coefficients presented in figlirek 5.65Ad Each subplot of figuie3.8 rep-
resents the cross-section taken from the wall-normal jposat which the reference probe was
placed. Thereford,5.8(a) is the cross section df 5.6(aj af y¥,[5.8(b) is the cross section of
Bd(b) at y of 22 and so on. Here we present the actual cross-correladioes instead of the
coefficients. This information is also useful in evaluatihg relative strengths of each subfigure
of YZ-plane cross-correlation coefficients discussed@arhgain, the peak of each subplot of
is the correlation with zero separation both in spaceteneé, hence it is the variance of
velocity fluctuations. These peaks are equal to the peakepied in figur€hl5.

As with the contour plots of the two-point cross-correlatamefficients with zero time-lag,
each wall-normal position, or each layer of turbulent bamgdayer in more general, produces
distinct contour lines in the boundary layer. The picturedmes more clear in the cross-
section plots presented in figurels.8. In the buffer regiboya by figure§518(a&b), there is a
sudden drop of correlation even with the smallest possipasation in the spanwise direction
for the hot-wire rake. This strong decrease a0Dzyets weaker as the reference probe moves
along the wall-normal direction toward the freestream. He log layer the cross-section of
the two-point cross-correlation is rather broad with noughbrchanges in magnitude between
successive separations in sphcé 5.8(d,e,f&g). For théHest subplots which are the cross-
section of the two-point cross-correlation for which théerence probes were between 0.5-
1.0, the correlation is very weak compared to the other crosseses taken closer to the wall.
The last subfigure, figufe5.8(l), shows the peak of each «eston to compare their relative
magnitudes.

Other cross-sections of the correlation coefficient on tep¥ane along the wall-normal
direction are presented in figureb.9. This figure shows hdferent wall-normal positions
of boundary layer turbulence are correlated with the othai-mormal locations on the same
vertical axis. As it can easily be seen, the cross-cormiatalways go to zero when the probe
located at yapproaches the freestream as expected. On the other harmhrtklation curves
between the probes located anywhere in the boundary lageharones located within the near
wall region reveal some finite, significant correlations.e3& suggest that from the very near
wall region to the first half of the outer layer of the turbul®oundary layer, there are active
scales covering the bottom half of the boundary layer. Tarslme attributed to the bulges and
hairpin vortices, because legs of the hairpin vortices atmd to be in the near wall region,
while the heads of the hairpin vortices have also been obdamithin the outer layer, mostly
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Figure 5.9: Cross-section of figulesls.6 5.7-a2'z=0 positions at Re=19 100.

5.6 Two-Point Cross-Correlations for Rg of 9800

The two-point cross-correlation coefficients from the loReynolds number measurement are
presented in this section. The figures are ordered as in #aaopis sections for the high
Reynolds number case. The planes used for presenting ths-coorelation coefficients and
actual values of cross-correlations are obtained at thes sgai-normal locations. Since the
viscous length scale for the low Reynolds number case isetifie viscous length scale of
the high Reynolds number case as shown in fable 2.1, thespomding ¥ values for the low
Reynolds number case are almost half those for high Reymaiaiger case. The contour line
levels in these figures are the same as the ones used for thRé&ymolds number case and this
is noted in the caption of the figures.

Figured5.T0 anf’5.1L2 present the two-point cross-coiwalabefficients on the XZ-plane
for the low Reynolds number case. One obvious fact from tfigsees is that the size of the
correlations at this Reynolds number is smaller than the sfzhe correlations observed in
the high Reynolds number case. The abscissa in the figurhe Ereamwise separation and
obtained using the Taylor’s frozen field hypothesis. Sifteedonvection velocity is evaluated
at each wall-normal position where the probe is locatedattig is actually stretched because
of the higher convection, even though the events happereaaime scale in the time domain.
At this Reynolds number, it is even possible to see some atedgorrelations in the near wall
region at ¥ of 3.5, which is essentially in the linear sublayer, and 1&. db'serve a significant
strength in these elongated contour lines within the visgublayer of the turbulent boundary
layer as shown in figurds 5110(a,b&c). As the planes move dweay the wall and pass the
buffer layer, the elongated correlations both increaseagmitude and expand in the spanwise
direction. Another interesting feature observed at thigrie&ls number is that the two-point
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cross-correlations exist everywhere within the domaimemtaikto consideration here. The ratio
of the size of the positive correlation and negative coti@teis as it is for the high Reynolds
number case. Even though the correlations are very wealeitofhhalf of the boundary layer
shown in figurd 5712, it is easy to detect the presence of tdenying elongated structures at
every wall-normal position up to the freestream.

The two-point cross-correlations in the XY-plane for thisyRolds number are shown in
figured &Il anf513. In the near wall regions shown in fighrg3(a,b&c), the positive cor-
relations are shorter in height compare to the ones obsamtbd high Reynolds number case.
The aspect ratio of the positive correlations are also targthis case, because of extension of
correlation in the streamwise direction. At this Reynoldsniber, we observe elongated nega-
tive correlation coefficients even in the linear sublayenjlgr to the ones from the correlation
on the XZ-plane shown in figuie5]10. The most significanwégtihence the largest and rela-
tively strongest correlations, exist within the log laygrpporting the previous findings. Figure
shows how the top half of the boundary layer is actuatystated with the bottom part of
the boundary layer. Even though the correlations are waalg,show that there are large scale
very weak structures linking these two different layers.t@mof these, the intermittency of the
upper part of the boundary layer penetrates down to the wdlsaows itself within the entire
boundary layer.

The cross-sections of the two-point cross-correlatiorsvshin figure 2110 anf 5112 at
Az =0 are displayed in figureEZ5114 with the actual correlatiorugal The peaks present the
probe correlated with itself with no separation in space tim@, thus the variance of tur-
bulence fluctuations. As it is clear from these figures, thakpa the variance is shifted to
the second wall-normal position which is actually at the safh position of the first wall-
normal position of the high Reynolds number case. The rdtih@ magnitude of negative
elongated correlations to the peak correlation found instirae plane is maximum in the log
layer at this Reynolds number, similar to the ones shownifgin Reynolds number case (e.g.,
B.T4(e,f,g&h)). These figures are useful especially for garmg the relative importance of the
two-point cross-correlation coefficients given in figureBH5. 18, because they are normalized
by the maximum correlation found on the same plane, whiclessentially the peaks presented
in figure[5.1%.

Figure[5Ib and516 show the two-point cross-correlatiogfficients on the YZ-plane.
The correlations present no significant difference if thenparison is made using the wall-
normal coordinate scaled with the boundary layer thicknessause at both Reynolds number
the boundary layer thicknesses are approximately the s&towiever, when the comparison
Is made using the wall-normal coordinate scaled with theous length scale, then everything
simply shifts down by factor of 2 for the low Reynolds numbase. These figures actually show
that the lateral (or spanwise) extent of the large scaleanstare bounded withitt0.359.

Similar to figure[5.B, we present the cross-section of thepwiot cross-correlation plots
on the YZ-plane at each wall-normal position in figlire b.1fe Bnly notable difference is that
the peak of the correlations near the wall for the low Reysoldmber case shifts away from
the wall, but remains at the same wall-normal position wieathes! by the viscous length scale.

5.7 Integral Length and Times Scales
The cross-correlation data shown in figures 5.5[and 5.8 tohih Reynolds number case and
figures[5I¥ an@ 517 for the low Reynolds number case are fos@dmputing the integral

length scale in both streamwiseyjland spanwise (1) directions, as well as the integral time
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scale (Tt). The integral time scale is deduced from the integral lesgale in the streamwise
direction by dividing it by the local mean convecting velyci Computations of the integral
length scales are performed as follows:

Ro R]_’l(X = O,X’)
0 R]_’l(X = O, X = O)
where the upper limit of integratiorRy, is taken as the first zero crossing of the correlation

function followinglQ’Neill et all (2004). Otherwise, the integral length scale obtained afte
integration is very small due to very long tails of the caaten function. Similarly,

Ly = dx (5.11)

® R]_’]_(Z: O,Z’)
0 Ri1(z=0,Z=0)

where the upper limit was covering the entire domain, hencbecause the correlation func-
tions have a very small portion on the negative side. Theymten up to first zero crossing
does not change the result at any wall-normal position.

Figure[2.IB shows that the integral length scale in the sinése direction increases with
increasing wall-normal distance except very close to thediream. The increase in the length
scale is almost linear in a semi-logarithmic plot within thg layer. Then for the high Reynolds
number case there is a region of almost constant value fontbgral length scale betweendy/
of 0.1-0.75. By contrast, this does not appear for the lowRk&ls number case and the integral
length scale continues to increase up t0 @f 0.7. For the last wall-normal position there is
a significant drop in magnitude of the integral length scalis is due to the high level of
intermittency at this height.

The integral length scale in the spanwise direction in@gagith increasing wall-normal
location, except at the last wall-normal position for the Reynolds number case. The integral
length scales, L.and L;, do not show any dependence on the Reynolds number, singe the
at each wall-normal position are approximately the samee lalgest length scale was about
0.1%, meaning that the extent of the rake in the spanwise dinrecsi@bout 7 integral length
scale inthis direction.Therefore, the extent of the ralsaificient to compute the integral length
scale correctly at every wall-normal position. (Note thaXéll et all (2004) suggested that the
extend of the field should be at least 6 times the integraltlesgale for computing the correct
integral length scale.).

The integral Eulerian time scales for both Reynolds numbses in normalized forms are
presented in figurE 5 R1. The trend in these figures are ajppataly the same as for the
integral length scale if the wall normal position is belowd 0f the boundary layer thickness.
After this point we observe a sudden drop in the integral tsoale due to the large mean
convection velocity. The maximum integral time scale waswll5 and 20 microseconds
for the high and low Reynolds number cases respectivelys if@ans that the original data
recording record sizes correspond to 400 and 300 integnal sicale for each block. The data
shown in this section is based on first 16 384 samples of 18G&@ple long blocks, therefore
each subblock analyzed here is about 40 and 30 integral talesslong for the high and low
Reynolds numbers respectively.

L, = dZ (5.12)

5.8 Summary and Discussions

In this section the two-point cross-correlation of the tuemt boundary layer at Beof 19 100
and 9800 were presented. The data investigated in thisehaps the streamwise component
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of the turbulent velocity field obtained using the hot-wiske of 143 probes sampled simultane-
ously. Taylor’s frozen field hyperostosis was utilized todixe to convert the time dependence
into spatial dependence in the streamwise direction wheeated.

The two-point cross-correlation coefficients in the streage-spanwise plane at different
wall-normal positions showed that the elongated strustdexelop after the buffer layer. The
most significant elongated correlations are within the gel. These long correlations are
always negative and their magnitude is small compared tpehk correlation found at the same
wall-normal positions. As the streamwise-spanwise plaogas in the wall-normal direction
toward the freestream, the strength of these weak negativelations gets weaker. On the
other hand, these long features of turbulence are visilda at the last 25% of the boundary
layer thickness towards the freestream.

Analysis of the two-point cross-correlation on the streasevwvall-normal direction also
showed that the elongated correlations appear above tfe tayfer. They have negative values
and extended in the streamwise direction covering theesfield. The area covered by these
negative correlations increase as the reference probesaovay from the wall. The positive
correlations have an inclined features. The contour liegsasenting the correlations coeffi-
cients above wall-normal position of @2howed that the outer layer is physically connected
to every layer of the boundary layer down to the wall, eveugiothe correlation is very weak.
The intermittency effects the entire boundary layer inolgdhe near wall region.

There appear slight differences betwee Be19 100 and 9800. First of all, it is possible
to detect these elongated correlations in the near walbnegir the low Reynolds number case,
contrary to the high Reynolds number case. However, theyagethin in the transverse direc-
tions until the end of buffer layer. Once the streamwiseagpse plane or the reference probe
in the case of streamwise-wall-normal plane are above tfierdayer, these correlations cover
the entire domain. At the low Reynolds number case, theyeatively stronger compared to
the peak correlation of the same plane. The correlationsdsat intermittent region and near
wall region are also observed at the lower Reynolds number.

Cross-section of the two-point correlations on differelanes were used to study the in-
tegral scales of the boundary layer. Integral scales in tieamwise direction for the high
Reynolds number case is higher than that for the low Reynuldsber case. The size of the in-
tegral scale is small close to the wall and increases witteaging wall-normal position. In the
very intermittent region of the boundary layer there is godrosize of the integral length scale
in the streamwise direction. The integral length scale @sjiianwise direction is approximately
the same, indicating no Reynolds number dependence. Tleestale for the high Reynolds
number case is approximately twice the time scale for theRewnolds number case because of
the ratio of freestream velocities between these two Rejgmalimber and approximately equal
boundary layer thicknesses.

The high Reynolds number turbulent boundary layers studéed has very long elongated
structures. Our investigations showed that these elodgateelations get longer and longer
as the record length of the measurement increases. Bothshwéy of computing these two-
point cross-correlations using FFT algorithms and mucWwsti@omputation using the time-lag
products produce the same results, suggesting that thegedorelations are not due to the al-
gorithm used in computations. However, our longest recbaidvshat it is possible to see these
correlations up to 120 boundary layer thickness and morés @dnnot be physical either be-
cause the wind tunnel test section is about 65 boundary thigknesses long. Therefore, there
must be some other reason for these very long correlatidns.ig not a problem of utilization
of Taylor’s frozen field hypothesis either, because therstrae very long correlations exist in
time domain. Therefore, the physical reasoning of thesg tmnrelations needs further investi-
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gations, and no attempt made in that direction in the courti@thesis, other than comparing
the algorithms used to compute these correlations.
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Figure 5.10: Two-point cross-correlation coefficients (glAane) at constant wall-normal positions at
Re of 9800. The figures present the correlations between theedarated atz0 and the probes at
the same y location on each plane. (a)y=3.7, (b) y" =11, (c) y" =26, (d) y" =55, (e) y- =114, (f)

yt =231, (g) Y =465, (h) y" =933, y= 0.23®. Red contour lines denote positive values [0.025 0.1 0.2
0.4 0.8 1.0]; Blue contour lines denote negative value®P9-0.05 -0.075 -0.15 -0.20].
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Figure 5.11: Two-point cross-correlations (XY-plane) a0z The figures present the correlation be-
tween the probe at one wall-normal position and the restitbiegs at the same spanwise location af Re
of 9800. (a) y =3.7, (b) y" =11, (c) y© =26, (d) y* =55, (e) y" =114, (f) y" =231, (g) y* =465, (h)
y= 0.23. Red contour lines denote positive values [0.025 0.1 0.D@®4..0]; Blue contour lines denote

negative values [-0.025 -0.05 -0.075 -0.15 -0.20].
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Figure 5.13: Two-point cross-correlations (XY-plane) at0z The figures present the correlation be-
tween the probe at one wall-normal position and the restiblegs at the same spanwise location af Re
of 19100. (a) y= 0.47D (b) y=0.7165 (c) y= 0.960. Red contour lines denote positive values [0.025
0.1 0.2 0.4 0.8 1.0]; Blue contour lines denote negativeeg[t0.025 -0.05 -0.075 -0.15 -0.20].
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Figure 5.15: Two-point cross-correlation coefficients ba YZ-plane at Rg=9800. (a) y =3.7, (b)
yt =11, (c) y" =26, (d) y" =55, (e) y" =114, (f) y" =231,

73



Structure of Turbulent Boundary Layers

-0.1 0 0.10.20.30.40.50.60.70.80.9 1

3489

1870
933
465
231

> 114

55
26

(@)

11

HE = T

3.7
-0.4

-0.2 0 0.2 0.
z/d

N

-0.1 0 0.10.20.30.40.50.60.70.80.9 1

3489

1870
933
465
231

> 114

55
26

()

11

HE = T

3.7
-04 -0.2 0 0.2 0.

z/d

N

—-0.1 0 0.10.20.30.40.50.60.70.80.9 1

(e)

S e

3567
1870
933
465
231

*s 114
55

3.7

-0.2 0 0.2 0.

»

8799

0.479
0.239
0.119
0.059
0.029
0.014
0.007

0.003

0.001

8799

0.479
0.239
0.119
0.059
0.029
0.014
0.007

0.003

0.001

898

0.479
0.239
0.119
0.059
0.029
0.014
0.007

0.003

0.001

yld

yld

yld

(b)

(d)

-0.1 0 0.10.20.30.40.50.60.70.80.9 1

3459

1870
933
465

231

114
55
26

11

3.7

-04 -0.2 0.2 0.4

0
z/d
-0.1 0 0.10.20.30.40.50.60.70.80.9 1

3459

1870
933
465
231

114
55
26

11

3.7
-0.4

8799

0.479
0.239
0.119
0.059
0.029
0.014
0.007

0.003

0.001

8799

0.479
0.239
0.119
0.059
0.029
0.014
0.007

0.003

0.001

yld

yld

Figure 5.16: Two-point cross-correlation coefficients ba YZ-plane at Rg=9800. (a) y =465, (b)
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Figure 5.17: Cross-section of figules3.15 Bndl5.16 at conatall-normal positions at Re=9800.
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Chapter 6

Proper Orthogonal Decomposition:
Theory

6.1 Introduction

As a quantitative and unbiased meth@n@%?) iniced the proper orthogonal de-
composition (POD) into the field of turbulence to identifydastudy the dynamics of the large
scale energy containing features in turbulent fields withitotal energy. The POD provides
an optimum deterministic description of the field, the stlechPOD eigenvalues and eigen-
functions. These are the solutions obtained by seekingtigest projection onto the stochastic
velocity field of turbulence in a mean square sense. Maxitizaf the projection results in an

integral value problem (Fredholm integral equation of teeosnid kind) for which the kernel is

the two-point cross-correlations tensor of the stochastiocity field. The POD has also been
found to be very efficient at extracting the most energetidesoof the flow and ordering them
according the their energy content.

Even though the POD was introduced as an optimal and matiwinaty of breaking the
turbulence scales apart, utilization of the method tookesdinme, mainly due to difficulties
associated with the measurement and computation of thgbia-cross-correlations tensor.
As pointed out by Georbjé (1988), the POD needs sufficientrimétion on the two-point cross-
correlation tensor so that a complete space time realizafithe turbulence velocity field can
be obtained. Computation of the cross-correlation terson the measured velocities is also
difficult in terms of computing power and speed capabilities

The first successful experimental implementation of the R@3 made by Bakewell &
Lumley (1967) for the pipe flow. It was almost two decadesrdftenley (1967)’s proposal in

the 1980s that the full potential of the POD began to be redlie.g.. Lei 4); Glauser
et al. mmﬁ%m see Ml@l%ﬂ)igﬁl Reynolds number
axisymmetric mixing layer a 86) for low Reyrsotdimber pipe flow. Since then,
experimental utilization of the POD has been widely usedréak the turbulence scales apart.
Following these experimental utilization of the PQD, MoinMoser (1989) applied the POD
on a database created by the direct numerical simulatiorSj@fturbulent channel flow and
extracted the most energetic characteristics scaleshmilimnce.

One of the most striking features of the POD is its ability &scribe the energetic large
scale structures with only a few eigenmodes in an optimalmaarespecially if the flow is
first Fourier decomposed in periodic or homogeneous dimst@i 7) showed that
the orthogonal decomposition was very efficient in orgargzhe large scale structures in the
axisymmetric mixing layer. The first POD mode contained 4G%e total turbulence kinetic
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energy. The energy content of the first three POD modes wag 8686 in total. These initial
results were based on measurements using hot-wire rakesytd wire probes. The capability
of the POD to capture most of the turbulence kinetic energg Ilsw orthogonal eigenmodes
led a number of research group to apply this techniquealhjitio canonical flows, but later to
flows in more complex geometries. Especially, free sheautent flows have been investigated
extensively using the POD technique (ile., Glauser & Gé );LGlauseet all (1985);
Delville (1994);(Delvilleet all (1999); Gordeyev & Thomas (2000, 200R); Citriniti & Gedrge
(2000);L.Johanssoet all M);Lﬁﬁ;]ll% 1Gamaret all (2004); Johansson & Geolge
(20060); Wanstromet all (2006); S (2007); Tutkuet all (2008)).

By contrast to the amount of research conducted using theiR@Dbulent free shear flow
(mainly experimental), there have been only a limited nundfeapplications carried out for
the wall bounded flows. This is mainly because of the expentaiaifficulties in such flows
imposed by the required number of hot-wire rakes of manygspbr the statistical convergence
problem of numerical simulations.

The early experimental work was carried out in turbulenepipws using hot-film mea-
surement techniques. With the advent of hardware and satdevelopments, particle image
velocimetry (PIV), which provides three-dimensional \aty information on a plane, has re-
cently become a very useful tool in measurements of the wotgross-correlation with very
high spatial resolution. These have been used for some eh#iow experiments to be able
to perform POD analysis on the obtained data. Numericaliesusthich can be found in the
literature is also primarily for channel flow simulationshéfe has been no research program
carried out for analyzing the turbulent boundary layersgishe powerful features of the POD.
In this sense, our work described in this dissertation igjugj and the first application in this
direction.

The first POD application on the wall bounded flows, Bakewelli&nley (1967) investi-
gated the the near wall region of turbulent pipe flow upt@y40. The Reynolds number based
on the pipe diameter was 8700, and glycerine was used asmditkid to be able to study the
viscous sublayer near the wall. Hot-film anemometers werpl@rad for measurements of
the streamwise velocity fluctuations only and then only glarsingle line. They extracted the
most dominant large scale structure of the flow using the mgixength theory and the conti-
nuity equation. They were able to obtain only the first eigedenbecause of the inaccuracy
of the measurements of two-point space-time correlatibnan experiment initiated by W. K.
Georgemma carried out some measurements iatthefacility at Reynolds number
of 8750. At this time, he measured two components of the wglatamely the azimuthal and
the streamwise components. The missing five members of tss-correlation tensor were
obtained utilizing the general symmetry properties in @mtion with the continuity equation.
The measurement grid was established using six points irneamal direction up to ¥ of 40,
seven points in the streamwise direction of toof 49, six points in the azimuthal direction up
to z" of 136. He reported that the dominant mode contained 50% oe widhe kinetic energy
due to streamwise velocity component, and first three PODasodntained more than 90% of
the turbulence kinetic energy because of streamwise fltiohsa

Following these experimental studies, the most detaile® B@dy in the wall bounded
turbulence came from_Moin & Moser (1989) in which they stadi2NS of turbulent channel
flow data using both scalar and vectorial decompositionsn@ or more dimensions. The
Reynolds number based on the friction velocity and half aehheight was 180, corresponding
to the Reynolds number of 3200 based on centerline meanityebotd half channel height.
They were able to show that the energy carried by the firshenpele, regardless of the number
of dimension included in the analysis, was 30-50% of thel tateetic energy when the half
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channel was taken into account. The contribution of the firste POD modes to the total
turbulence kinetic energy changed from 50 to 75% dependmthe number of dimensions.
They also used a shot-noise decomposition and extracteddsiedominant characteristic eddy,
which had 76% of the total turbulence kinetic energy.

Recently Liuet all (1994 /2001) studied the turbulent channel flow by experiaieriiliza-
tion of the POD method. The Reynolds numbers tested were tiggtier than the previous
investigations listed above. They were 5378 and 29 935 wbempated using bulk velocity
and the channel height. The PIV was used as an experimeatalith high spatial resolution
to measure the two components of turbulent velocity fielthelg streamwise and wall-normal
components. The first of these studies focused on the sityitdrthe eigenspectra and eigen-
functions in the outer layer of the turbulent channel flowg ahowed that the proper scaling
of the eigenspectra using the friction velocity and outagtl scale results in a collapse in the
eigenspectra. The second paper was more thorough and dittdetnalyzes on the energy and
Reynolds stress distribution over different eigenfunts$io For both of the Reynolds number
investigated, they reported that the energies of first 6 @hdigenmodes were approximately
35 and 50% of the total kinetic energy respectively. Thep alsted the Reynolds stresses due
to the these 6 and 12 eigenmodes being approximately 50% @¥dot the total Reynolds
stress of the domain respectively. The large scale motibnsglaulence represented by the low
eigenmodes with high turbulence kinetic energy had wagghlenlonger than three times the
half channel height.

As it is clear from above discussions, the POD is very efficiercapturing the maximum
amount of turbulence kinetic energy with minimum number afd®s in wall bounded flows
too. We therefore implement this methodology to analyzeaigl measurements of the stream-
wise component of high Reynolds number zero pressure gratdidoulent boundary layer data
obtained using a hot-wire rake of 143 single wire probes. data set and analyses are differ-
ent than the previous research conducted on the wall bouitalest first because it is a high
Reynolds number turbulent boundary layer flow, and secooduse it is of very large extent
so that a large probe array can be utilized. In the followiagtisns, the background theory
and implementation of the method are discussed first. Anldaméext chapter, the eigenspectra
and turbulence kinetic energy distributions from the POBIgsis are presented and discussed.
Finally, the instantaneously measured streamwise vglfaittuations are projected back onto
the empirical eigenfunction in order to reconstruct theuy field, and break it different scales
of motions.

6.2 Background Theory

6.2.1 General Formulation of POD

The POD is a mathematical tool to decompose stochasticlambeelocity field into determin-
istic scales of motion. This decomposition is done by findandeterministic field which has
the maximum projection onto the stochastic field of interBgttails of the methodology can be
summarized as below:

Letu;(-) and@(-) be the stochastic turbulent velocity fluctuations and therdeinistic field
the POD seeks respectively. The maximization of the prigeatan be performed by finding
the largest inner product of the fields in a mean square sarfed@ws:

(af?) = u),a0) (6.1)
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where( ) denotes the ensemble averaging.répresents any spatial afm time dependence
of these fields. The result of inner product in Hilbert spacesan be written as:

a = (0L = [uCaOd) 62)

where the integration is performed over the entire domaimtefest, which is represented by
D. Normalization of the mean square projection can be obdathieiding Eq. [&1) by the
magnitude of the deterministic field:

{/ ”i<'><ﬂ*<~>d<'>} { /Dui<~><n*<~>d<->]*

[ /: a6 d0)] [ [acacra0)]

As shown by Luml€yl(1967), maximization of the normalizecamsquare projection results
in a Fredholm integral equation of the second kind given by:

A= (6.3)

/D R (,)@i(d() = Aai() (6.4)

The kernel of Eq.[(GI4)R j(-,-), is the two-point cross-correlation tensor which is defiasd

Rij() = (u()uj(-) (6.5)

where’ denotes any different position afwt time. The subscripts and j are indices and
represent appropriate velocity components.
As detailed in many other sources (elg., Lumley (1967), Gedi988),[ Holmest all
(@)), if the field of interest is bounded and of finite tatabulence kinetic energy, then
the Hilbert-Schmidt theory applies. Solution of the ingrquation given in Eq[{8.4) in the
domain of finite energy produces denumerably many solu{i@iiss in this case) instead of a
single solution. There is a pair &f (eigenvalue) andy(-) (eigenfunction, or eigenmode) for
each of these denumerable solutions. Therefore [Ed. (&ribe written as

L RCO8" () =A0g () (6.6)

where = 1,2, 3, ... and represents the solution index, which is called POD modeoer.
For fields of finite total energy, the properties of the salns to the POD integral equation,
Eg. (68) can be listed as follows:

1. Solutions to the POD integral, or eigenfunctions, arbagyonal:
Vg™ () =5 6.7
@700 ™ ()d() = S 6.7)

2. For each eigenfunction there is a corresponding eigeavalhese eigenvalues are ordered
in a sense that the solution is optimum, meaning that thedligeinvalue is larger than the
second one, and the second one is larger the third one and 368%on A2 > AG) > ...

3. Eigenvalues are real and positive.
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4. The stochastic velocity field can be reconstructed usiagigenfunctions:
()= ane" () (6.8)
n

where @ represent the set of random coefficients which is obtaindabck projection of
eigenfunction onto the stochastic field of turbulence,

= [ u()d"(d) 69)

5. Random coefficients given by Eq._{6.9) are uncorrelatedusse of orthogonality of the
eigenfunctions:

A" = (ana;) 8nm (6.10)

6. The two-point cross-correlation tensB,j(-,-'), can also be reconstructed using the re-
constructed velocities given by Hg.b.8:

Rj() = ;M”)ca(”)c)cpﬁ”)«’) (6.11)

7. Contraction of the reconstructed two-point cross-dati@n tensor shows that the total
energy within the finite domain equals to summation of eigémes:

E~ [ (u(u()de) = A" (6.12)

Thus the POD provides a set of eigenfunctions that optinddigompose the turbulence
energy in the domain, and each eigenvalue measures theyessagiated with the correspond-
ing eigenfunction. This implies that the largest eigengakpresent the eigenfunction with the
largest energy content and so forth.

6.2.2 Field of Homogeneous and Periodic Domains

As mentioned in the previous section, the POD is applicabligetds which are statistically
inhomogeneous and of finite total energy. If the field of iestiis homogenous in space, or sta-
tionary in time (or periodic in space afar time), then the field is not bounded so that the energy
is infinite. Therefore, Hilbert-Schmidt theory does notlgp@n the other hand, Lumlky (1967)
showed that the POD formulation in the homogenous or statjodirections reduces to Fourier
decomposition and eigenfunctions become exponentiatiure(see also Geoide (1988, 1999)
for useful reviews). The reconstruction of the originaloaty in this case is performed by the
same way of reconstruction of velocity using the POD. Howetree random coefficients,,,
are obtained by projecting the exponential functions ohewelocity field. This actually re-
sults in Fourier transformation of the velocity field. Thadogagty field therefore is reconstructed
as a linear sum of the multiplication of Fourier coefficieatsd exponential eigenfunctions.
Therefore, the reconstruction part is essentially an se&ourier transformation process.

The POD in the periodic directions also reduces to Fourieoagosition, but in this case
the Fourier transformation used for finding the eigenfuorcin homogeneous direction be-
comes a Fourier series expansion. The main difference betiiese two cases is the number
of possible solutions to the problem. The homogeneous fagdsot have finite extent; hence
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the field is a continuous field so the resulting wavenumbeifsequencies, are also continuous.
In contrast, the periodic fields are field of finite extent withne period, therefore the field can
be treated as a field of finite extent, which makes HilbertrSidhtheory applicable.

As shown byl Lumley[(1967) and_Gearde (1088), it is more coierérto first perform
Fourier transformation arfdr Fourier series expansion of the two-point cross-caticeidensor
of the POD integral equation in the homogenous (or statigreard/or periodic direction, and
then to apply the POD on the resulting two-point cross-spetgnsors.

6.2.3 Formulation of POD for Turbulent Boundary Layer

The full four dimensional representation of the POD intégieen by Eq. [&5) in Cartesian
coordinate system becomes:

LRix oy 22000 (<Y 2. )ddaydZal AT (xyzt)  (613)

wherex, y, zandt denote coordinates in streamwise, wall-normal and spanarections and
time respectively! represents different position in space and time. The kexfidle equation
can be written as:

Ri,j (X7X/7y7)/7272/7t7t/) - <U| (X7 y7 Z,t)UJ (X,7y,7z/7t/>> (6'14)

Because the turbulent boundary layer is stationary in tintehomogenous in the spanwise
direction, the two-point cross-correlation tensor is ofugiction of separations in space and
time, i.e.,

§i7j(X,)(/,y,)/,AZ,T) = Ri,j(X,X/,y,y,,Z,Z’,t,t,) (615)

whereAz= 7 — zandt =t’ —t. Since the POD reduces to the harmonic decomposition in the
homogenous and stationary directions, these directiompeaemoved by taking the Fourier
transform of the two-point cross-correlation tensor gibsnEq. [€1b). Therefore, Fourier
transformations in timd, and homogenous direction,are performed to obtain Fourier coeffi-
cients of the two-point cross-spectral tensor:

S.j(xX;y,Y k f) = /: /Zﬁ,j(x,%;y,y,Az,r)ei<2“fT+kAZ>drd(Az) (6.16)

wheref is the frequency correspondingt@ndk is the spanwise Fourier mode number corre-
sponding ta\z.

If only one downstream location is considered, streamwisgependence of the two-point
cross-spectral tensor in EJ._{6.16) can be treated as a pteanThe resulting POD integral

equation is therefore called the slice-POD (¢.f., GlauséB&orgk [(1987); Jlﬂ%b );
Citriniti & Georgé [200D)[ Johansson & Gedrde (26péGordeyev & Thoma D, 2002);
Johanssoet all (2002); Tutkunet all (2008)). As detailed by Krogstaet all (1998) utilizing
the Taylor hypothesis in connection with the convectioroeiies across the boundary layer
is a reasonable assumption to convert spatial dependerthe tome dependence. Therefore,
x dependence essentially is the same as time dependencdieasiccé POD equation can be
written as:

/s Yk D™ sk H)dy = A0 (k O™y k: ) (6.17)
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whereA(" (k; f) and (ﬂ(n) (y;k; f) represent the eigenspectra and eigenfunctions for each spa
wise mode and frequency, respectively. Since the integradiperformed over the wall-normal
coordinate direction, which is an inhomogeneous directibe domain is bounded by the
boundary layer thicknes$, hence it is of finite total energy. Therefore, the Hilbectifidt
theory applies.

6.3 POD Analysis Procedure and Numerical Implementation

The POD integral equation given by Ef.{8.17) can be solvedarically by approximating the
integral as follows:

N
/y F(y)dy ~ > fiy! (6.18)

wheref; andAy; represent the values of the functibmt the grid points (or measurement points
in this case) and value of the integrand around these gridpa@spectively. Acommon practice
is to use trapezoidal rule to perform the integration. fication of using the trapezoidal rule
in computing the POD integral equation is detailed by Moin &32dr (1989). The numerically
discretized form of the POD integral equation, EG._{b.1@yults in an eigenvalue problem,
which can be written as follows:

Ag™ = A (6.19)

The solution to eigenvalue problem given by Ef._(6.19) is/dasobtain using standard
numerical eigenvalue solvers if the kerng&l,is Hermitian symmetric. Because of the logarith-
mic stretching of the probes along the wall-normal dirattithe A in this experiment is not
Hermitian symmetric as shown below:

Sialynysk f) Sualynyskif) - Salynywkf)]dy; 0 0 0

A |Sa02Yik ) Suabe vk ) o Salzywikif) || 0 Ay, 00

Sualyn Yk f) Sty Yo ki f) oo Sualywoynsk )l L0 0 0 Ay
(6.20)
where the first matrix is the two-point cross-spectral teasal the second matrix is the diagonal
matrix with the integrands. The remedy to make the kernehtitean symmetric is to rearrange
Eqg. (&219) and multiply both side of it with the diagonal nvatf square-roots of the integrands
as follows:

wSwweV = AMWwe = HYM = AWy (6.21)
M~ N~ ~——
Ho gy yn)
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wherew, Sandq" are:

VA, 0 0 0 Vhyy 0 0 0
Lo v, 0 o |0 vAp o 0O
i O 0 O \/A.y’N 0 0 0 A.)/N
[Sa(yn Yk f)  Stalyn Yok f) -+ Stalyiygk f)
s _ 51,1(Y2,:)/1;k;f) Sl,l(YZ,:)/z;k;f) 51,1(Y2,:)/N;k;f) 6.22)
[SLayns YK f) Sty Yorki f) oo Salyn, ks )
'cpg”i (v ki f) cpE“; (yi:k; )
o — | (3/:2,k,f) _|@ (y:z,k,f> (6.23)
LG (Y ki f) @ (yn;k; )

The solution to Eq.[{&.21) does not produce the correct @igetions because of multiply-
ing both sides of Eq.[{&19) byw. Therefore, the eigenfunctiony, which will be obtained
from the solutions are:

VBE 00 0 |[eVyk)
0 AY, 0 0 @™ (yh; k; )

P = (6.24)

0 0 0 Ay 6™ (YK )
The correct eigenfunctions can be found by multiplying tbkitsons with the inverse of the
diagonal matrix formed by the square-root of the integrdathents as follows:

" (yr;k; f) Vhyt 0 0 0 7 H[u™(yikf)

(N (yo: k; f 0 VA 0 0 ) (yo: k; f
G = ¢ (y2 ) _ : :YZ ) : g (Y2 ) (6.25)
@™ (yn; k; T) 0 0 0 VAl [W"(ynikf)

The number of eigenfunctions and eigenvalues depends asizbef the kernel which is
the two-point cross-spectral tensor. The kernel is a squatex of (MxN) x (M xN), where M
is the number of velocity components included in the analgsd N is the number of grids, or
measurement locations within the field of interest (c.flvidlel (1994)). In our experiments, we
had 11 probes in the wall-normal direction,spaced logarithmically and only the streamwise
velocity component of turbulent velocities was measurdukeréfore, the size of the the kernel
is 11x11 for each pair of spanwise Fourier mo#te and frequencyf. Thus, the maximum
number of POD modes which can be extracted from the curréimgés 11 for eactk andf.

6.4 Spectral Analysis Technique and Forming the Kernel

This section is compiled from_Tutkuet all (2008) to describe the steps towards establishing
the final POD equation, Eq[(€117), following previous exmental utilization of the POD
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documented by Glauser & Gedde (1|98|7) Cltrlnltl & Gebrbémt) |Gordeyev & Thomas

(2000);

George

1.
2.

002); Johansson &

r;m')
Instantaneous velocities are measured simultaneoustpaoints in space.

Fourier transformation of the instantaneous velocisggerformed in time for the finite
size record length; i.e.,

T2
sz f)= [ e uyzod (6.26)

wherelui(y,z, f) is called the Fourier coefficients afidrepresents the record length for
each block of data. An FFT (Fast Fourier Transformationpatm is used to compute
the Fourier coefficients efficiently.

. Steps[{ll) and1?2) are repeated for all pairs of points.

. Cross-spectra are computed and block averaging is peztbas follows:

QK%%Azfﬁ=“M%Lfmﬁyl+AL”> (6.27)

where( ) and* denote the block averaging and complex conjugate respéctiv

. The doubly transformed cross-spectra are computed diyateer transformation of Eq.

@&2Z1) in the spanwise direction; i.e.,

- e Z/2 « —ikAz
S,j<y,>/,k,f):/z/2 S.i(y,Y; 0z f)e k02d(Az) (6.28)

whereZ is the width of the hot-wire rake in the spanwise direction.

. The final eigenvalue problem is solved for each frequemzy spanwise Fourier mode

after construction of the Hermitian symmetric kernel ascdbed in the previous section.
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Chapter 7

Proper Orthogonal Decomposition:
Results

7.1 Eigenvalue Distribution over POD Modes

First, the eigenvalue distribution is presented in Figuitd show how POD is efficient and

optimumal in terms of capturing the largest amount of tuehak kinetic energy with the fewest
modes. The high and low Reynolds number cases are givenumggq.1(3) anld 7.1(b) respec-
tively. Each of the bars in these figures represents the nizmedeeigenvalues integrated over
frequency and summed over the spanwise Fourier modes. Shébdtion of eigenvalues is

computed using using Eq.{T.1) as follows:

M )

3 / A (k, f)d f

k=1’
N M o
5SS / A (k, f)d f
n=1k=1v—%
where the denominator is, as it can also be seen from [EqQ.])(GHe2total turbulence kinetic
energy at the plane normal to the streamwise direction. &hesults together with all the
POD results given in following sections are based on a omepocment scalar proper orthog-
onal decomposition of the streamwise turbulence fluctaatisince that only component of
the velocity was measured in the experiments. (Note thaafier all reference to the proper
orthogonal decomposition will mean the one-componenascicomposition.)

Each bar in figur€7Zl1 indicates the contribution of the gponding POD modes to the
total kinetic energy of the domain. We observe slightly leigh~0.4% ) energy captured by
the first POD mode in high the Reynolds number case, whereasettond POD mode of the
low Reynolds number case is found to be approximately theesamount higher than that of
the high Reynolds number case.

The results show that the first six POD modes contain more &t of the total energy.
If the energy content of the first four POD modes is invesédatve see that approximately
90% of the total energy is carried by these three modes. Talllpresents the percentage of
each POD mode in terms of its contribution to the overall gneNote that these normalized
values are integrated and summed over frequency and spaRausier modes. There are 16384
Fourier coefficients in the frequency domain and 71 modepamwise Fourier mode domain
in total, so that it actually consists of many more modes @uEdurier coefficients in these
domains.

(" = (7.1)
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(a) Rgy =19 100. (b) Rey =9800.

Figure 7.1: Normalized eigenvalue distributi@f, for each POD mode.

Percentage of turbulence kinetic energy ¢Rd49 100 Rg =9800

2D 43.32 41.83

OB 66.72 66.10

AD L A@ L AB) 80.27 80.51

AD L A@ L AE) 4@ 89.35 90.13

AD L A@ L AC) L A@ 1 AO) 94.52 95.30
AL A2 A £ A& L NO) L A6 97.25 97.80

Table 7.1: Percentage of turbulence kinetic energy cagtoyehe POD modes.

The ratios of each pair of successive eigenvalues are givaable[ZP. As it is clear
from both Figurd—Z]1 and TablésT.1 dnd 7.2, it is difficult é@ sny strong Reynolds number
dependency at this point. This might be attributed to thegrdation and summation performed
over frequency and spanwise Fourier mode number respictiezause these operations tend
to smooth things out, hence leading to an average pictureit Bauld also be because of the
dominant contribution of the outer part of the boundary tagehe overall energy at these high
Reynolds numbers.

AD  A@ AB A A\B) AB) A AB) A\ 210

PN NCI R NCORED NN NC/ R Y TR N C)R /R N €U R N €5 Y

19100 1.8 1.73 149 176 189 185 205 212 227 250
9800 1.73 168 150 186 2.07 192 228 238 3.00 8.00

Table 7.2: Ratios of turbulence kinetic energy captureddmhd®OD mode.

7.2 Eigenspectra over Spanwise Fourier Mode%, and Frequency, f

Figures 7P an@713 show the eigenspeckfd(k, f), as function of spanwise Fourier mode
number k) and frequency ) for Reynolds numbers of 19 100 and 9800 respectively. The
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first 6 POD modes are presented in these figures from (a) to &dending order, even though
fewer modes would be enough to capture most of the totalikieaergy. The amount of energy
found in POD mode-5 (Figurgs 7.2(e) gnd 7.B(e)) and POD ngodegured 7.2(f) anfl 7.3]f))
are almost negligible compared to the energy of the firstRfdD modes. The highest spanwise
Fourier modes and frequency considered in these figuresaaré 600 Hz respectively, because
the contributions of higher modes and frequencies are vaallsn terms of magnitude.

Most of the energy is in spanwise Fourier mode-1 and moder& lfecause the peaks at
the near zero frequency are large, and second becauseglaebedadband decay of the energy
compared to rest of the POD modes. The eigenspectra have peakar zero frequency, a
distinct feature at all POD and spanwise modes. For the fiidd fhode at both Reynolds
numbers, the near zero frequency peaks are found to be festan spanwise Fourier mode-2.
By contrast, the second POD modes at near zero frequenarges for the first spanwise mode
than for the second spanwise mode. This also is observeddtbrds the Reynolds numbers
investigated here. It is again difficult to see any depene@mcthe Reynolds number in these
figures.

The features of the eigenspectra in general are almost the aaboth Reynolds numbers.
Since the eigenspectra presented here are not scaled bygtaherergy, the only difference
between the two Reynolds numbers studied here is the malgrofithe eigenvalues. This is an
expected result because higher Reynolds number was ciaaiedreasing the tunnel speed,
which also caused an almost directly proportional incré@siee turbulence kinetic energy.

In a similar manner, the eigenspectra of the first six spam@irier modes as functions of
POD modes and frequency are presented in Fidurés 7.4 dndritefhigh and low Reynolds
numbers respectively. Only the first six POD modes and firtHD of the spectra are shown,
because of almost negligible activity at the higher modakfeaquencies as discussed previ-
ously. Since one of the axes is the POD mode number, the @getna at each frequency is
ordered from the largest to the smallest for each spanwisedfanodes. This is due to the
optimality property of the POD, which we did not observe fothe previous Figurds 7.2(f) and
[7.3(f]. For the harmonic decomposition performed in thengpse direction or frequency the
Fourier modes are not ordered.

™ (k, )

/)\ (k, f)d
nlkl

To be able to compare the eigenspectra of the dynamically rmpertant eigenmodes of
both Reynolds numbers we present normalized eigenspeg®ék, f) of the first six POD
modes versus frequency for the first four spanwise Fourietewnan Figure§ 716[Z.T1. We
computex M (k, f) using Eq. [ZR). The frequency axes in these figures exterd®@0 Hz,
even though there are actually no large scale energy camga@tdies left in the spectrum.
Furthermore, a log-log scale is chosen to show how the enerdistributed, and especially
how it decays with increasing frequency. As shown in the iBe@.3, the power spectra of
turbulence energy have some small spikes around 278 Hz aindimonics around 556 Hz
and 834 Hz. The largest area under these spike, which is thtelmation of the spike to the
total turbulence energy, is found to be at 278 Hz. The eneugytd the spikes in the spectra
is negligible when compared with the total turbulence epe§ince these spikes are caused
by noise sources due to electronics and synchronizatiorffefeht measurement systems, the
noise exists at every anemometer channel. Even though #pdees are much weaker than
turbulence, and only show up when turbulence level decseagth increasing wall-normal

X( )(k f)

(7.2)
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distances close to the freestream, the POD finds them at meagurement position and treats
them as a very large scale filling up the whole domain. Thathg we also observe the same
spikes in the eigenspectra. Moreover, we observe most asptkes at the first POD modes

for the same reason. If the noise at different channel oedwat different frequencies, then the
POD would not be able to link them as an energy containingesanadl would place them toward

the end of spectrum as some other noise.

The area under these spikes in the power spectra is negligibhce they should also be
negligible in the eigenspectra. Therefore, we remove spik@nm the eigenspectra shown in
FiguresLZB{Z11 to be able to provide clearer picture. Justificationhid tan be seen in
FiguresLZIP anf"713 which actually is equivalent to Figi& but in a linear-linear scale
with additional curves showing the normalized eigenspedtuble summed over spanwise
and POD modes, and that summed over only spanwise Fouriegsndtds obvious from this
linear plot that even the largest contribution is very smalhpared to the total area under the
curves. More quantitatively, the area under the spike-sada@urves and the area under the
original curves can be compared; the difference when tlegration is performed for the entire
frequency domain (for which the higher frequencies are rmassier) never exceeds 5% in the
worst case, which is POD mode-1.

FiguredZB{7.11 show that a significant part of the spectra collapsedtir bf the Reynolds
numbers. But the eigenspectra of high and low Reynolds ntsxdadlapse on different curves.
On the other hand, since the collapsing curves are almoatlglaio each other, it suggests
that proper scaling of the frequency axis may lead to eigectsp of the two Reynolds number
tested here collapsing on a single curve. As can be seensg flyaires, the collapsing part of
the spectra is around 100 Hz and 50 Hz for high and low Reyraldsber cases. Furthermore,
the collapse is observed after at least two decades of détagpalence from the largest values
in the spectra which are near at zero frequency. Therefoeesdales of the collapsing part are
not the most energetic scales, which are found at ratherrleguéncies. The collapse occurs at
the frequencies where the inertial range of the energy dadoegins. Even though the collapse
is observed at slightly different frequencies for differ®OD modes, there is always a factor
of 2 between the starting points of collapsing frequenciesigh and low Reynolds number
cases. This is an expected result, because the freestréacitywef Reg =19 100 is twice the
freestream velocity of Re=9800. Since the boundary layer thickness is almost the same f
both cases, the integral time scale of the low Reynolds nurmdiee is approximately half of
that of the high Reynolds number case.

The low frequency part of the eigenspectra contains theesaaith the largest amount of
energy. In its current form, there is no collapse in this pathe spectra at all, even for different
spanwise Fourier modes at the same POD mode. It seems thatttiof the spectra will not
collapse by any means, because there are many crossindfeoémti spanwise modes for each
POD modes. In addition to this, the eigenspectra of diffeR#ynolds number at the same
spanwise and POD modes sometimes cross each other whicls arakscaling attempt more
difficult.

7.3 Eigenvalue Distribution over POD and Spanwise Fourier Mvdes

The eigenspectra of the POD modes are integrated over fregte investigate the kinetic en-
ergy distribution only over azimuthal Fourier modes. Theseilts are presented in normalized
form using Eq. [Z.14), which actually is equal to the intéigraof Eq. [Z2) over frequency as
follows:
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/m A (K, )d f .
) () = — I = [ x"W(k f)df (7.3)

M N 00 () P
A (k, f)d f
Zlnzl/oo ( )

where M and N are the maximum number of Fourier modes in thevgisa direction and POD
modes respectively. Each bar denotes the contributionetduttibulence kinetic energy of the
POD mode at the spanwise Fourier mode shown by the absciska pfots. Only the first 6
POD modes and only 12 spanwise modes are shown to clearlyfidire relative contribution
of the most important POD and spanwise modes. Since thigisitegrated eigenvalue distri-
bution, it can be easily seen that spanwise Fourier modé&htgan number six have relatively
insignificant contribution to the total energy. The astesgyn in the figures indicate the total
contribution of each POD mode to the total turbulence knetiergy at each spanwise Fourier
mode. Thex signs are computed by summing all the POD modes for each sganvade. Note
that there are 71 spanwise Fourier modes, which are acwjattynetric pairs of 35 modes plus
the first Fourier mode. Therefore, the second spanwise &omode and the spanwise Fourier
mode-71 are identical. In these figure, we do not show the sstnepart.

Figureqd 7.14(a) and 7.14]b) show the normalized eigenwdiktabution for high and low
Reynolds numbers respectively. The distribution of eigéunes for these two cases are very
close to each other; hence there is no apparent dependeriReyoonlds number. There are
some common features in both of these figures; namely: (i)tMbghe energy is found at
spanwise Fourier mode-1 and mode-2, (ii)) Spanwise Fourigden® is slightly larger than
spanwise Fourier mode-1 as shown by the asterisk signsT ki@ first POD modes of the first
and second spanwise Fourier modes of the high Reynolds muwoabe are larger than those of
the low Reynolds number case, whereas the second POD mottesfott and second Fourier
modes of the high Reynolds number case are smaller than dfidse low Reynolds number
case.

7.4 Reconstruction of Velocity Field

Using Egs. [[6B) and{8.9), it is possible to reconstructitiséantaneous velocity field of the
turbulence using the deterministic POD eigenmodes togetitie their the random coefficients,
which are obtained by projecting the velocity field onto tleéadministic eigenmodes. Only the
streamwise velocity component can be reconstructed intady $ecause only the streamwise
fluctuations are included in our construction of the kerrfethe POD integral equation, Eq.
E&TI1). Since the kernel13(y,Y'; k; f), is written as a function of both spanwise Fourier mode
numberk, and frequencyf, the resulting eigenfunctions and eigenvalues are alsditurs of
these two parameters as described in the previous seclibasefore, reconstruction of velocity
field begins by finding the random coefficientg(la f), by projecting the eigenfunction onto
the double Fourier transformed velocity fluctuations akoWwas:

am (k. f) = /0 Gy k £)g™* (y.k, f)dy (7.4)

where the integration is performed in the inhomogeneoukneamal direction using the trape-
zoidal rule. The upper limit of integration is actually rapkéd by the boundary layer thickness,
3. The fluctuating velocity is transformed into Fourier domdirst in time and second in the
homogeneous spanwise direction to obi#ink, f); i.e.,
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G(y.k, ) = / / u(y,z,t)e | 2Ttk g 7t (7.5)

The experimental utilization of the second Fourier tramsfation in the spanwise direction
is rather difficult because of the nonuniform grid of hoteviiake probes as detailed in the
experimental setup chapter. To be able to perform the sdéouder transformation ig, linear
interpolation of the fluctuating velocities at each consteall-normal location is performed by
the smallest increment availablezrdirection. In this way, a uniform grid spaced by 4 mm is
created and subsequent Fourier transformation is apphieki® grid. Note that construction of
the kernel, $1(y,Y;Az f), (and the resulting eigenfunctions and eigenvalues) aea@dy on
a uniformly spaced grid of 4 mm, because it is possible totertras grid size using different
vertical combs in connection with the homogeneity of théistiaal quantities in the spanwise
direction.

The doubly Fourier transformed streamwise component ofuaiimng velocities are ob-
tained as a linear combination of eigenfunction using timeloan coefficients obtained by Eg.

Z4):

N
Grec(y,k, ) = 5 @™ (k, H@™*(v,k, ) (7.6)
n=1

where subscriptec stands for “reconstructed”. The reconstructed velocifyregsed in terms
of spanwise Fourier modes and frequency can be mapped kadleal space in two steps:
() Inverse Fourier transformation in frequency:

ammhwz/'admkw¥mwf (7.7)

(i1) Inverse Fourier transformation in spanwise Fourietar:

wdwﬂ=/0mwmﬁmw (7.8)

The fluctuating velocity given by EqL(1.8) can also be retmesed using some subset of
the POD and spanwise Fourier modes to investigate the dgsamssociated with that subset
of modes. This can be achieved by setting the random coeitecad all the modes out of the
subset of interest to zero, and following the same route fitEmm (Z%) to Eq. [(Z]18). If all the
POD and spanwise Fourier modes are used for reconstruttiemyriginal velocity signal can
be recovered within the numerical accuracy. By selectiny tre most energetic POD and
Fourier modes, it is possible to study large scale energgtictures using the reduced velocity
reconstruction which does not count the intermediate arall stales.

FiguredZ.Ib anA 716 compare the original velocity signal the reconstructed velocity
signal using a number of POD modes. These figures show theg&uaotion of velocity fluctu-
ations measured by one probe in the middle of the hot-wire agkan example. Similar features
are observed for the other probes of the rake. These reactesirsignals shown in figures 7115
and[Z1Ib are computed using all spanwise Fourier modes aqdencies. Here, we just show
a very small portion of the signal to be able to present thaildet The data are plotted for
the first 1500 samples of a randomly chosen single block afoigirecordings. Therefore the
time axis extends up to 0.05 seconds from the beginning dblitek, as it can be seen in the
figures. The reconstructed velocities converge to themalgiignal, and all the small details of
the signal emerge as the number of POD modes involved in tomséruction increases. Most
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of the recovery of the original signal is accomplished usinty the first five modes. Adding
higher POD modes do not change the reconstruction signiifjcas can be seen in figuke7115.

Since large scale features of turbulent boundary layerefareich interest, low-pass filter-
ing of the data to remove the contributions due to high frequ€or wavenumber) (i.e., small
scale features of turbulence) is performed by setting thdam coefficienta,(k, ), to zero
for those high frequencies. Figules4.17 Bndl7.18 compareettonstruction with and without
filtering of the small scale contribution to turbulence kin@nergy at higher frequencies. The
location of the cut-off frequency in the spectrum was detidsing the eigenspectra shown in
figuredZR{7.17; 100 Hz for the high Reynolds number case and 49.4 Hhéolotv Reynolds
number case. The left columns of figufes¥.17 Bndl7.18 prekenteconstructed velocity
fluctuations on the spanwise-wall-normal plane with allfieguency components, while right
columns represent the same reconstructions with filtehirguigh the random POD coefficients.
Here we present reconstruction using all POD and spanwisedfanodes, the first POD mode
and all spanwise Fourier modes, and the first POD mode andloalsecond spanwise Fourier
mode. As evidenced in these figure, the filtering only remdkeshigh frequency and small
scale contributions, and does not affect the large scataeresaof turbulence.

Since it is possible to retain all the large scale energetuires of turbulence with only
frequencies up to 100 Hz and 49.4 Hz for the high and low Relswoumbers studied here, it
provides a great reduction in number of frequency modess iff@ans that only 112 spanwise
and 54 frequency Fourier modes are kept in the reconstruofithe velocity fluctuations for
high and low Reynolds numbers, instead of 16384 frequendesol herefore, we only use and
show velocity reconstruction with low-pass filtering in the&sequent discussions and figures.
The difference because of filtering in any kind of partial af feconstruction is negligible and
similar to the ones shown in figures .17 and¥.18.

Figures from .19 tb7.42 show the reconstructed velocitg@spanwise-wall-normal (YZ)
plane for both of the Reynolds numbers tested here. Theses$igan be divided into four main
sections: Reconstruction of velocity using (i) first POD raat Rg =19 100 (figure$_7.19-
[Z.22); (ii) first four POD modes at Be=19 100 (figure§_Z26=724); (iii) first POD mode at
Rey =9800 (figured7Z.3[=7.B6); and (iv) first four POD modes a§ R8800 (figured_7.37-
[£432). These four main groups enable us to see the effect ef arergetic modes on the
reconstructions at the different Reynolds numbers. Eathesfe four main groups are formed
by reconstruction using only first, second, third, fourtfthfand sixth spanwise Fourier modes
for corresponding POD modes included in the computationsreldver, each of these figures
show the evolution of these reconstructed velocities bgegmgng the velocity fluctuations at
different time of realizations. In total, each figure consanine different time steps and demon-
strates how things change as the flow evolves. Figures mmieg different time steps are
portions of real time movies of the reconstructed velociyds. The time step are selected to
show some of the important events happening within the bayndyer, and it is on the order
of integral time scale of turbulence.

FiguredZ.TH, 7. 2%, 781 ahd 71 37 show the reconstructivalotity fluctuations using only
the first spanwise Fourier mode. Since only the first spankasgier mode is included in these
computations, there is no variation (or zero crossingsh@lihe spanwise direction. (Note
that the first spanwise Fourier mode represent the first ceeifiof the Fourier transformation
performed in the corresponding directions. It usually iseckthe zeroth Fourier mode in some
other applications such as POD performed on axisymmetuistlolt seems that there are layers
of positive and negative fluctuations throughout the bountyer.. As the number of POD
modes increases as in figulesT.25 andl7.37, the complexitesé layers in the wall-normal
direction increases as well. This complexity, or an incegasnumber of zero crossings in the
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inhomogeneous direction, is associated with the fact thah@ POD mode number increases
the eigenfunction across the inhomogeneous directiorwvariot, hence so do the reconstructed
velocity fluctuations. From these figures it is hard to saytlaing about the interaction between
different layers of fluctuations across the boundary layer.

Reconstructed velocity fluctuations using only the secqrathwise Fourier mode are pre-
sented in figureE 720, 71246, 7132 4nd ¥.38. Similar to theique figures, they represent the
reconstruction based on first POD mode and first four POD mimdeke high Reynolds num-
ber case and those for the low Reynolds number case resggctivhe variation in velocity
fluctuations across the spanwise direction is clear thig tibecause of the second spanwise
Fourier mode. In addition to this, the features are not fixesjppace and move along the span-
wise direction back and forth. There is no trend or tenderxseoved in neither direction nor
the sequence of motion. The large scale features (notitévibdobes fill almost entire extent
of the view in the spanwise direction, which is about one lolauy layer thickness) observed
in these figures are dynamically active such that they gehgar, weaker, sometimes merge
with other large scale features and break into differentgse More interestingly, these figures
show how the inner and outer layer of turbulent boundaryrlageluding the near wall region,
interact with each other.

For the high Reynolds number case, first of all, we obsenangtpositive and negative
momentum sources in the outer layer as shown in figuré 7.pécesdly betweery/d of 0.1 and
0.8. These are one of the most dominant features if only t@nsruction based on spanwise
Fourier mode 2 is considered. The time-resolved recorstruof this POD and spanwise
Fourier mode show that once there is large enough momentugiaged in the inner layer
including both log layer and near wall layers, then thesé nigmentum sources located outer
layer and inner layer merges. This initially results in aparge scales of motion occupying
the entire outer layer and log layer. While these large dtattuations are formed, there is no
significant activity existing in the near wall region. As tthew evolves, then this large scale,
high momentum motion of turbulence starts extending dowthiéowall, and filling the entire
boundary layer again as it is in figure_.20(i) and some sulm#gsnapshots. Reconstruction
based on only one POD and spanwise mode shows that therertgg sbupling between the
inner and outer layer. Furthermore, the velocity profilesglthe spanwise direction change
significantly between positive and negative fluctuationd arost probably creates inflection
points in the profile and corresponding instability meckars. These speculations need to be
investigated further with some detailed analysis, but tenapt has been made to do this in the
course of this thesis.

Reconstruction based on the same spanwise mode-2, budiimglihe first four POD modes
in figure[ZZb provide a clearer picture about what reallyisg on in the boundary layer. First,
there is an increase in size and magnitude of both positidenagative fluctuations, which is
particularly related to the number of POD modes taken intmant. As can be seen from the
contour plots of the spanwise-wall-normal plane, the higimnlergetic features in the outer layer
merge with the energetic events in the near wall region ardKksr apart. When the energetic
events merge, they cover the entire span from the very ndbaroremost the top of the bound-
ary layer. Since there are four POD modes are included ingbenistruction, there appears a
more complex behavior in the wall-normal direction. Simitdbservations from figurds_7132
and[Z3B are possible for the low Reynolds number velocitttltions reconstruction based
on spanwise mode-2.

Reconstructed velocities for high Reynolds number expemirasing spanwise Fourier mode-
3 together with only the first POD mode and first four POD modespdotted in figureE 721
and[ZZV respectively. First of all, there are more vanegim velocity profiles and zero cross-
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ings along the spanwise direction. As the number of POD modes$/ed in the reconstruction
increases, the strength of the large scale energetic anengases together with the complexity
of the profiles in the wall-normal direction. Reconstruntlmased only on the first POD mode
in figure[Z21 shows that the organized motions extend frafavey in the outer region to the
end of buffer layer. As the time step increases we see morenanel influence in the near wall
region due to these energetic features of turbulence, ynostiupying the entire log layer. At
some point, these features lose strength and are “turn&dlodh they activate again. Figure
[Z27 provides a better picture and stronger evidences ofdhpling between the inner and
outer layers. The large scale features in the wake regionagnidyer first become strong and
then they penetrate down to the wall. Once they cover thesdmbiundary layer, they stay active
for many integral time scales. Equally strong and importanipling between inner and outer
layers using the reconstructed velocity field in the low Regla number case is observed in
figures[Z.3B an_Z.B9. However, the strength of the energeéints very close to the wall is
slightly weaker compared to the maximum momentum sourctgiturbulent boundary layer.

Figured7Z2P an 728 show the velocity contour lines of geemnstructed turbulent fluctu-
ations using the fourth spanwise Fourier mode togetherthétirst and first four POD modes
respectively. The positive and negative momentum sourcesé POD based reconstructions
appear to be fixed in space and they do not change their locstibstantially. On the other
hand, they are active and inactive in a cycle. They are westlstgonger, then get weaker, and
get stronger again. The footprints of these events extgridithe wall can also be seen in these
figures. However, they are not as significant as for the lowanwise Fourier modes. Inclusion
of more POD modes increases the complexity in the wall-nbdmaction as can be seen in
figure[ZZ8. In addition to this, we observe smaller featofgmsitive and negative momentum
sources due to higher POD modes, even though the magnitndeaffected substantially. The
connection between the log layer and the near wall regioroi®rabvious in this case than the
coupling between the inner and outer layer of turbulent dauy layer. We essentially do not
see any significant difference between the velocity recaoson of the high and low Reynolds
number cases, as it can be seen in figlired 7.3fand 7.40.

Even though the magnitude of the large scale events go ddvatastially for higher Fourier
mode number in spanwise direction, it is still possible te Bew the velocity profiles vary in
both spanwise and wall normal direction. FiguresT7[Z3] 17229, [7.30[ 739, 736,719 and
essentially show that there are weak organized mattansng near the wall and extending
into the log layer of the turbulent boundary layer.

7.5 Summary and Discussion

In this chapter, we showed the experimental utilizatiorhefpproper orthogonal decomposition
for the high Reynolds number zero pressure gradient tunbbleundary layer. The normalized
eigenvalue distribution shows that the first POD mode hasertiwan 40% of the turbulence
kinetic energy, while the second one has about 20% of théettotaulence kinetic energy. It is
possible to recover about 90% of the kinetic energy onlygisie first four POD modes. Similar
figures are obtained at both Reynolds number with no significaication of Reynolds number
dependence.

The eigenspectra always peak near zero frequency and mtiet tafrge scale features are
found below 100 Hz and 50 Hz for the high and low Reynolds nundases studied here
respectively. Even though no attempt was made to find a seigilarity parameter for
the eigenspectra of the two different Reynolds number madRis investigation, the results
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indicate that it might be possible to scale the eigenspexgpecially in the inertial range of
turbulence similar to the similarity of the eigenfuncti@s eigenspectra within the outer layer
of turbulent wall flow shown bEﬂﬂL_a.ll ) using inner velocity and outer length scales.

The kinetic energy distribution is maximum at spanwise Fgunode-2, while there is a
slight difference between spanwise Fourier mode-1 ande Aormalized eigenvalue distri-
bution obtained from two different Reynolds number haveasithe same distribution and
features.

The low-pass filtering of turbulence kinetic energy by meainthe random coefficients of
POD is very effective with no significant change in the largals features of the turbulent
boundary layer. The reconstructed velocity fluctuationgtmn spanwise-wall-normal plane
show how organized motions of turbulence with significanbants of energy interact with
each other across the boundary layer. It is also possiblederve the strength of the interaction
between the inner and outer layer using these reconstruetedity fields. The reconstructed
fields suggest strongly that any attempt to develop uncoupledels for different layers of
turbulence will result in failure, since strong interacisexist between the large scale energetic
scales of turbulence in the entire boundary layer. Moreth&y appear to dispute the classical
view that it is the inner layer that drives the outer. In falog opposite appears to be true.
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(b) Eigenspectra of the second POD mode

(a) Eigenspectra of the first POD mode.
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(d) Eigenspectra of the fourth POD mode

(c) Eigenspectra of the third POD mode.
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(f) Eigenspectra of the sixth POD mode.

(e) Eigenspectra of the fifth POD mode.

Figure 7.2: Eigenspectra(" (k, f), of the first 6 POD modes €, - -, 6) for different spanwise Fourier

modesk, and frequenciesf, at Rgg =19 100.
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(c) Eigenspectra of the third POD mode. (d) Eigenspectra of the fourth POD mode.
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(f) Eigenspectra of the sixth POD mode.

(e) Eigenspectra of the fifth POD mode.

Figure 7.3: Eigenspectra(" (k, f), of the first 6 POD modes i, - -, 6) for different spanwise Fourier
modesk, and frequenciesf, at Rg =9800.
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(a) Eigenspectra of the first spanwise Fourier (b) Eigenspectra of the second spanwise Fourier
mode. mode.

x 10 x 10"

(c) Eigenspectra of the third spanwise Fourier (d) Eigenspectra of the fourth spanwise Fourier
mode. mode.

x10° x10°

(e) Eigenspectra of the fifth spanwise Fourier (f) Eigenspectra of the sixth spanwise Fourier
mode. mode.

Figure 7.4: Eigenspectra(" (k, f), of the first 6 spanwise Fourier modés=1, - -, 6) for different POD
modesn, and frequenciesf, at Re =19 100.
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(a) Eigenspectra of the first spanwise Fourier mode. (b) Eigenspectra of the second spanwise Fourier
mode.
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(e) Eigenspectra of the fifth spanwise Fourier mode. (f) Eigenspectra of the sixth spanwise Fourier
mode.

Figure 7.5: Eigenspectra(" (k, f), of the first 6 spanwise Fourier modés=1, - -, 6) for different POD
modesn, and frequenciesf,, at Reg =9800
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Figure 7.6: Normalized eigenspectra of the first POD modeacBlred, blue and green lines present
X (k, f) for k=1, 2, 3, and 4 respectively.
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Figure 7.7: Normalized eigenspectra of the second POD nididek, red, blue and green lines present
xB(k, ) for k=1, 2, 3, and 4 respectively.

103



Structure of Turbulent Boundary Layers

Xk f)

10 ‘1 ‘2 3

10 10 10
f (Hz)

Figure 7.8: Normalized eigenspectra of the third POD modeciB red, blue and green lines present
X (k, f) for k=1, 2, 3, and 4 respectively.
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Figure 7.9: Normalized eigenspectra of the fourth POD mdlack, red, blue and green lines present
xP(k, ) for k=1, 2, 3, and 4 respectively.
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Figure 7.10: Normalized eigenspectra of the fifth POD modeck red, blue and green lines present
X (k, f) for k=1, 2, 3, and 4 respectively.
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Figure 7.11: Normalized eigenspectra of the sixth POD mdadack, red, blue and green lines present
xB(k, ) for k=1, 2, 3, and 4 respectively.
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Figure 7.12: Eigenspectra for Re-19 100 in linear-linear scale. Black lines: Eigenspectnarsed
over all POD and spanwise Fourier modes; Blue lines: Eigestsp of the first POD mode summed over
all spanwise Fourier modes; Red, green, magenta and cyesripresent eigenspectra of the first POD
mode with first, second, third and fourth spanwise Fouriedesaespectively.
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Figure 7.13: Eigenspectra for Re-9800 in linear-linear scale. Black lines: Eigenspectrarseah over
all POD and spanwise Fourier modes; Blue lines: Eigensp&dtthe first POD mode summed over all
spanwise Fourier modes; Red, green, magenta and cyan déipessent eigenspectra of the first POD
mode with first, second, third and fourth spanwise Fouriedesaespectively.
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(a) Rg =19 100. (b) Rey =9800.

Figure 7.14: Normalized eigenvalue distributi@f, for POD modesn, and spanwise Fourier modés,
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Figure 7.15: Reconstructed instantaneous velocity sigindky =19 100. Blue lines denote the original
velocity fluctuations and red lines denote the reconstduegdocity fluctuations using some numbers of
POD modes as inserted in figures.
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Figure 7.16: Reconstructed instantaneous velocity sigindly =19 100. Blue lines denote the original
velocity fluctuations and red lines denote the reconstduegdocity fluctuations using some numbers of
POD modes as inserted in figures.
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Figure 7.17: Comparison of reconstructed velocity fielsdhgdioth all frequencies and only frequencies
lower than 100 Hz at Reof 19 100. Left column (figures (a), (c) and (e)) and right cofu(figures (b),
(d) and () represent the reconstruction without and watk-pass filtering at 100 Hz respectively. (a-b):
all POD and spanwise modes; (c-d): First POD modes and aihgpa modes; (e-f): First POD modes
and second spanwise modes.
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Figure 7.18: Comparison of reconstructed velocity fielsngdioth all frequencies and only frequencies
lower than 49.5 Hz at Reof 9800. Left column (figures (a), (c) and (e)) and right cotugfigures (b), (d)
and (f)) represent the reconstruction without and with foags filtering at 49.5 Hz respectively. (a-b):
all POD and spanwise modes; (c-d): First POD modes and aihgpa modes; (e-f): First POD modes
and second spanwise modes.
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Figure 7.19: Reconstructed velocity fluctuations usingydhe first POD and first spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.20: Reconstructed velocity fluctuations using @hé first POD and second spanwise Fourier
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modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.21: Reconstructed velocity fluctuations using/dhé first POD and third spanwise Fourier
modes at Re=19 100. Different time steps are as given in the captions.
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Figure 7.22: Reconstructed velocity fluctuations using/ dhé first POD and fourth spanwise Fourier
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Figure 7.23: Reconstructed velocity fluctuations usingydhk first POD and fifth spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.24: Reconstructed velocity fluctuations usingy dhe first POD and sixth spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.25: Reconstructed velocity fluctuations using firet four POD and first spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.26: Reconstructed velocity fluctuations usingfitst four POD and second spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.27: Reconstructed velocity fluctuations usingfitst four POD and third spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.28: Reconstructed velocity fluctuations usingfitst four POD and fourth spanwise Fourier
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modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.29: Reconstructed velocity fluctuations using fitet four POD and fifth spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.

121



Structure of Turbulent Boundary Layers

-03 02 -01 0 01 02 03 -03 02 -01 0 01 02 03 -03 -02 -01 0 01 02 03
4% b UB b G br
3618 0.511 3618 0.511 3618 0.511
1805 0.255 1805 0.255 1805 ; 0.255
890 0.127 890 1 0.127 890 4 - 40.127
445 0.063 445 0.063 445 0.063

*> 220 : ©{0.031 yI5 *> 220 : 0.031 y/5 *> 220 40031 y/8

100 0.015 100 0.015 100 0.015

50 | 0.007 50 d 0.007 50 3 - 40.007

22 0.003 22 0.003 22 0.003

7 0.001 7 0.001 7 0.001

-04 -02 0 02 04 -04 -02 0 02 04 -04 -02 0 02 04
2/ 2/ z/5
(a) =0.016 s. (b) t=0.066 s. (c) t=0.116 s.

-03 02 -01 0 01 02 03 -03 -02 -01 0 01 02 03 -03 -02 -01 0 01 02 03
4% b UB b G br
3618 0.511 3618 0.511 3618 0.511
1805 0.255 1805 0.255 1805 0.255
890 R 0.127 890 ! 0.127 890 \ - 40.127
445 0.063 445 0.063 445 0.063

*> 220 : 0.031 y/5 *> 220 : 0.031 y/5 *> 220 40031 y/8

100 0.015 100 0.015 100 0.015

50 ] 0.007 50 i 0.007 50 ] - 40.007

22 0.003 22 0.003 22 0.003

7 0.001 7 0.001 7 0.001

-04 -02 0 02 04 -04 -02 0 02 04 -04 -02 0 02 04
215 25 z/5
(d) t=0.133 s. (e) =0.150s. (f) t=0.183 s.

-03 -02 -01 0 01 02 03 -03 -02 -01 0 01 02 03 -03 -02 -01 0 01 02 03
45 b 4% b B3 b7
3618 0.511 3618 0.511 3618 0511
1805 0.255 1805 0.255 1805 0.255
890 " 0.127 890 i 0.127 890 » - 40.127
445 0.063 445 0.063 445 0.063

> 220 : 0.031 y/& *> 220 : 0.031 y/& *> 220 : ~40.031 y/5

100 0.015 100 0.015 100 0.015

50 : 0.007 50 : 0.007 50 1 ©40.007

22 0.003 22 0.003 22 0.003

7 0.001 7 0.001 7 0.001

-04 -02 0 02 04 -04 -02 0 02 04 -04 -02 0 02 04
z/8 z/8 2/
(g) t=0.233 s. (h) t=0.283 s. (i) t=0.333 s.

Figure 7.30: Reconstructed velocity fluctuations usingfitst four POD and sixth spanwise Fourier
modes at Rg=19 100. Different time steps are as given in the captions.
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Figure 7.31: Reconstructed velocity fluctuations usingydhe first POD and first spanwise Fourier
modes at Re=9800. Different time steps are as given in the captions.
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Figure 7.33: Reconstructed velocity fluctuations using/dhé first POD and third spanwise Fourier
modes at Re=9800. Different time steps are as given in the captions.
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Figure 7.34: Reconstructed velocity fluctuations using/ dhé first POD and fourth spanwise Fourier
modes at Rg=9800. Different time steps are as given in the captions.
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Figure 7.35: Reconstructed velocity fluctuations usingydhk first POD and fifth spanwise Fourier
modes at Rg=9800. Different time steps are as given in the captions.
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Figure 7.36: Reconstructed velocity fluctuations usingy dhe first POD and sixth spanwise Fourier
modes at Rg=9800. Different time steps are as given in the captions.
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Figure 7.37: Reconstructed velocity fluctuations using fthet four POD modes and first spanwise
Fourier mode at Re=9800. Different time steps are as given in the captions.
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Figure 7.38: Reconstructed velocity fluctuations usingfitst four POD modes and second spanwise
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Figure 7.39: Reconstructed velocity fluctuations using ftret four POD modes and third spanwise
Fourier mode at Re=9800. Different time steps are as given in the captions.
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Figure 7.40: Reconstructed velocity fluctuations usingfitet four POD modes and fourth spanwise
Fourier mode at Re=9800. Different time steps are as given in the captions.
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Figure 7.41: Reconstructed velocity fluctuations using ftret four POD modes and fifth spanwise
Fourier mode at Re=9800. Different time steps are as given in the captions.
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Figure 7.42: Reconstructed velocity fluctuations using ftret four POD modes and sixth spanwise
Fourier mode at Re=9800. Different time steps are as given in the captions.

134



Chapter 8

Summary and Conclusions

This thesis presents part of the large research prograneéuby the European Commission
calledWallturb: A European synergy for the assessment of walluiefice The main aim of
this research program is to create new experimental and meahdatabases on the character-
istics of turbulent wall-bounded flows, especially turlmilboundary layers. The goal is that
these databases will be used to gain more insight into theiggdymechanisms governing the
dynamics of these flows. This knowledge is deemed essentidghé future development of
efficient and physical turbulence modeling strategiesciviaire in turn crucial to aircraft and
other industries for sustainable development, espeaiaitjer the pressure of high oil prices
and operational costs.

One of the main aims of this thesis was to perform experimintee large LML wind
tunnel using synchronized, multipoint flow measurementesys to acquire data within a flow
volume comparable to the size of boundary layer thicknebsaduThe experiments were per-
formed using three synchronized stereo PIV systems and-wih®trake of 143 single wire
probes distributed on an array of 880 cn? normal to the flow in the streamwise direction.
This thesis presents the analysis of only the hot-wire ameety data collected for the zero
pressure gradient case at two different Reynolds numbaragly Rg of 9800 and 19 100.
The thesis includes a description of the experimental sietuiihe measurements performed in
the LML wind tunnel, and thén situ calibration methodology developed in the course of these
experiments. It presents some of the basic single poinsstat the results from a detailed
investigation of the two-point cross-correlations, an@lfinresults from a proper orthogonal
decomposition (POD) including the kinematics of the retatsed velocity fields using the
POD eigenmodes.

The attachment of the 143 probe hot-wire rake to the windeéuprevented a conventional
hot-wire probe calibration because of the mechanical dities. Therefore a new hot-wire
calibration method was developed and utilized for this stiggation. The method is based
on a polynomial curve fitting approximation which expresgesinstantaneous velocity as a
function of instantaneous voltage. There is only one freast velocity needed in this method,;
since the method employs the higher order velocity stasistibtained at only one external
velocity instead of obtaining classical freestream vejoeersus voltage curves. The key to the
method was the measurement before, during and after theiegre using single hot-wires
and PIV of the mean velocity and higher velocity moments jysitream of the individual
probes. The results showed that even a second order polghapproximation yields very
good agreement between the measured profiles (or compuiBiépafter the calibration) and
the reference profiles used in the calibration. The methsa ptovides an opportunity to do
the calibration on the fly as long as the convergence of thie bider voltage statistics can
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be satisfied. The calibration scheme can be executed fareliff blocks of hot-wire data to
correct the coefficients, thus classical correction meathagies due to the changes in physical
conditions can be eliminated by the proposed method.

A primary goal of the measurement was to establish the $pattbtemporal structure of the
high Reynolds number turbulent boundary layer by takingtim@solved data simultaneously at
many spatial locations. Single point statistics were netrtfain interest in this study, because
extensive investigations on the characteristics of theulent boundary layers within the same
facility in the same range of Reynolds numbers had already performed and documented by
Carlier & Stanisl2s (2005): Stanislasall (2008). Comparisons with this earlier data, however,
provided an important opportunity to verify the multipoartd calibration methodology. Single
point statistics (e.g., rms velocity profiles, profiles foe third and fourth central moments) of
the turbulent velocity field together with the power spdatiensities at different wall-normal
positions showed excellent agreements with the previasigined results in the same facility.
Moreover, the single point spectral analysis revealed sompertant findings. First, the ¥3
range develops only aftei"yf 220 and reaches a significant length aftéio§ 450, consistent
with the existence of a mesolayer. Second, tHednge is found only in a very small region.
The corresponding flat region in the premultiplied spectragien only near approximately y
= 100 for both of the Reynolds numbers studied here. Thirel different shapes of the pre-
multiplied spectra in the overlap region of the boundargtaguggest strongly a dependence on
Reynolds number consistent with different inner and outaracter of this developing flow.

The large scale motions of the turbulence were studied iaildesing two-dimensional
two-point cross-correlations maps on different planesiwithe measurement domain. It was
observed that the elongated correlations exist at everingamal position above the buffer
layer. (The single exception was the very thin streaky festobserved within the viscous layer
of the low Reynolds number case.) These elongated strigoiveee relatively more significant
in the log layer. Also, their spatial extent in the streaneadrection, utilizing the Taylor’s
frozen field hypothesis, was found to be extremely large (nany boundary layer thicknesses).
Data analysis using different algorithms revealed simisults, suggesting that the source of
these very long correlations is not the algorithm. Cledrgre is a need for physical explanation
of their existence. Correlation between different laydithe boundary layer was also observed,
even between the most intermittent outer region and thewakhiregion, suggesting strongly
that coherent structures link different regions acrosbthendary layer.

The investigation using the proper orthogonal decompmsghowed that the POD (in con-
junction with Fourier analysis in the statistically homageus and stationary directions) can
effectively represent the total kinetic energy with a smalinber of modes. It was possible to
recover for both Reynolds numbers almost 90% of the totalience kinetic energy within the
entire boundary layer with only four POD modes. The eigeaspef the POD modes showed
that most of the activity is located in the spectrum below 50ardd 100 Hz for the low and
high Reynolds number respectively. Therefore, low-patarifilg of turbulence kinetic energy
by means of truncating the number of POD and Fourier modesriseffective, and causes no
significant change to the large scale features of the tunbbleundary layer. The reconstructed
velocity fluctuations on the spanwise-wall-normal planevehow organized motions of turbu-
lence with significant amounts of energy interact with eatttfeoacross the boundary layer. It
is also possible to observe the strength of the interactswden the inner and outer layers of
turbulence using these reconstructed velocity fields. Eoenstructed fields suggest that any
attempt to develop uncoupled models for different layersudbulence will result in failure,
since interactions exist between the large scale energeies of turbulence across the entire
boundary layer. The reconstructions also appears to abatihe classical view that it is the
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inner layer that drives the outer. In fact, the opposite app®® be true.

In summary, the results of the two-point cross-spectralyaigand the proper orthogonal
decomposition analysis suggest that the turbulent boyrldger is full of organized motions
extending in both the transverse and streamwise directaomsgreatly elongated in the latter.
The results also reveal that the different layers of theulertt boundary layer are actively
communicating because of the structures connecting them.
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Appendix A

Details of Rake Design
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Figure A.1: Side view of the hot-wire rake. All dimensiong @ mm.
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Figure A.2: Diagram of the double-sided circuit board. Athénsions are in mm.
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APPENDIX A. DETAILS OF RAKE DESIGN

3089

18
L o o 1)
@415
6 = o o Al
f | o B —
QO
o

Figure A.3: Front view of the hot-wire rake. All dimensiongan mm.
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Figure A.4: Attachment of the hot-wire rake to the tunnellwall dimensions are in mm.
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Appendix B

Two-Point Cross-Correlations by
Time-Lag Products

The computation of the two-point cross-correlations pnéese in this section is performed by
directly computing the correlation as given in EQ._15.2).isTimethod computationally is so
expensive and time consuming. As it can be seen from the 8glrewn in this section, there
is essentially no difference between these results ancethdts computed using the FFT algo-
rithm, as shown in figurds 3.1 ahdb.2.
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Figure B.1: Two-point cross-correlation coefficients (Yi&ane) at constant wall-normal positions using
time-lag products at Reof 19 100. The figures present the correlations between thieedocated at
z=0 and the probes at the same lpcation on each plane. (a)y=7.5, (b) y" =22, (c) y" =50, (d)
yt =100, (e) y =230, (f) y* =475, (g) y* =950, (h) y= 0.2.
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APPENDIX B. TWO-POINT CROSS-CORRELATIONS BY TIME-LAG PRQICTS
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Figure B.2: Two-point cross-correlation coefficients (Ji&ne) at constant wall-normal positions using
time-lag products at Reof 19 100. The figures present the correlations between thigegocated at
z=0 and the probes at the same lpcation on each plane. (a}y0.25, (b) y= 0.55 (c) y= 0.755 (d)
y=20.
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Appendix C

Effect of Seeding Particles
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Figure C.1: Probability density function with and withowtesling particles. Blue: Without seeding
particles, Red: With seeding particles.
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Figure C.2: Frequency spectra with and without seedindgbest Blue: Without seeding patrticles, Red:
With seeding particles.
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