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Spatial Decompositions of a Fully-developed Turbulent Round
Jet Sampled with Particle Image Velocimetry

MAJA WÄNSTRÖM

Division of Fluid Dynamics
Department of Applied Mechanics
Chalmers University of Technology

Abstract
Spatial decompositions of the turbulence in a far, axisymmetric jet at

exit Reynolds number of 20, 000 have been performed. Equilibrium sim-
ilarity theory applied to the two-point Reynolds stresses has shown that
the turbulence statistics in the far, fully developed region of an axisym-
metric jet should be independent of origin in the streamwise direction
when evaluated on the similarity coordinates system ξ = ln[(x− xo)D],
η = r/δ1/2(x). The homogeneity was confirmed in a planar PIV exper-
iment that measured the streamwise and radial velocity components
in a (0.4m by 0.7 m) composite field-of-view intersecting the center-
line. The homogeneity allowed for spatial spectra to be estimated in
the streamwise direction. Radial Proper Orthogonal Decomposition was
subsequently performed based on the two-point cross-spectral tensor el-
ements. The obtained eigenspectra and eigenvectors reflect the high-
dimensional nature of of the far jet as the rates of convergence to the
available spectral density decreased with increasing wavenumber.

In addition, radial Proper Orthogonal Decomposition was performed
on three-component stereoscopic PIV velocity data from cross-planes in
the far turbulent jet. Fourier series expansion of the azimuthally ho-
mogeneous turbulence again highlighted the dynamic complexity of the
far jet. In particular, it was shown that several azimuthal modes are
needed to expand the primary Reynolds shear stress which is associ-
ated with the process by which the turbulence extracts kinetic energy
from the mean flow gradient. This in turn implies that the far jet tur-
bulence should not be expected to be dominated by any one azimuthal
mode, as has been inferred from linear stability analysis.

Keywords: axisymmetric turbulent jet, equilibrium similarity, PIV,
spatial spectral analysis, proper orthogonal decomposition,
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1. INTRODUCTION

This introductory chapter contains, a contextual rationale for the work
attempted and accomplished in this dissertation and a brief paragraph
describing the structure of this document.

1.1 Rationale and objectives of this work

Turbulent jets form one of the most important classes of turbulent free
shear flows. Not only are they technologically important in their own
right because of their omnipresence, they are among the few flows for
which we have found similarity solutions that appear to describe the
flows we can produce in the laboratory. This means that we can read-
ily spot the role played by boundary and upstream conditions, and as
well any errors in measurement or changes to the flow introduced by
the measurement techniques. This is very important for the evaluation
and development of turbulence models, which are primarily local and
presumed to be independent of a particular flow, and especially inde-
pendent of boundary conditions.

There have been a number of important developments over the past
two decades which motivated this dissertation. First, it was the recogni-
tion by George [1] that turbulent free shear flows could retain an asymp-
totic dependence on their upstream (or initial) conditions. The fact of
this now seems to be beyond dispute (Cater and Soria [2], Wong et al.[3],
Slessor et al. [4] ). The second important development was the recogni-
tion that the axisymmetric jet flow in particular admitted to two-point
similarity solutions; i.e., the two-point Reynolds stress equations them-
selves had Reynolds number independent similarity solutions (Ewing
and George[5], Ewing [6], Ewing et al.[7]). This meant that the axisym-
metric jet belonged to a very small class of turbulent shear flows for
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which all the scales of motion could be collapsed with a single similarity
length scale, and was one of only two flows for which the local Reynolds
number was constant during decay (the plane wake is the other).

The two-point similarity analysis deduced that the streamwise co-
ordinate scaled as the logarithm of the downstream distance, while
the radial coordinate scaled with the local half-width. These had the
immediate consequence that the asymptotic jet was homogeneous in
the logarithmic streamwise coordinate, and homogeneous periodic in
the azimuthal coordinate. Gamard et al. [8] provided the first ex-
perimental evidence for that the azimuthal similarity was in fact ob-
served in the two-point correlations and cross-spectra. Subsequently,
Ewing et al. [7] provided the first experimental evidence for the loga-
rithmic scaling of the axisymmetric coordinate and for the homogeneity
of the jet when represented in it. This experimental evidence consisted
of correlations computed from PIV data obtained in a jet at very low
Reynolds number (2000) based on jet exit diameter and velocity), and
from correlations computed from simultaneous hot-wire/LDA data at
higher Reynolds number (33,000) but only along the jet centerline. One
of the goals of this dissertation was further test the two-point similar-
ity hypothesis by carrying out full-field PIV measurements at higher
Reynolds number. Another was to use stereo PIV to repeat and extend
the measurements of Gamard et al.[8] , both to test the sensitivity of
the results to the particular domain and to eliminate any bias arising
from the large rake of 139 hotwires which was used to obtain them.

There are a number of further consequences of the single and two-
point similarity theories described above, some of which have been noted
before, others of which are new, none of which have been tested. The
most important of these further consequences was that the homogene-
ity in the logarithmic streamwise coordinate implied that there was no
need to carry out a standard POD (Proper Orthogonal Decomposition)
analysis, since the POD integral could be solved analytically. In fact,
the eigenfunctions can be shown to be harmonic functions (Ewing [6],
George [9]) of the logarithmic streamwise coordinate with continuous
(dimensionless) wavenumber, say κ. Statistical stationarity in time im-
plies directly that the POD eigenfunctions are also harmonic functions
in time with continuous frequency, say ω (Lumley [10], George [11]);
while the fact that the azimuthal coordinate is periodic homogenous im-
plies that the POD eigenfunctions must also be harmonic, but at integer

2
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multiples of 2π.

Thus, if the two-point theory and its implications for the streamwise
decomposition can be confirmed, the remaining representation problem
reduces to simply the radial coordinate, the individual contributions to
the velocity field of the eigenfunctions being themselves functions of
κ, ω and m. Decomposition of the Navier-Stokes equations results in
non-linear coupled equations in the single variable η = r/δ1/2 with κ,
ω and m as parameters. Linearization of these in turn yields equa-
tions which closely resemble the parallel stability analysis of Batchelor
and Gill [12], Michalke [13] and others, but with the important differ-
ence that the growth of the jet is fully represented without the need for
any localization or perturbation analysis (Leib and Goldstein [14], Wu
and Huerre [15]). A primary objective of this dissertation was to test
the fundamental deduction that the instantaneous jet could be so rep-
resented. This was accomplished by using planar PIV and performing
Fourier analysis on very large streamwise cuts. The very large fields
were necessary in order to minimize the effects of windowing and alias-
ing on the spatial Fourier transforms.

It was originally our objective to make simultaneous cross-plane -
streamwise plane measurements in order to see how the various modes
described above couple together. This proved to be technologically be-
yond our capabilities at this time. In addition there were many aspects
of the PIV that were not well-understood (at least by us), and especially
as it applied to this problem. Therefore a significant portion of this
dissertation is devoted to a detailed analysis and discussion of the in-
fluences of quantization noise, the effects of spatial averaging, and the
effects of windowing and filtering on the data and the inferences from
it.

1.2 Thesis structure

Chapter 2 this thesis focusses on the the theory of equilibrium similar-
ity as applied to the momentum-conserving axisymmetric far jet and the
conclusions that can be drawn from it with. The material is to be con-
sidered as a review of the previous work of George et al [16] in general
and of the theoretical work of Ewing in particular [7]. The outstanding

3
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result of the equilibrium similarity is that it is possible to find a coordi-
nate system in which the turbulence exhibit streamwise homogeneity.
This result is exploited in chapter , in which the theory for the subse-
quent composite spatial decompositions are detailed. Following this are
I and II describing the two experimental investigations that provided
the data for the spatial decompositions. The results of the data analy-
sis are given in the respective parts. Concluding remarks are given in
chapter 11.

4



2. EQUILIBRIUM SIMILARITY OF THE AXISYMMETRIC
TURBULENT JET

In an attempt to reduce the dimensionality of the equations of mo-
tion for fluid flow similarity solutions are often sought (Batchelor[17],
George[1]). These are solutions to the equations of motion mapped onto
a coordinate system which eliminates their dependence on at least one
independent spatial (or temporal) dimension and renders the equations
dimensionless. For single-point equations such mappings consist of scal-
ing out the growth along one coordinate axis by absorbing it into another
and choosing appropriate velocity scales for the velocity quantities. The
choice of the relevant scaling quantity is important and is often estab-
lished by the researchers own insight into the expected behavior of the
flow in question (Tennekes & Lumley[18], Townsend[19]). It is then
inevitable that erroneous scalings are sometimes presumed, leading to
un-physical solutions. And even if the solutions found are physical, the
constraint utilized could leave families of solutions undiscovered. In
short, a certain measure of arbitrariness influences the similarity anal-
ysis. In an effort to counteract this arbitrariness, a method of identify-
ing both if a similarity mapping exists and in that case what the scaling
parameters are, the theory of equilibrium similarity was developed by
George [20].

Equilibrium similarity proposes unknown scaling variables for all
relevant terms which are then substituted back into the equations. Then
an assumption is made that in order for the flow to develop as a similar-
ity flow, the terms of the averaged equations may not change in relation
with each other, i.e., all the terms must be in mutual balance with re-
spect to each other at every stage of the flow progression - hence the
epithet equilibrium similarity. This requirement places constraints on
the scaling variables in terms of their relation to each other and to the
axis of progression. If some functional dependence of the scaling vari-
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ables can be found that simultaneously satisfies all such constraints, an
equilibrium similarity solution to the flow equations exists.

The theoretical analysis as well as experimental results reported
in this work relies crucially on the conclusions that can be made from
equilibrium similarity theory applied to the far, stationary, round tur-
bulent jet. The theory has been developed largely by George and his
co-workers over the past two decades, continuing in this dissertation
with investigation of it’s implications for the decomposition of the far,
turbulent round jet. Consequently there is no single reference prior to
this which presents the current state of our understanding. In light of
this, the theory and its consequences will be discussed in some detail.

2.1 Equilibrium similarity applied to the single-point RANS
equations of motion

The equations are most naturally expressed in cylindrical coordinates
x, r, θ. The nomenclature for the velocity components is ~v = (u, v, w)
where v is the radial component and w the azimuthal one. Follow-
ing Batchelor [17] the full governing equations in cylindrical coordi-
nates are listed in Appendix A. Reynolds-decomposition and ensemble-
averaging yields single-point equations for the mean velocity and the
turbulent quantities. The flow is to be considered statistically homoge-
neous in the azimuthal direction and stationary in time. There is no
mean swirling velocity. As the jet flow is a rotationally symmetric shear
flow the boundary layer approximation applies. The Reynolds number
for the flow is assumed to be large enough that the viscous effect on the
mean flow are negligible. In summary the following reductions can be
made to all equations for averaged quantities:

∂

∂θ
= 0 ;

∂

∂t
= 0 ;

∂

∂x
� ∂

∂r
(2.1)

Further simplification to specific equations will be justified as necessary.

2.1.1 Momentum and mass conservation

By integrating the radial mean momentum equation, neglecting vis-
cous terms and all second order terms in the turbulence intensity, the

6
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streamwise pressure gradient can be shown to be zero to leading order.
Thus the streamwise momentum equation for high Reynolds number
and to first order in turbulence intensity reduces to:

U
∂U

∂x
+ V

∂U

∂r
= −1

r

∂

∂r
r〈uv〉 (2.2)

The radial mean velocity V is obtained via the mean continuity equa-
tion,

∂U

∂x
+

1

r

∂

∂r
(rV ) = 0 (2.3)

which can be integrated from the centerline (where r=0 and the radial
velocity is presumed to be zero) to any position r to yield:

V (x, r) = −1

r

∫ r

0

∂U

∂x
r̄dr̄. (2.4)

Substitution of equation 2.4 into the mean momentum equation 2.2
gives

U
∂U

∂x
− 1

r

∂U

∂r

∫ r

0

∂U

∂x
r̄dr̄ = −1

r

∂

∂r
r〈uv〉 (2.5)

The only remaining velocity variables are U and 〈uv〉 which both vary
along the streamwise axis x and radial axis r. The objective of similarity
analysis is find some x-dependent scalings of U and 〈uv〉 that remove all
dependency on x from equation 2.5.

Defining the radial similarity coordinate η as

η = r/δ(x, ?) (2.6)

where the length scale δ(x, ?) is to be determined, the mean velocity and
Reynolds shear stress can be expressed as:

U(x, r) = Us(x, ?)f(η, ?) (2.7)
〈uv〉(x, r) = Rs(x, ?)guv(η, ?) (2.8)

7
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where the ‘?’ denotes an unknown, but possible dependence on the up-
stream conditions. Note that the point of including the ‘?’ is that it
passes through all of the analysis unchanged; hence such a dependence
cannot be ruled out a priori.

Substitution of equations 2.7 and 2.8 into equation 2.5 yields

Usf

[
f
dUs

dx
+ Us

df

dη

∂η

∂x

]
− Us

df

dη

∂η

∂r

1

ηδ

∫ η

0

[
f
dUs

dx
+ Us

df

dη

∂η

∂x

]
δ2η̄dη̄

= − 1

ηδ

∂

∂η
(ηδRsguv)

∂η

∂r
(2.9)

The partial derivatives can be evaluated via the chain rule of differ-
entiation to be ∂η/∂x = −rδ−2dδ/dx = −(η/δ)dδ/dx and ∂η/∂r = 1/δ so
that

[
Us
dUs

dx

]
f2 −

[
U2

s

δ

dδ

dx
η

]
f
df

dη
−
[
Us
dUs

dx

]
1

η

df

dη

∫ η

0
fη̄dη̄

+

[
U2

s

δ

dδ

dx

]
1

η

df

dη

∫ η

0

df

dη̄
η̄2dη̄

= −
[
Rs

δ

]
1

η

d

dη
(ηguv) (2.10)

Integration by parts of the second integral term in 2.10 gives:
∫ η

0

df

dη̄
η̄2dη̄ = fη̄2

∣∣η
0
−
∫ η

0
2fη̄dη̄ = fη2 − 2

∫ η

0
fη̄dη̄ (2.11)

So equation 2.10 reduces to
[
Us
dUs

dx

]{
f2 − 1

η

df

dη

∫ η

0
fη̄dη̄

}
−
[
2
U2

s

δ

dδ

dx

]
1

η

df

dη

∫ η

0
fη̄dη̄

= −
[
Rs

δ

]
1

η

d

dη
(ηguv) (2.12)

As outlined in the introduction to this chapter, the conceptual idea
of equilibrium similarity is that the functional dependency of the scal-
ing variables (in this case δ(x), Us(x) & Rs(x)) must be found by re-
quiring the x-dependent parts of the terms in the governing differential

8
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equation to deviate at most by a constant factor. Any other variation in
functional dependency would fail to eliminate the x-dependence from all
terms simultaneously and thus fail in reducing the dependent variables
in the single-point equations from (x, r) to η = r/δ(x) only. Applying the
equilibrium criteria to equation 2.12, i.e., requiring that all terms must
be proportional to within a constant factor at all downstream positions
x, results in the scaling constraints:

Us
dUs

dx
∝ U2

s

δ

dδ

dx
(2.13)

Rs

δ
∝ Us

dUs

dx
(2.14)

Rs

δ
∝ U2

s

δ

dδ

dx
(2.15)

where the constant factors of proportionality can at most depend on
the upstream conditions at the jet generator. Constraint 2.13 gives a
functional relationship between the velocity scale and the length scale

1

Us

dUs

dx
∝ 1

δ

dδ

dx
(2.16)

which can be integrated from some virtual origin in along the stream-
wise axis, xo, to a downstream position x to obtain:

Us(x) = Us(xo)

[
δ(x)

δ(xo)

]n

∝ δ(x)n (2.17)

As neither δ(x) nor Us(x) are hitherto known, the exponent n cannot be
immediately determined. Nor does the other independent constraint,
2.15, provide such information. Instead, it dictates the scaling of the
primary Reynolds shear stress in the jet flow to be

Rs ∝ U2
s

dδ

dx
(2.18)

Again, as δ remains unknown, there is no logical foundation for assum-
ing that the similarity scaling for the Reynolds stress 〈uv〉 is simply the
square of the scaling of the mean streamwise velocity (c.f. Tennekes &
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Lumely [18] and Townsend[19]). Clearly, the growth rate of the length
scale δ will influence the magnitude of this quantity.

Thus there are really only two independent relationships needed to
describe the mean momentum equation, one relating the x-dependence
of the mean velocity to that of the variation of the length scale, and a
second relating the Reynolds shear stress to both. In fact, it is possi-
ble to absorb the ratio Rs/(U

2
s dδ/dx) into the definition of guv(η, ?) by

defining:

g̃uv(η) =

[
Rs

U2
s dδ/dx

]
guv(η, ?) (2.19)

Using this the streamwise momentum equation becomes completely in-
dependent of the scaling parameters :

−f2 − 1

η

df

dη

∫ η

0
fη̄dη̄ = −1

η

d

dη
(ηg̃uv) (2.20)

An immediate consequence of this is that any dependence on exit Reynolds
number or upstream conditions will not appear in the properly normal-
ized profiles. They will only appear in dδ/dx, which has been fully ab-
sorbed into expression 2.20 above. As a final note, the conclusions are
based on a set of equations in which the viscous terms have been ne-
glected. If they are not truly negligible, then extra terms must be re-
tained, and these can result in differential equations relating f(η) and
g̃uv(η) that are different from 2.20.

In order to establish the the exponent n, which relates the veloc-
ity scale Us to the length scale δ, one must consider the equilibrium
similarity applied to the momentum integral. For the round jet, the
conservation of momentum requires that the momentum crossing any
downstream plane equals the rate at which momentum is added at the
source, Mo, minus any work done by the streamwise pressure differ-
ence. By integrating the radial and streamwise momentum equations
it follows that (v. Appendix I of Hussein et al.[16]):

Mo

2π
=

∫
∞

0

[
U2 + 〈u2〉 −

(〈v2〉 + 〈w2〉
2

)]
rdr (2.21)

10
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In the subsequent chapter it will be shown that the normal Reynolds
stresses are all proportional to the square of the mean velocity scale.
Substitution of the similarity relations yields:

Mo

2π
= U2

s δ
2

∫
∞

0

[
f2 + guu − 1

2
[gvv + gww]

]
ηdη (2.22)

where the normal Reynolds stresses 〈u2〉, 〈v2〉, and 〈w2〉 scale as U 2
s leav-

ing the radial profiles guu, gvv , and gww. The radial integral in 2.22 is
simply some constant, so that the product of the velocity scale and the
length scale must stay constant at every downstream position, i.e.,

Us(x, ?) ∝ δ(x, ?)−1 (2.23)

This implies immediately that the Reynolds number based on the sim-
ilarity scales Res(?) = Us(x, ?)δ(x, ?)/ν remains constant as the flow
develops. The star symbol represents the fact that the scaling is depen-
dent on the conditions at the jet exit, in particular the exit Reynolds
number ReD = UeD/ν. Thus a given flow develops its own similarity
solution in accordance with only its upstream conditions and Reynolds
number. This has important consequences for all that follows, since it
implies that all length scales (integral, pseudo-integral scale, Taylor mi-
croscale, Kolmogorov microscale) remain proportional to each other as
the flow develops. This in turn implies that the role of terms neglected
in the original first order analysis does not change downstream, so they
do not grow back into the problem (like the axisymmetric wake of Jo-
hansson et al [21]), nor become more negligible (like the plane jet of
George [22]).

Once the relation between the velocity scale and the length scale
has been determined, the scaling for the radial mean velocity can be
derived directly. As previously stated, the radial mean velocity is given
by equation 2.4, which in similarity scaling is

V (x, η) = −
{[
δ
dUs

dx

]
+ 2

[
Us
dδ

dx

]}
1

η

∫ η

0
f(η)ηdη +

[
Us
dδ

dx

]
ηf (2.24)

Since momentum conservation requires that Us ∝ δ−1, δ(dUs/dx) =
−Us(dδ/dx), and it follows that:

11
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V (x, η) = −
[
Us
dδ

dx

]{
1

η

∫ η

0
f(η)η dη − ηf

}
(2.25)

Note that the proportionality to dδ/dx makes sense since it is V that is
responsible for the growth of the jet.

2.1.2 Transport equation for the turbulent kinetic energy q2

For a statistically stationary, incompressible flow without swirl which is
homogeneous in the azimuthal coordinates, the kinetic energy equation
(c.f., Hussein et al.[16] for the turbulence can be written as:

[
U
∂

∂x
+ V

∂

∂r

](
1

2
〈q2〉

)
=

1

r

∂

∂r
r

[
−1

ρ
〈pv〉 − 1

2
〈q2v〉 + ν

∂

∂r

(
1

2
〈q2〉

)]

+
∂

∂x

[
−1

ρ
〈pu〉 − 1

2
〈q2u〉 + ν

∂

∂x

(
1

2
〈q2〉

)]

−〈u2〉∂U
∂x

− 〈v2〉∂V
∂r

− V

r
〈w2〉 − 〈uv〉

[
∂U

∂r
+
∂V

∂x

]

−εhom (2.26)

where q2 ≡ u2 + v2 + w2. The left-hand side represents the convec-
tion by the mean flow, while the terms on the right-hand side represent
respectively the turbulence transport in the radial and streamwise di-
rections, the production by the working of the Reynolds stresses against
the mean flow gradients, and the ’homogeneous dissipation’. Note that
the ‘homogeneous dissipation’ is not really the dissipation (which in-
volves only the fluctuating strain-rates), but is given by:

εhom = ν〈∂ui

∂xj

∂ui

∂xj
〉 (2.27)

For high Reynolds number turbulence the true dissipation and homoge-
nous ’dissipation’ are virtually equivalent due to the local homogeneity
at the dissipative scales. This particular form has been chosen here to
simplify the viscous term in the transport equation, and has no impact
on all subsequent considerations.
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If the turbulence Reynolds number is assumed to be high enough
to neglect the viscous transport terms, the turbulence kinetic energy
equation to second order in the turbulence intensities reduces to:

[
U
∂

∂x
+ V

∂

∂r

](
1

2
〈q2〉

)
= −1

r

∂

∂r

(
r

[
1

ρ
〈pv〉 +

1

2
〈q2v〉

])
− 〈uv〉∂U

∂r
− εhom

(2.28)

Thus the high Reynolds number turbulent jet (to second-order in tur-
bulence intensities) consists only of a balance among mean convection,
radial turbulence transport, production and dissipation. Only in the
immediate neighborhood of the centerline do the neglected production
terms become important (since the Reynolds shear stress vanishes there).
Hussein et al.[16] have shown in fact that to first order the dissipation
and production are nearly in balance. The mean convection and turbu-
lence transport are smaller in magnitude and also nearly in balance.

Recalling the first order scaling U ∝ Us, V ∝ Usdδ/dx and 〈uv〉 ∝
U2

s dδ/dx and proposing the following scaling for remaining terms in the
kinetic energy balance 2.28 as

1

2
〈q2〉 = Ks(x)k(η) (2.29)

1

ρ
〈pv〉 +

1

2
〈q2v〉 = Ts(x)t(η) (2.30)

εhom = Ds(x)d(η) (2.31)

gives, after substitution and differentiation,

[
KsUs

δ

dδ

dx

]
ηf
dk

dη
+

[
Us
dKs

dx

]
fk −

[
UsKs

δ

dδ

dx

]
1

η

dk

dη

∫ η

0
fηdη =

−
[
Ts

δ

]{
t

η
+
dt

dη

}
−
[
RsUs

δ

]
guv

df

dη
− [Ds] d (2.32)

The equilibrium similarity constraint can be satisfied only if all terms
have the same functional dependence, which is possible only if the fol-
lowing relations hold (recalling that Rs = U2

s (dδ/dx)):

Ks

δ

dδ

dx
∝ dKs

dx
∝ Ts

Usδ
∝ U2

s

δ

dδ

dx
∝ Ds

Us
(2.33)
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Solving these, one can see immediately that the turbulence kinetic en-
ergy must have the same functional dependence on x as the mean ve-
locity squared; i.e.,

Ks ∝ U2
s (2.34)

Also, the radial turbulence transport term must vary as the mean veloc-
ity raised to the third power times the growth rate of the length scale;
i.e.,

Ts ∝ U3
s

dδ

dx
(2.35)

Note that this resembles closely the Reynolds shear stress term, a fea-
ture that is common to all the radial transport moments regardless of
the order.

The functional dependency for the dissipation can be satisfied only
if:

Ds ∝ UsKs

δ

dδ

dx
∝ U3

s

δ

dδ

dx
(2.36)

2.1.3 Transport equations for the normal Reynolds stresses

The component Reynolds stress equations for the normal stresses for
high Reynolds number and to second order are given by:

Streamwise normal Reynolds stress
[
U
∂

∂x
+ V

∂

∂r

]
〈u2〉 = +2〈p

ρ

∂u

∂x
〉 − 1

r

∂

∂r
r〈u2v〉 − 2〈uv〉∂U

∂r
− 2εu (2.37)

Radial normal Reynolds stress
[
U
∂

∂x
+ V

∂

∂r

]
〈v2〉 = +2

1

r
〈p
ρ

∂

∂r
rv〉 − 1

r

∂

∂r
r

[
1

ρ
〈pv〉 + 〈v2v〉

]
− 2εv (2.38)
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Azimuthal normal Reynolds stress
[
U
∂

∂x
+ V

∂

∂r

]
〈w2〉 = +2

1

r
〈p
ρ

∂w

∂θ
〉 − 1

r

∂

∂r
r〈w2v〉 − 2εw (2.39)

While each component of turbulent kinetic energy loses energy through
dissipation, only the streamwise normal stress equation retains the
terms that allows for production of turbulence kinetic energy. Thus the
only possible way to distribute energy among the component equations
is through a coupling facilitated by the pressure-strain rate terms. But
due to the continuity equation for the turbulent fluctuations the sum of
these terms are zero i.e.,

〈p
ρ

∂u

∂x
〉 +

1

r
〈p
ρ

∂

∂r
rv〉 +

1

r
〈p
ρ

∂w

∂θ
〉 = 0 (2.40)

Each term in equations 2.37 through 2.40 is written in similarity
form according to:

〈u2〉 = Ku(x, ?)ku(η, ?) ; εu = Du(x, ?)du(η, ?) ; 〈p
ρ

∂u

∂x
〉 = Pu(x, ?)pu(η, ?)

(2.41)

〈v2〉 = Kv(x, ?)kv(η, ?) ; εv = Dv(x, ?)dv(η, ?) ;
1

r
〈p
ρ

∂

∂r
rv〉 = Pv(x, ?)pv(η, ?)

(2.42)

〈w2〉 = Kw(x, ?)kw(η, ?) ; εw = Dw(x, ?)dw(η, ?) ;
1

r
〈p
ρ

∂w

∂θ
〉 = Pw(x, ?)pw(η, ?)

(2.43)

Equation 2.40 gives:
Pu ∝ Pv ∝ Pw (2.44)

Substitution of the relations 2.41 into equation 2.37 gives

Us
dKu

dx
∝ UsKu

δ
∝ Pu ∝ U3

s

δ

dδ

dx
∝ Du (2.45)

while equations 2.38 and 2.39 give:

Us
dKv

dx
∝ UsKv

δ
∝ Pv ∝ Du (2.46)
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and

Us
dKw

dx
∝ UsKw

δ
∝ Pw ∝ Dw (2.47)

So that

Pu ∝ Pv ∝ Pw ∝ U3
s

δ

dδ

dx
∝ UsKu

δ
∝ UsKu

δ
∝ UsKw

δ
∝ Du ∝ Dv ∝ Dw

(2.48)

Moreover since Pu(x) must at least balance the production term in
the 〈u2〉 equation, they must all be proportional toRsUs/δ = (U3

s /δ)dδ/dx.

2.1.4 Transport equations for the Reynolds shear stresses

So far the single-point equation analysis has provided no direct con-
straint on the scaling length δ(x) or its growth rate dδ/dx. However, the
equation for the Reynolds shear stress to leading order:
[
U
∂

∂x
+ V

∂

∂r

]
〈uv〉 = +〈p

ρ

[
∂u

∂r
+
∂v

∂x

]
〉 − 1

r

∂

∂r
r〈uvv〉 − 〈v2〉∂U

∂r
− 〈uw2〉

r

(2.49)

Note that a εuv could also have been included, but is usually neglected
because of the assumed local isotropy (or local axisymmetry) at high
Reynolds numbers.

Substituting the similarity relations we know, and keeping only the
first mean convection term on the left-hand-side and the production
term from the right yields:

[
Us
dRs

dx

]
fguv −

[
UsRs

δ

dδ

dx

]
ηf
dguv

dη
−
[
UsRs

δ

dδ

dx

]
1

η

dguv

dη

∫ η

0
fη̄dη̄

= [Puv] puv +

[
Kv

Us

δ

]
gvv

df

dη
+ · · · (2.50)

Equilibrium similarity requires that:
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Us
dRs

dx
∝ Us

Rs

δ

dδ

dx
∝ Kv

Us

δ
(2.51)

where previous results required Rs ∝ U2
s dδ/dx and Kv ∝ U2

s . Thus the
constraints are

U2
s

dUs

dx

dδ

dx
∝ U3

s

d2δ

dx2
∝ U3

s

δ

(
dδ

dx

)2

∝ U3
s

δ
(2.52)

where the streamwise derivative dUs/dx ∝ Us/δ(dδ/dx) so that the first
terms on the left is identical to the second from the right in 2.52. The
remaining constraints are thus:

d2δ

dx2
∝ 1

δ

(
dδ

dx

)2

∝ 1

δ
(2.53)

Clearly these can all be satisfied only if the growth rate is constant:

dδ

dx
= A(?) (2.54)

where the star symbol serves as a reminder that whileA(?) is fixed for a
given flow, it will not necessarily be universal to all similar flows, which
are influenced by the exit Reynolds number and other exit parameters.

2.1.5 Conclusions from single-point equilibrium similarity

Equilibrium similarity constraints applied to the single point equations
governing the fully developed turbulent jet shows, in conjunction with
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overall momentum conservation, that

U(x, r) = Us(x)f(η) ∝ δ−1

〈uv〉 = Rs(x)guv(η) ∝ U2
s

dδ

dx
〈uu〉 = Ku(x)guu(η) ∝ U2

s

〈vv〉 = Kv(x)gvv(η) ∝ U2
s

〈ww〉 = Kw(x)gww(η) ∝ U2
s

δ ∝ x

(2.55)

A natural choice for the velocity scale Us(x) is the centerline velocity
Uc(x) and the length scale δ(x) is chosen to be represented by the veloc-
ity half-width δ1/2(x) defined as the radial location at which the velocity
as dropped to half its centerline value; i.e., the value of r satisfying
1/2 = f(r/δ1/2). Then we expect that the centerline velocity decays
inversely with downstream position and that the half-width grows lin-
early, both from some common virtual origin xo(?), i.e.,

Uc(x) = B(?)M 1/2
o /(x− xo(?)) (2.56)

δ1/2(x) = A(?)(x − xo(?)) (2.57)

2.2 Similarity of the multi-point equations

There are very few flows for which the two-point equations admit to
fully self-similar solutions: decaying (grid) turbulence (George [23, 24],
George & Wang [25]), homogeneous shear flow turbulence (George &
Gibson[26]), the two-dimensional wake (George [1]), the axisymmetric
wake (Johansson et al. [21]) and the axisymmetric jet (Ewing et al. [7]).

A contribution of this thesis is the confirmation of the two-point sim-
ilarity equations developed by Ewing 1995, Ewing et al. 2007. By two-
point, we mean the joint statistics between two quantities, one eval-
uated at one point, say (~x, t), and another point, say (~x′, t′). Of pri-
mary interest herein will be the two point cross-correlation given by
〈ui(~x, t)uj(~x′, t

′) In this dissertation our only be concern is with the case
where t = t′. Since the jet flow is statistically stationary, this im-
plies that all two-point moments of interest can be obtained by time-
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averaging data taken simultaneously at both points. For this reason
the time-variable will be suppressed in the analysis that follows.

2.2.1 Similarity of The two-point equations for the fluctuating velocity

The similarity analysis as presented in Ewing et al.[7] is non-trivial and
long due to the complex nature of the equations for the two-point cor-
relations. As the objective of this work is to explore the consequences
of Ewing’s work on similarity, the analysis will be presented here in
as condensed form as possible. In order to facilitate this, the following
equations are in Ewing’s more compact notation where (x1, x2, x3) corre-
spond to (x, r, θ) and (u1, u2, u3) to (u, v, w). Following Ewing et al. 2007
(Appendix) the governing equations for the two-point velocity correla-
tion in the axisymmetric jet can be written as [27]:

Uk
1

h(k)

∂uiu′j
∂xk

+ U ′

k

1

h(k)′

∂uiu′j
∂x′k

+
U2u3u′j
x2

δi3 +
U ′

2uiu′3
x′2

δj3 =

−1

ρ

1

h(i)

∂pu′j
∂xi

− 1

ρ

1

h(j)′

∂p′ui

∂x′j
− 1

h(k)

∂ukuiu
′

j

∂xk
− 1

h(k)′

∂u′kuiu
′

j

∂x′k

−
u2uiu′j
x2

−
u′2uiu′j
x′2

+
u2

3u
′

j

x2
δi2 +

u2′
3 ui

x′2
δj2 −

u2u3u′j
x2

δi3 −
u′2uiu′3
x′2

δj3

−u′juk
∂Ui

∂xk
− uiu′k

∂U ′

j

∂x′k
+ ν∇2uiu′j + ν∇′2uiu′j

−ν
(
u2u′j
x2

2

+
2

x2
2

∂u3u′j
∂x3

)
δi2 − ν

(
uiu′2
x2′

2

+
2

x′22

∂uiu′3
∂x′3

)
δj2

−ν
(
u3u′j
x2

2

− 2

x2
2

∂u2u′j
∂x3

)
δi3 − ν

(
uiu′3
x2′

2

− 2

x′22

∂uiu′2
∂x′3

)
δj3, (2.58)

where the unprimed variables are evaluated at one point in the jet, and
the primed variables are evaluated at a second arbitrary point in the
jet at the same point in time. Here, u3 is the fluctuating velocity in the
azimuthal coordinate direction, x3, and hj = (1, 1, x2) is the metric of the
coordinate system. It should be noted that the summation convention
is not applied to the superscripts in brackets on the metric. Instead, the
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value of the superscript has the same value as the index of the differen-
tial coordinate next to the metric.

As for the single-point equations, solutions are sought which reduce
the dimensions of the problem. Ewing proposes a logarithmic transfor-
mation of the streamwise position variable

ξ = ln
x1

l
(2.59)

where l is some constant length and x1 is Cartesian distance relative
to some virtual origin. He then proposes equilibrium similarity scaling
that reduces the functional dependency of equations 2.58 from depend-
ing explicitly on ξ or ξ ′ to depending on the separation variable ζ = ξ ′−ξ
only. The proposed scaling is:

uiu′j = Q(i,j)
s (x1, x

′

1)qi,j(ζ, η, η
′, θ), (2.60)

ukuiu
′

j = T
(ki,j)
s,1 (x1, x

′

1)t
1
ki,j(ζ, η, η

′, θ), (2.61)

u′kuiu′j = T
(i,kj)
s,2 (x1, x

′

1)t
2
i,kj(ζ, η, η

′, θ), (2.62)

pu′j = Π
(,j)
s,1 (x1, x

′

1)π
1
j (ζ, η, η

′, θ), (2.63)

p′ui = Π
(i,)
s,2 (x1, x

′

1)π
2
i (ζ, η, η

′, θ). (2.64)

Note that thee superscripts on the scales in brackets are not indices,
and should not be considered when applying the summation convection.

Substituting the previously obtained similarity solutions for the mean
velocity and the two-point correlations into the equation 2.58 yields, for
δ ∝ x and Us ∝ δ−1,

[
Us(x1)

∂Q
(i,j)
s

∂x1

]
f(η)qi,j +

[
Q

(i,j)
s Us(x1)

x1

]{
f(η)

∂qi,j
∂ζ

−
(
∂qi,j
∂η

+
q3,j

η
δi3

)
1

η

∫ η

0

η̃f(η̃)dη̃ + f(η)q3,jδi3

}
+

[
Us(x

′
1)
∂Q

(i,j)
s

∂x′1

]
f(η′)qi,j+

[
Q

(i,j)
s Us(x

′
1)

x′1

]{
−f(η′)

∂qi,j
∂ζ

−
(
∂qi,j
∂η′

+
qi,3
η′
δj3

)
1

η′

∫ η′

0

η̃f(η̃)dη̃ + f(η′)qi,3δj3

}
=

−1

ρ

{[
∂Π

(,j)
s,1

∂x1

]
π1

j δi1 +

[
Π

(,j)
s,1

x1

](
−η

∂π1
j

∂η
+
∂π1

j

∂ζ

)
δi1 −

[
Π

(,j)
s,1

δ(x1)

](
∂π1

j

∂η
δi2 +

1

η

∂π1
j

∂θ
δi3

)}

20



2. EQUILIBRIUM SIMILARITY OF THE AXISYMMETRIC
TURBULENT JET

−1

ρ

{[
∂Π

(i,)
s,2

∂x′1

]
π2

i δj1 +

[
Π

(i,)
s,1

x′1

](
−η′ ∂π

2
i
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According to the equilibrium similarity principle, similarity solutions for 2.58
exists if the terms in square brackets in equation 2.65 have the same depen-
dence on the downstream positions x1 and x′1, i.e. if they are proportional
to within a function of the separation similarity variable ζ. Ewing then shows
that if the scales for the similarity solutions are chosen such that the two-point
velocity correlation is

Q(i,j)
s (x1, x
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, (2.66)
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that the terms in equation 2.65 can be split into two groups which are inter-
nally proportional. The ratio of these groups of terms to each other are given
by

Qi,jUs(x1)

x1
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Q
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= e−2ζ , (2.73)

which satisfies the similarity constraint of depending on ζ only. Therefore,
when the similarity scales are chosen as in equations 2.66-2.72, it follows that
the governing equations for the two-point velocity correlation tensor admit
equilibrium similarity solutions.

The scales for the viscous terms in equation 2.65 are proportional to the
convective terms if
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x2
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(2.74)

or
Us(x1)x1

ν
∝ Usδ

ν
∝ const (2.75)
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which is the same constraint deduced from the integral momentum equation.
Therefore, the governing equations for the two-point velocity correlations in-
deed admit to equilibrium similarity solutions, even for finite Reynolds number
jets. However, Ewing also finds that there is no unique set of scaling variables
that removes the dependence on the jet growth rate from the two-point equa-
tions. Nor was it possible to scale out the dependence on the scaling Reynolds
number.

2.2.2 Conclusions from similarity of the multi-point equations

The similarity analysis of Ewing shows that scaled properly the two-point
equations are independent of position in ξ, i.e.,

〈ui(~x)uj(~x′)〉 = Qi,j
s (x, x′)qi,j(ζ, η, η

′, ϑ)

= Us(x)Us(x
′)

[
dδ

dx

dδ′

dx′

]bij

qi,j(ξ
′ − ξ, η, η′, θ′ − θ) (2.76)

where bij = 0 if i = j and 1/2 for i 6= j. The velocity scale Us(x)and the length
scale δ(x) are the ones obtained from the previous single point equilibrium sim-
ilarity analysis. Note that bij corresponds to the incorporation of the growth
rate in the shear stresses, but not in the normal stresses. Equation 2.76 re-
duces directly to the single-point results and correctly reflects the effect of the
source conditions on the jet.

In particular, it is now evident that the turbulence can be expected to be
streamwise homogenous in the similarity coordinate system (ξ, η, θ), ξ = ln(x)
and η = r/δ. The semi-infinite Cartesian streamwise axis x has been mapped
into the infinite domain ξ.





3. MULTI-SCALE DECOMPOSITION OF THE TURBULENT
VELOCITY IN THE FAR JET

Turbulence manifests as a continuously changing field of vortices. From flow
visualization one can appreciate the great diversity of size of vortical struc-
tures, but also that the structures often seem to form and un-form. Sometimes
structures are visually more persistent and last longer, as well as re-appear in
a predictable manner, awarding them the epithet coherent structures. A great
challenge in turbulence research lies in understanding how these structures
form and change as they interact with each other and the flow in which they
are embedded.

Much is known about the symptoms of turbulence. From the single point
Reynolds averaged differential equations for the mean velocity field and the
turbulence kinetic energy it is clear that on the average, turbulent kinetic en-
ergy increases at the expense of that of the mean flow by means of the expected
value of the product of the fluctuating shear stresses and the mean gradient.
Through this interaction, the nature of which is currently not established, tur-
bulence gains energy of motion, which is then distributed among the velocity
components via the pressure strain-rate. The interaction among the multitude
of fluctuations of the turbulent field is non-linear, causing the energy to man-
ifest in less than predictable configurations. Finally, energy can be shown to
be leaving the turbulent flow via friction. The work done by the fluid elements
in resisting the deformative action of the fluctuating strain dissipates energy
from the fluctuations.

From such descriptions one can conclude only that energy of motion enters
the system by some process involving some quantities and that energy leaves
the system by some other process. The more precise nature of the processes by
which the turbulent velocity fluctuations sustain themselves and re-distribute
their kinetic energy remain to be established. In order to glean some insight
into the internal goings on of the turbulence one can attempt to assess what
happens at various scales of motion. Of particular interest is exactly how mo-
tion of a certain scale interacts with motions at other scales. Classically, and
contemporarily, this can be done with the aid of Fourier analysis of the veloc-
ity field realizations, but only when the turbulence is homogeneous, i.e. when
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the statistical quantities are independent of position. In that case turbulence
kinetic energy is attributed to a continuum of scales, on the average. The equa-
tions for the turbulence expressed on this basis elucidate that the non-linear
energy transportation among the different size structures can be viewed as an
exchange between triads of wavenumbers, facilitating energy transport among
very different sized structures.

The turbulent round jet has been shown to exhibit several homogeneous
flow directions when expressed in the coordinate system ξ, η, θ, t. Of the four
space-time axes, the turbulence remains inhomogeneous only along the ra-
dial η-axis. Section 3.1 describes the expansion of the turbulence in terms of
Fourier modes along ξ, θ, t. An empirical method for establishing some work-
able orthogonal basis for the radial variation of fluctuation is given in section
3.2. The full composite expansion is then assembled in section 3.3. Lastly, sec-
tion 3.4 addresses what sources of useful turbulence data is available and the
subsection 3.5 outlines the experiments that were performed.

3.1 Fourier analysis in homogeneous coordinate directions

Expressing the turbulent fluctuating velocity field in terms of Fourier modes
amounts to Fourier transformation along axes where the flow is non-periodic,
i.e. along ξ and t, and Fourier series expansion along the 2π-periodic flow
direction θ.

3.1.1 Fourier series expansion in θ

The Fourier series expansion provides a countably infinite number of modes
which correspond the complex exponentials of integer multiples of the period.
A basis formed from the Fourier modes is orthogonal on [0, 2π] since

(einθ, eimθ) =

∫ π

−π

eiθ(m−n)dθ = 2πδmn (3.1)

With this in mind the 2π-periodic velocity field can be expanded as

ui(θ) =

∞∑

−∞
cmi e

imθ (3.2)

cmi =
1

2π
(eimθ, ui)[−π,π] =

1

2π

∫ π

−π

ui(θ)e
−imθdθ (3.3)

where the standard notation for the coefficient of mode number ’m’ has been
modified to make room for the index notation. Note also that the use of ’i’
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serves both as an independent tensor index and as the definition i =
√
−1 and

should not be interpreted as a repeated index.

The the expected value of the product of any two Fourier coefficients is

〈cn∗i cmj 〉 =

(
1

2π

)2

〈(ui, e
inθ)(eimθ′

, uj)〉 (3.4)

=

(
1

2π

)2 ∫ π

−π

dθ

∫ π

−π

dθ′〈ui(θ)uj(θ + ϑ)〉ei(nθ−m(θ+ϑ)) (3.5)

= δmn
1

2π

∫ 2π

−2π

Bi,j(ϑ)e−inϑdϑ (3.6)

3.1.2 Fourier transformation in ξ and t

The Fourier transform can be viewed as a generalization of the Fourier se-
ries as the period which defines the domain approaches infinity. The discrete
nature of the Fourier series melds into a continuous space of frequencies. Or-
thogonality properties of the transform dictate that,

lim
T→∞

1

T
(eit(2πn/T ), eit(2πm/T ))[−T/2,T/2] = δ(ω′ − ω) =

∫ ∞

−∞
eit(ω′−ω)dt (3.7)

where it is presumed that limT→∞ 2πn/T = 2πf = ω. Thus any non-periodic,
square integrable function g(t) can be represented as an infinite sum of un-
countably many complex trigonometric functions:

g(t) =

∫ ∞

−∞
ĝ(ω)eiωtdω (3.8)

ĝ(ω) =
1

2π

∫ ∞

−∞
g(t)e−iωtdt (3.9)

The turbulent fluctuations along the temporal and streamwise axes are
non-periodic, homogeneous functions. While the homogeneity is what enables
the use of Fourier analysis (due to the non-developing statistical nature of
these flows) it also introduces concern for the convergence criteria for the
representation, namely the square-integrability of the represented function.
Clearly a non-periodic homogeneous velocity field is of infinite extent and there-
for not a candidate of Fourier transformation in the ordinary sense. This in-
convenience is by-passed by defining the transforms in the sense of generalized
functions (Lumley [28], George[29]). This ensures the ability to treat infinite
functions by standard integral methods of calculus by introducing a function
with a more compact nature with limit 1.
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The velocity field can then be defined as the inverse Fourier transform of
the Fourier transformed velocity, defined as

ui(ξ, t) =

∫ ∞

−∞
dκ

∫ ∞

−∞
df ˆ̂ui(κ, f)ei(κξ+2πft) (3.10)

ˆ̂ui(ξ, t)g.f. =
1

2π

∫ ∞

−∞
dξ

∫ ∞

−∞
dtui(κ, f)e−i(κξ+2πft) (3.11)

Due to orthogonality, the transforms are un-correlated in non-overlapping wavenum-
ber bands:

〈ˆ̂u∗i (κ, f)ˆ̂uj(κ
′, f ′)〉 = δ(κ′ − κ)δ(f ′ − f)

∫ ∞

−∞
dτ

∫ ∞

−∞
dζBi,j(ζ, τ)e

−i(κζ+2πfτ)

(3.12)

3.2 Proper Orthogonal Decomposition

The remaining space axis is the radial η- direction. The turbulence is not ho-
mogeneous along this axis so that the standard continuous space of Fourier
modes does not constitute an orthogonal basis for the variation along η. Thus
some other means of establishing a workable basis should be found. One such
method is the proper orthogonal decomposition (POD), which can be used to
establish a space of orthogonal functions from a priori knowledge of sampled
data. As the name implies, POD is can yield a set of mutually orthogonal func-
tions that are properly ordered with respect to the most efficient convergence
to the cross-correlation of the function so approximated. The methodology is
centered on the concept of the inner product of two functions as a means of
establishing a best approximation of one to the other. For example, one can
approximate one realization of the random turbulent velocity field ui(x), x ∈ Ω
by some deterministic function φi(x). If both the velocity field and φ are square
integrable functions in Ω their inner product can be stated as

α = (φi, ui)Ω =

∫

Ω

ui(x)φ
∗
i (x)dx (3.13)

where ’∗’ indicates complex conjugate and Einstein summation over the re-
peated index is implied. Further, assume φi to be of unit length so that |φi| =
(φi, φi)

1/2 = 1 and proceed to constrain the available functions to the one that
maximizes the projection |α|2 in an ensemble average sense, i.e.,

〈|α|2〉 =
〈(φi, ui)(uk, φk)〉

|φ|2 =

∫ ∫
Ω
〈ui(x)u

∗
k(y)〉φ∗i (x)φk(y)dxdy∫

Ω φ
∗
i (x)φi(x)dx

(3.14)
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where 〈〉 indicates the expected value of the ensemble.

By perturbing φi(x) with some small variation δφi(x) and requiring that
the projection 〈|α|2〉 remains unchanged, one deduces an equation which con-
strains the unknown functions φi:

∫

Ω

Bi,k(x, y)φk(y)dy = λφi(x) (3.15)

This equation is a homogeneous Fredholm integral equation of the second kind
where kernel Bi,k(x, y) = 〈ui(x)uk(y)∗〉 is the two-point correlation tensor func-
tion and the scalar λ = 〈|α|2〉. If there exist non-trivial solutions φi(x) to equa-
tion 3.15, then 1/λ is referred to as the the characteristic value of the equation.
The non-trivial solutions are called the eigenfunctions of the equation. If 1/λ
is a characteristic value of 3.15 then λ is called an eigenvalue of the integral
equation [30]. The eigenfunctions will form a denumerably infinite space of
orthogonal functions

(φ
(n)
i , φ

(m)
i ) = δmn (3.16)

where n = 1, 2, ... is the POD mode number. This sequence of integers is es-
tablished by the size of the corresponding eigenvalues λn so that λ1 > λ2, etc.
If the kernel is real symmetric or Hermitian symmetric in its argument the
eigenvalues will be real and positive.

As stated in equation 3.15 the purpose of establishing the basis φ(n)
i (x) is

to expand the individual velocity realizations on it. It should be noted that the
optimization equation 3.14 pertains to the expected value of the total energy
of the field in the domain Ω, not to the velocity fields themselves. Nonetheless,
once a basis has been established from the solutions to equation 3.15, one can
proceed to establish the distribution of instantaneous kinetic energy over the
space by means of the inner product:

an = (φ
(n)
i , ui)Ω =

∫

Ω

ui(x)φ
(n)∗
i (x)dx (3.17)

where summation over i = 1, 2, 3 is implied. Note that since φi is a deter-
ministic function, the stochastic nature of the velocity fluctuation ui has been
transferred to the coefficients an. However, the expected value of the magni-
tude of products of the coefficients corresponding to different mode numbers is
zero. This can be shown using the definition 3.15 and the orthogonality of the
basis:

〈a∗nam〉 = 〈(ui, φ
(n)
i )(φ

(m)
j , uj)〉 =

∫

Ω

dx φ
(n)
i (x)

∫

Ω

〈ui(x)uj(x
′)〉φ(m)∗

j (x′)dx′

= λm(φ
(m)
i , φ

(n)
i ) = λnδmn (3.18)

Given equation 3.18 and orthogonality it is easy to see that the correlation
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function is recovered as

Bi,j(x, x
′) =

∞∑

n=1

λnφ
(n)
i (x)φ

(n)∗
j (x′) (3.19)

and that the expected total energy of the turbulence is simply the full sum of
the eigenvalues λn:

Bi,i(x, x) = 〈ui(x)ui(x)〉 =

∞∑

n=1

λn (3.20)

Due to the monotonously decreasing magnitudes of λn with increasing mode
number n, it is clear that the sequence of eigenfunctions so ordered are opti-
mized with respect to the energy.

Depending on the nature of the kernel and the domain Ω, the solution set
will vary. Analytical solution can be found for several forms of the kernel,
such as when the kernel is separable or for a kernel constructed from known
polynoms, exponential or trigonometric functions [30]. However, for the non-
homogenous turbulence correlation tensor function this is not the case. There-
for the issue of determining the eigenfunctions and corresponding eigenvalues
is typically approached by discretizing the integral equation using a kernel
formed from known turbulence cross-correlation data and solving the result-
ing to a matrix eigenvalue problem. The correlation data can be found from
sampling laboratory experiments (George et al.[31], Glauser[32], Glauser &
George [33], Delville et al. [34], Citriniti[35], Gordyev & Thomas [36], Cit-
riniti & George [37], Tinney et al.[38]) or numerical simulations (Noack et
al.[39, 40]).

3.3 Composite Decomposition

Bringing together the decompositions outlined above, the space-time velocity
field corresponding to one possible realization for the far round turbulent jet
can be expressed as:

ui(ξ, η, θ, t) =

∫ ∞

−∞
df

∫ ∞

−∞
dκ

∞∑

m=−∞
ei(κξ+2πft+imθ)

∞∑

n=1

an(κ,m, f)φ
(n)
i (η) (3.21)

where the POD basis φ(n)
i (η) is determined by the eigenfunctions of the integral

equation 3.22:

∫ ∞

0

Ψi,j(η, η
′;κ,m, f)φj(η

′)η′dη′ = λ(κ,m, f)φi(η) (3.22)
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Here the kernel Ψi,j(η, η
′;κ,m, f) is what remains of the two-point correlation

tensor after Fourier transformation in τ = t′ − t and ζ = ξ′ − ξ and Fourier
series expansion in ϑ = θ′ − θ:

Ψi,j(η, η
′;κ,m, f) =

1

(2π)2

∫ ∞

−∞
dζ

∫ ∞

−∞
dτ

∫ π

−π

dϑRi,j(ζ, η, η
′, ϑ, τ)e−i(κζ+mϑ+2πfτ)

(3.23)
which can also be viewed as the expected values of the Fourier transforms of
the Fourier expansion coefficients, i.e,

〈ˆ̂cm∗
i (κ, η, f)ˆ̂cpj (κ

′, η′, f ′)〉 = Ψi,j(η, η
′, κ,m, f)δpmδ(κ

′ − κ)δ(f ′ − f) (3.24)

Once the basis has been obtained, the random POD coefficients an(κ,m, f)
are found by projecting the realization on the constructed basis, i.e.,

an(κ,m, f) = (φn
i (η), ˆ̂cmi (η;κ,m, f)) =

∫ ∞

0

ˆ̂cmi (η;κ,m, f)φ
(n)∗
i (η)ηdη (3.25)

where ˆ̂cmi (κ, η,m, f) is given by

ˆ̂cmi (κ, η,m, f) =
1

(2π)2
(ei(κξ+mθ+2πft), ui(ξ, η, θ, t))

=
1

(2π)2

∫ ∞

−∞
dξ

∫ ∞

−∞
dt

∫ π

−π

ui(ξ, η, θ, t)e
−i(κξ+mθ+2πft)dθ

(3.26)

As in section 3.2, the orthogonality of the POD basis ensures that the ex-
pected value of products of basis coefficients is non-zero only for self-products.
These self-product are identical to the eigenvalues of 3.22, i.e.,

〈a∗n(κ,m, f)aq(κ,m, f)〉 = λn(κ,m, f)δqn (3.27)

which indicates that the Fourier represented correlation tensor 3.23 is simply
found by:

Ψi,j(η, η
′, κ,m, f) =

∞∑

n=1

λn(κ,m, f)φi(η)φ
∗
j (η′) (3.28)

In fact, from relations 3.27 and 3.24 it is then clear that

〈a∗n(κ,m, f)aq(κ
′, p, f ′)〉 = λn(κ,m, f)δqnδpmδ(κ

′ − κ)δ(f ′ − f) (3.29)
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and the original correlation tensor (the inverse Fourier transform of equation
3.23) is thus constructed as:

Bi,j(ζ, η, η
′, ϑ, τ) =

∫ ∞

−∞
dκ

∫ ∞

−∞
df

∞∑

m=−∞
Ψi,j(κ, η, η

′,m, f)ei(κζ+mϑ+2πfτ)

=

∞∑

n=1

φ
(n)
i (η)φ

(n)∗
j (η′)

∞∑

m=−∞

∫ ∞

−∞
dκ

∫ ∞

−∞
dfλn(κ,m, f)ei(κζ+mϑ+2πfτ)

(3.30)

3.4 Choice of data source for POD kernel

The premier requirement on the data set that can facilitate the decomposi-
tion is that it allows for Fourier transformation in the streamwise similarity
coordinate axis ξ. Further, the flow cannot be expected to behave as homoge-
neous along this axis until the jet flow has developed past its near field state
which is to say that it is fully turbulent across its cross-section and that lin-
ear growth has been established, indicating that the turbulence develops in
equilibrium with itself. Previous work indicates that this state does not oc-
cur until at a downstrem position of approximately x/D = 30, where D is the
diameter of the jet nozzle exit. Moreover, as shown later, the data must be
available from downstream till x/D > 90 to avoid spectral leakage due to the
finite window Fourier transforms. This effectively rules out any direct numer-
ical simulations (DNS) as a potential source of data, as these are at the time
limited x/D < 30. The very large domain length requirement makes large eddy
simulations (LES) unrealistic. In summary, data resulting from contemporary
numerical simulations was deemed unsuitable for the objective of the analysis.

In terms of experimental acquisition of large domain simultaneous turbu-
lent velocity data only one sampling technique was suitable at the time of the
thesis proposal, namely particle image velocimetry (PIV). With PIV velocity
components within and parallel to a sheet-like laser plane can be estimated
from the imaged displacements of light scattered by particles in the flow be-
tween two instances in time. With the use of a stereoscopic setup the third
component of velocity can be backed out given a careful calibration. At the
time of the writing of this thesis it is also possible to use high-repetition PIV
systems to provide frequency content. However, at the the onset of the thesis
work, this was not an available resource. Thus the methodology could provide
data only along planar spatial extents. A more thorough description of the
principles of PIV, its capabilities, limitations and influence on the attempted
analysis is given in a subsequent chapter.
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3.5 Experimental objective and the experiments implemented

Via a collaboration with the Technical University of Denmark (DTU) an ex-
perimental venture was proposed that utilized the PIV resources of the Fluid
Mechanics Laboratory of the department of Mechanics, Energy and Construc-
tion and the jet flow facility was relocated from Sweden to Denmark.

Initially, it was attempted to evaluate the velocity field simultaneously
along two planes, one intersecting the centerline axis of the jet to provide mea-
surements for the streamwise Fourier analysis and the other perpendicular to
the first, to provide data for the cross-plane Fourier and POD analysis. This
configuration of sampling could utilize the inherent rotational symmetries of
the flow to make inferences about the full expansion of equation 3.26. In par-
ticular it would preserve some foundations for drawing conclusions about the
interaction between streamwise modes and radial modes in the samples. This
was to be realized by simultaneous two-component (2C) measurements in the
streamwise plane and stereoscopic measurements in the cross-plane, facili-
tated by the use of four cameras and two laser systems.

This approach was indeed attempted in the initial stages of the doctoral
work, but eventually proved beyond the capacities of the experimenters as
then insurmountable problems with the laser scattering configurations, lead-
ing to overexposure of the camera sensors in the vital overlap region of the
two systems. It was decided at last to focus on what could be done, namely
experimental investigations of the two planes separately. The experiments are
described in detail in a subsequent chapter.





Part I

STREAMWISE EXPERIMENT





4. STREAMWISE PLANAR PIV - EXPERIMENTAL
SPECIFICATIONS AND IMPLEMENTATION

The previous chapter outlined the analysis that one would like to be able to
perform - of a perfectly realized flow, perfectly sampled with a perfect instru-
ment of infinite scope and infinitesimal probe size. However, the chapter also
describes the ultimate choice of measurement procedure, both in terms of what
correlation entities that will have to suffice and what was finally realized. This
chapter concerns itself with the design of the above outlined experiments, with
particular emphasis on the domain extent required in order to facilitate the
spectral analysis in the streamwise direction, see section 4.1, and the POD
analysis in the radial direction, section 4.2. In addition, an estimate of the
number of independent samples required to estimate converged statistics is
estimated in in section 4.3.

Section 4.4 describes the the planar PIV experiment and the evaluation of
the single point statistics of the measured velocity field section 4.5 concludes
this chapter.

4.1 Spectral analysis of discrete fields of finite extent

Consider first the idealized case of a homogeneous, non-periodic, continuous
velocity ui(ξ) varying over an infinite domain ξ ∈ R so that:

ui(ξ) =

∫ ∞

−∞
ûi(κ)e

iκξdκ (4.1)

ûi(κ) =
1

2π

∫ ∞

−∞
ui(ξ)e

−iκξdξ (4.2)

Note that throughout the textˆover the same function name will be used to
indicate the Fourier transform; e.g., û is the Fourier transform of the function
u.

The cross-spectral density is zero in non-overlapping wavenumber bands
while the expected value per unit wavenumber is the cross-spectral tensor
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function Fi,j(κ):

〈ûi(κ)
∗ûj(κ

′)〉dκ′dκ = Fi,j(κ)δ(κ
′ − κ)dκ (4.3)

where

Bi,j(ζ) =

∫ ∞

−∞
Fi,j(κ)e

iκζdκ (4.4)

Fi,j(k) =
1

2π

∫ ∞

−∞
Bi,j(ζ)e

−iκζdζ (4.5)

and Bi,j(ζ) = 〈ui(ξ)uj(ξ + ζ)〉 is the two-point correlation function and ζ =
ξ′ − ξ. This signal will serve as a baseline case to which will be compared the
spectra and correlation functions estimated using finite domain widths and
finite spatial resolution.

4.1.1 Windowing - spectral leakage due to finite domain

The spectral distortion effect called windowing is due to failing to sample a
large enough contiguous piece of the available process. The windowed velocity
signal can be expressed as uLξ

i (ξ) = ui(ξ)wLξ
(ξ) wherewLξ

(ξ) is any symmetric,
continuous window function in ξ-space of width Lξ. The finite domain width
estimator for the spectral tensor function is:

F
Lξ

i,j (κ) =
2π

Lξ
〈ûLξ∗

i (κ)û
Lξ

j (κ)〉 (4.6)

The convolution theorem for the definition of the Fourier transform used in
this work is:

h1(r) = f(x) ⊗ g(x) =

∫ ∞

−∞
f(x)g(r − x)dx (4.7)

h2(r) = f(x) � g(x) =

∫ ∞

−∞
f(x)g(x + r)dx, (4.8)

ĥ1(k) = 2πf̂(k)ĝ(k) (4.9)
ĥ2(k) = 2πf̂(k)∗ĝ(k) (4.10)

f̂g = f̂(k) ⊗ ĝ(k) (4.11)
(4.12)

Evaluating the finite width estimator 4.6 with the convolution theorem, it can
be shown that:

F
Lξ

i,j (κ) =
1

2πLξ

∫ ∞

−∞
Bi,j(ζ)WLξ

(ζ)e−ikζdζ (4.13)
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where the ζ - window function WLξ
(ζ) is the symmetric convolution of the ξ-

space window wLξ
(ξ). Due to the finite width of the windows this convolution

is:

WLξ
(ζ) = [wLξ

� wLξ
](ζ) =

∫ ∞

−∞
wLξ

(ξ)wLξ
(ξ + ζ)dξ

=





∫ Lξ/2

ζ−Lξ/2 wLξ
(ξ)wLξ

(ξ + ζ)dξ , ζ > 0

∫ ζ+Lξ/2

−Lξ/2 wLξ
(ξ)wLξ

(ξ + ζ)dξ , ζ < 0

(4.14)

This corresponds to:

F
Lξ

i,j (κ) = Fi,j(κ) ⊗
1

Lξ
ŴLξ

(κ) = Fi,j(κ) ⊗
2π

Lξ
|ŵLξ

(κ)|2 (4.15)

i.e., the windowed spectrum F
Lξ

i,j (κ) is obtained as the Fourier space convolu-
tion of the true spectrum Fi,j(κ) and the magnitude of the Fourier transform
of window function wLξ

(ξ) divided by the window width. The influence on the
velocity correlation tensor function can immediately be shown to be:

B
Lξ

i,j (ζ) =

∫ ∞

−∞
F

Lξ

i,j (κ)eiκζdκ = Bi,j(ζ)
WL(r)

Lξ
= Bi,j(ζ)

[wLξ
� wLξ

](ζ)

Lξ
(4.16)

For a rectangular ξ window function

wLξ
(ξ) =

{
1 , |ξ| ≤ Lξ/2
0 , |ξ| > Lξ/2

(4.17)

ŵLξ
(κ) =

Lξ

2π

sin(κLξ/2)

κLξ/2
(4.18)

the ζ -space window is

WLξ
(ζ) =

{
Lξ − |ζ| , |ζ| ≤ Lξ

0 , |ζ| > Lξ
(4.19)

ŴLξ
(κ) =

1

2π

[
sin(κLξ/2)

κ/2

]2
(4.20)

so that the finite domain window spectral and correlation tensor functions for
a rectangular unit window is:

B
Lξ

i,j (ζ) = Bi,j(ζ)

[
1 − |ζ|

Lξ

]
(4.21)

F
Lξ

i,j (κ) = Fi,j(κ) ⊗
Lξ

2π

(
sin(κLξ/2)

κLξ/2

)2

(4.22)

39



4. STREAMWISE PLANAR PIV - EXPERIMENTAL
SPECIFICATIONS AND IMPLEMENTATION

NB: For our definition of the Fourier transform, the delta function is:

F [1] = δ(κ) = lim
R→∞

R

π

sin(κR)

κR
(4.23)

F [δ(x)] =
1

2π
(4.24)

so that it is evident that as Lξ → ∞, WLξ
(ζ) → 1 and FL

i,j → Fi,j(κ).

Model of effect of windowing on turbulence correlation
In order to establish some measure for the required length of the window Lξ in
the experiment a model for B(ζ) was used:

Bm(ζ) = Ae−|ζ|/Iξ (4.25)

where A = 〈u2〉 and Iξ is the integral scale along the ξ - axis. The spectrum
associated with this is given by its Fourier transform which is:

Sm(κ) =
A

2π

∫ ∞

−∞
e−|ζ|/Iξe−iκζdζ =

AIξ
π

[
1

1 + (κIξ)2

]
(4.26)

The finite domain window version of the model spectrum is then :

F
Lξ
m (κ) =

A

2π

∫ Lξ

−Lξ

Bm(ζ) [1 − |ζ|/Lξ] e
−iκζdζ

= Fm(κ)

{
1 − b−1

[
1 − (κIξ)

2

1 + (κIξ)2
− e−b 1 − (κIξ)

2

1 + (κIξ)2
cos(κLξ)

− e−b κIξ
1 + (κIξ)2

sin(κLξ)

]}
(4.27)

where the scalar b = Lξ/Iξ is the ratio of the domain window width to the
integral scale.

Figure 4.1(a) and 4.1(b) shows the function 4.27 evaluated for various val-
ues of b on linear and logarithmic axes, respectively. As is evident from the
graphs, the spectral estimates obtained in this fashion suffer drastically from
spectral leakage unless b = L/I is larger than 10. In order to ensure leakage-
free spectral estimates from the experimental data a conservative choice of
Lξ/Iξ = 20 was made.

The important length scale is the integral scale along the ξ- axis, but that
the measurements must take place in Cartesian laboratory space. Thus the
Cartesian domain window width Lx = xb − xa which yields the appropriate
domain width Lξ = 20Iξ is

Lx = xa

(
xb

xa
− 1

)
= xa

(
eξb−ξa − 1

)
= xa

(
eLξ − 1

)
(4.28)
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Fig. 4.1: Model spectrum. Spectral leakage varying with b = Lξ/Iξ.
(-) b=∞ (–) b=20 (- -) b=10 (· - · ) b=5 (· · · ) b=2 (∗) b=1 (/) b=0.5 .
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An estimate for the integral scale Iξ along the jet centerline can be found
from the correlation coefficients obtained by Frohnapfel [41] by means of con-
stant temperature anemometry (hotwire) and laser doppler anemometry (LDA)
(these are shown in the next chapter as figure 5.3). Integrating under the
curves gives Iξ ≈ 0.055 so that Lξ = 20Iξ = 1.1. Thus the domain window
length in the laboratory space, Lx = xa(e1.1−1) ≈ 2xa. Clearly the required do-
main window length must increase with the position of the upstream boundary
point of the window. As mentioned previously, the logarithmic mapping only
applies after the flow achieves similarity, i.e., for x/D ≥ 30. For this choice of
the upstream boundary of the window, the window width required is Lx = 60D;
so the downstream window boundary point will be located at xb ≥ 90D. In the
jet facility the diameter is D = 10mm so that xa − xb = 600mm.

4.1.2 Spatial resolution of turbulence scales

In this section the output from the PIV will be assumed to produce the same
statistics as a probe which averages uniformly across the measuring volume.
When representing turbulence at a point xi with the local average over a mea-
suring volume centered centered at location xi, the velocity evaluated will be
the spatial convolution of the turbulence ui(~x) with the probe window functions
wl(~x), i.e.,

ul
i(~x) =

∫ ∞

−∞
ui(~y)wl(~y − ~x)d~y (4.29)

If the probe window is rectangular in all three spatial directions, and has width
li, the probe window wl(~x) is given by

wl(~x) =





1
l1l2l3

, |xi| ≤ li/2

0 , |xi| > li/2

The effect of sampling turbulence with a finite measuring volume is to fil-
ter out fluctuations smaller than the probe volume. As turbulent fluctuations
vary over a very large range of scales, it is inevitable that the sampling fil-
ters out of the signal. In an attempt to estimate the amount of filtering by a
certain volume size, a model for isotropic turbulence was used to define a res-
olution for the experiment. It should be noted that such a model can never be
used to correct data from inhomogeneous turbulence, since the modeled energy
spectrum can only be expected to be an adequate representation of the small-
est scales, which are considered as locally isotropic. The larger scales in jet
turbulence, which are decidedly anisotropic in nature, will be incorrectly rep-
resented. Therefore it is important to stress that the objective of investigating
the filtering caused by a measuring volume with an isotropic turbulence spec-
tral model is for convenience and lack of appropriate alternatives only. The
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results of the analysis are for preparatory use, as they should be indicative of
the relative effect of spatial filtering on the data.

4.1.3 Filtering model for isotropic turbulence sampled by 3D rectangular
probe

Isotropic turbulence is by definition homogenous, so the three-dimensional
spectral tensor can be used:

〈ûl∗
i (~k)ûl

j(
~k′)〉 = F l

i,j(
~k)δ(~k′ − ~k) (4.30)

where

ûl
i(
~k) =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1[ui(~y) ⊗ wl(~y)](~x)e

−i(~k·~x) (4.31)

From the convolution theorem,

F l
i,j(
~k) = (2π)6Fi,j(~k)|ŵl|2 (4.32)

where
ŵl(~k) =

1

(2π)3
sin(k1l1/2)

k1l1/2

sin(k2l2/2)

k2l2/2

sin(k3l3/2)

k3l3/2
(4.33)

F
lp
i,j(k) = Fi,j(k)

[
sin(k1l1/2)

k1l2/2

]2 [
sin(k2l2/2)

k2l2/2

]2 [
sin(k3l3/2)

k3l3/2

]2
(4.34)

The filtered homogeneous correlation tensor is then

Bl
i,j(~r) = Bi,j(~r) ⊗

1

l

[
1− |r|

l

]
(4.35)

For isotropic turbulence the spectral tensor is

Fi,j(~k) =
E(k)

4πk4
[k2δij − kikj ] (4.36)

where k = |~k| = (~k · ~k)1/2 and E(k) is the three-dimensional energy spectrum
function defined as

E(k) =
1

2

∫

k=|~k|
Fi,idS(k) (4.37)

The isotropic energy spectrum model utilized here is the von Karman -
Howarth spectrum, which attempts to represent the energetic scales and the
scales in the inertial subrange only, while ignoring the exponential behavior
observed in the purely dissipative range. The reason for choosing this model
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is that the PIV experiments are not expected to be able to resolve any scales
in the dissipative range. Again, it should be stressed that the isotropic model
used below does not represent jet turbulence in any part of the energy spec-
trum and the results obtained are to be used for relative comparisons of the
measuring volume size only.

The von Karman/Howarth energy spectrum model was parameterized by
George & Wang [25]. The model below corresponds to their p = 4 version:

E(k) = C
(kI)4

[1 + (kI/keI)2]17/6
(4.38)

where I is the integral scale, C is a constant and the spectral peak ke can be
chosen (for the unfiltered case) to satisfy the energy and integral scale con-
straints (George and Wang [25]).

The results from such an analysis was performed for a previous experi-
ment and was reported in [42]. A more detailed description of the procedure is
available in appendix ??. The conclusion was that for PIV interrogation win-
dow (IW) dimensions smaller than one tenth of the local integral length scale,
approximately 12% of the variance of individual velocity fluctuation compo-
nents was filtered out. This result is supported by Spenser & Hollis [43], and
will be seen to be consistent with the turbulence intensities presented below.

In jet turbulence, the local integral length Ix varies with downstream posi-
tion x. Utilizing the relationship between the local integral length in x and Iξ ,
the (constant) integral length in ξ, and the values for Iξ stated in the previous
section, one obtains:

x+ Ix
x

= eIξ ⇔ Ix = x(eIξ − 1) = x(e0.055 − 1) = 0.056x (4.39)

If the local resolution is required to be one tenth of the local integral length
scale Ix, then the interrogation window dimension should vary as dIW ≈ 0.006x
in order to resolve the turbulence as it develops downstream. This was not
possible in the experiments reported herein, due to commercial software limi-
tations, so constant dimensions were maintained throughout. As will be seen
in the next chapter, this somewhat complicates the interpretation of precisely
at which wavenumbers the spatial spectra were affected by spatial filtering.

4.2 Requirements for POD analysis

The degree to which the sampled domain encompasses the jet radially is im-
portant for the POD analysis. In order for the POD modes to be uniquely
determined the field should be square-integrable, i.e.,
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lim
η̄→∞

∫ η̄

0

〈ui(η)ui(η)〉
Uc(x)2

ηdη <∞ (4.40)

From previous work by Gamard et al. [8] and Wanstrom [44] it appears that
the integrand 〈ui(η)ui(η)〉η/Uc(x)

2 is zero for η > 2.5.

The discretization of the domain over which the POD integrals are com-
puted is also important. Lumley 1970 [28] (see also Glauser and George 1992
[45] for a more complete discussion) showed that the number of POD modes
required to capture the energy of an inhomogeneous domain was proportional
to the size of the domain containing the energy divided by the integral scale
of the process in that direction. As noted above the size of the domain in the
radial direction required to capture most of its energy is 2.5δ1/2, while the in-
tegral scale in the lateral direction can be estimated as approximately δ1/2/2.
Thus a minimum of 5 modes is required. Since one vector POD mode is pro-
duced for each grid point and component of velocity, this means a minimum of
five radial points (including the centerline) are required. For the streamwise
experiment, 26 equally-spaced points were used, resulting in 2×26 = 52 vector
POD modes.

4.3 Ensemble requirements

The analysis outlined in this work all consists of the decomposition of statis-
tical quantities, so the quality of the results will be only be as trustworthy
as the convergence levels of the finite realization estimators of said quantities.
As will be indicated below, the variability, or relative deviation of the estimator
from the expected value, decreases as the number of independent realizations
increases. Thus a certain number of samples and the time separating them
can be determined.

4.3.1 Variability of a finite sample estimator

The variability for finite sample estimator FN of a function f(u) of a random
variable u is a measure for the degree of statistical convergence of the esti-
mator relative to the expected value. If un corresponds to the nth realization
of the random variable u, its expected value (or ensemble average) 〈u〉 can be
evaluated as the arithmetic average of an infinity of statistically independent
realizations for u, i.e.,
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〈u〉 = lim
N→∞

1

N

N∑

1

un (4.41)

Any finite N estimator for 〈u〉, say UN , deviates from the expected value due to
the inability to perform an infinitude of experiments (or because the estimator
is biased, but this will not feature in this outline). The finite estimated value
UN deviates from 〈u〉 by UN −〈u〉 and this deviation can be characterized by it’s
variance var{UN} = 〈(UN − 〈u〉)2〉. The relative statistical error, or variability
of the finite sample estimator, is then a measure of the expected intensity of
the deviation of the estimator,

ε2UN
=

〈(UN − 〈u〉)2〉
〈u〉2 =

1

N

〈(un − 〈u〉)2〉
〈u〉2 =

1

N

var{u}
〈u〉2 (4.42)

The expression for the variability can be generalized for any function of
the random variable. If fn = f(un) is a function of the random variable u, the
expected value is 〈f〉 and the variability of a finite sample estimator of 〈f〉,
defined as FN = (1/N)

∑
fn, is (if FN defined this way is unbiased)

ε2FN
=

〈(FN − 〈f〉)2〉
〈f〉2 =

1

N

var{f}
〈f〉2 (4.43)

The work herein depends on two-point quantities, both in the form of velocity
correlations and in the form of spectral representations of velocity realizations.
In order to perform such analysis from laboratory data, the number of acquired
independent samples must be sufficiently large as to bring down the variability
of the estimators used for the evaluation of the statistics.

4.3.2 Spectral estimator

The one-dimensional velocity spectrum function Fi,j(k) for homogenous turbu-
lence directly related to the expected value of the product of the Fourier trans-
forms ûi(k)

∗ and ûj(k); 〈Fi,j(k)〉δ(k′ − k) = 〈û∗i (k)ûj(k
′)〉. As has been shown

above, the finite nature of the domain, L, influences the spectral tensor. The
spectral tensor estimator for finite domain is given by:

FL
i,jn(k) =

2π

L
ûL∗

in (k)ûL
jn(k). (4.44)

It can be shown that if the fourth order moments of the turbulence are
jointly Gaussian that limL→∞ var{FL

i,j} ∝ 〈Fi,j〉2 (George et al. 1978 [46] and
Velte 2009 [47]). Thus the absolute error of any random spectrum formed from
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the Fourier transforms of a single realization of a turbulent field is propor-
tional to the expected value of the spectrum, at all wavenumbers, i.e., the un-
certainty is distributed over the spectrum according to the magnitude of it’s
expected value and the relative error of a random spectrum is therefore unity
and independent of wavenumber.

Because of this high variability, individual spectral estimates must be en-
semble averaged over in order to reduce it; i.e.,

FL
i,jN (k) =

1

N

N∑

1

FL
i,jn(k). (4.45)

The variability is now given by:

ε2F L
i,jN

=
〈(FL

i,jN − 〈Fi,j〉)2〉
〈Fi,j〉2

=
1

N

var{FL
i,j}

〈FL
i,j〉2

. (4.46)

Clearly the spectral error decreases inversely in proportion to the square root
of the number of independent blocks (or frames) in this case.

In the current case, realizations from different frames are statistically in-
dependent because of the time-separation which allows the previously sampled
field to be completely convected out of the field-of-view. If the local convection
velocity is Uconv(x) ≈ 0.6Uc(x), Uc(x) = BM

1/2
o (x−xo)

−1 and the nozzle exit ve-
locity profile is a top-hat of velocity Ue, then Uc(x) = BuUeD(x − xo)

−1, where
Bu = B

√
π/2. For such a flow the time of passage through an L = 3a long

distance in the fully developed jet is

T =

∫ a+L

a

dx

0.6Uc(x)
=

∫ 4a

a

(x − xo)

0.6BuUeD
dx ≈ 25a2

2BuUeD
(4.47)

In this case Bu = 5.8, Ue = 31m/s,D = 0.01m and a = 30D so the time between
globally independent velocity fields comes out to be T ≈ 0.65s, corresponding
to a maximum allowable sampling frequency of 1.5 Hz. For the experiments
reported herein, the sampling frequency was chosen to be 1 Hz.

4.4 Jet Facility and Flow

The jet facility used in these experiments was originally constructed at the
State University of New York at Buffalo by Daehan Jung (now professor at the
Korean Air Force Academy). It moved to Gothenburg with the move of the Tur-
bulence Research Laboratory to Chalmers in 2000 and was used in the Ph.D.
dissertation of Gamard in 2002 [48] (see also Gamard et al. 2004 [8]), and in the
award-winning LDA/hot-wire studies of Frohnapfel 2003 [41]. Unfortunately
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the space which the facility occupied at Chalmers was thought by the Applied
Mechanics departmental administration to be more valuable to the university
if unused. Moreover it was not possible to purchase or borrow a PIV system.
In order to be able to perform the experimental studies required by the work
that constitutes this thesis, the jet facility was moved to the Fluid Mechanics
Laboratory of the Technical University of Denmark in the spring of 2005. For
that reason the actual implementation of the experiment was carried out at
DTU by MW in cooperation with Knud Erik Meyer, who is also a co-advisor
to this thesis. The design specifications detailed in the previous section were
created by the author while a Ph.D. student at Chalmers Technical University.

4.4.1 Jet Flow Generator

The jet generator used in both experiments described in this work was cubic
box of dimensions 58.5× 58.5× 59cm3 fitted with a axisymmetric plexiglas noz-
zle, tooled into a 5th order polynomial contraction from an interior diameter
D1 = 6cm to an exit diameter of D = 1cm. The interior of the box was stacked
with foam baffles in order to damp out disturbances from the fan that supplied
the generator with pressurized air. The air intake was located inside the the
jet enclosure. For further details on the generator box, see Gamard [48]. The
flow generating box rested on an aluminum frame which was in turn rigidly
attached to a large two-axis traverse. This enabled the relative positioning of
the measurements setup to the flow via the coordinate system defined by the
axes of the traverse.

The exit velocity was monitored via a pressure tap in the nozzle positioned
upstream of the contraction and connected to a digital manometer by a silicon
tube. The pressure difference between the ambient and the pressure tap gave
the exit velocity as

Ue =

√√√√√
pamb − ptap

ρa

(
1 −

[
D
D1

]4) (4.48)

where ρa is the density of the air, Ue is the magnitude of a tophat exit ve-
locity profile and D1 is the cross section diameter of the nozzle upstream of
the contraction. This relation is derived from Bernouli’s equation applied to
a streamtube and assumes irrotational uniform flow at the nozzle exit and at
the cross section of the pressure tap location.

The pressure tap output was recorded for each block of sampling. The
source conditions of the jet were known from previous investigations (Gamard
2002 [49]), but were confirmed using a hotwire at the end of the experimen-
tal program. The exit profile corresponded to a top-hat with a small over-
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shoot at the edge which is caused by the continuing curvature of the stream-
lines after the nozzle exit plane. The fluctuation level at the exit was about
0.3% and the frequency content was mostly broad-band noise with only a few
weak peaks (attributed to electronic noise). The ambient pressure was mon-
itored by an independent barometer. Temperature in the jet enclosure by
both a thermocouple and an alcohol thermometer. The nominal exit veloc-
ity chosen was Ue = 30.3m/s, corresponding to an exit Reynolds number of
ReD = UeD/ν = 20000, where ν is the kinematic viscosity defined as ν = µ/ρ
for air at standard temperatures and pressure.

4.4.2 The jet flow enclosure

A free jet is a flow that issues into an infinite environment at rest. It’s predom-
inant physical characteristic is that the momentum crossing any downstream
cross-section must be equal to the rate at which it is being added at the jet
exit. In order to successfully mimic such a flow in a confined laboratory set-
ting, the distance from the jet to the walls of the flow enclosure must large
enough that the jet entrainment does not cause a significant return flow. The
return flow contains negative momentum, which steals momentum from the
jet itself (since the rate of momentum crossing any downstream cross-section
must be constant), thus causing the momentum conservation which defines the
free jet to be violated. Hussein et al. [16], using a simple model for the return
flow, estimated the ratio of mean momentum at any downstream cross section,
M , to the momentum added at the source, Mo, as

M

Mo
=

[
1 +

16x2

πBD2

Ao

AR

]−1

(4.49)

where Ao = πD2/4 is the exit area of the nozzle and AR is the cross section.

The enclosure utilized in the experiment was a large tent of dimension
2.5 × 3 × 10m3. The jet generator was positioned at the back of the enclosure,
see sketch (generate sketch). The expected momentum conservation, based on
equation 4.49 was estimated to be 100% at x/D=30 to 94% at x/D=90, see figure
4.4.2 below.

Thus the jet flow generated in the facility should be expected to correspond
to a free jet up until x/D=70, and to be somewhat adversely affected by negative
momentum addition beyond that position. If this effect is significant it would
be expected to manifest in the data statistics as a decrease in the jet growth
rate and in the centerline velocity decay (Hussein et al. [16]).
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Fig. 4.2: Expected momentum conservation in jet issuing into enclosure. A re-
turn flow is caused by wall influence on jet entrainment and adds
negative momentum to positive added at source, thereby ‘stealing’
momentum from the jet itself.

4.4.3 PIV Setup

Illumination was provided by a New Wave double-cavity 120 mJ YAG laser. A
spherical lens and a cylindrical lens generated a thin expanding laser sheet
which was reflected by a mirror positioned near the jet nozzle. The resulting
sheet intersected the jet along its centerline and extended downstream accord-
ing to figure 4.4.3. The laser sheet thickness in the composite field of view of
the cameras was estimated to be approximately 2 mm.

Fig. 4.3: Sketch of experimental setup.

In order to facilitate the large streamwise domain required by the design
specification in sections 4.1.1 and 4.2, a composite field of view was created
from two 4Mpixel HiSense cameras, generously made available as a loan from
Dantec Dynamics. The sensor dimensions of the cameras were 2048 pixels
by 2048 pixels where the pixel pitch was 7.4µm. As indicated by figure 4.4.3
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the cameras were positioned along side each other on an aluminum beam rig
positioned along the side of the tent. The viewing angles with respect to the
laser sheet were both 90 degrees. The upstream camera was fitted with a 60
mm focal length lens while the downstream camera had a 50 mm lens. The
aperture was f# = 2.8. The difference in magnification was designed adjust
the measuring domain to account for the growth of the jet width. The mapping
from the sensor coordinates to the laboratory coordinate system was a linear
transformation. A set of images of a ruler were taken with the ruler traversed
at high precision to different streamwise positions within the composite field
of view.

Seeding particles were droplets of DEHS with an average particle diameter
was dp = 2µm. The corresponding particle time constant was estimated to be
two order of magnitude lower than the Kolmogorov microtime throughout the
flow. However, the low magnification imaging of these small particles means
that the particle image diameters on the sensors are dominated by the diffrac-
tion limit, which can be estimated following Raffel et al. [50] to be on the order
of the pixel pitch. Therefor the particle image diameter on the sensors is about
1 pixel. This has the effect of reducing the accuracy of the instantaneous par-
ticle displacement by reducing the accuracy of the sub-pixel Gaussian peak-fit.

In general, when using particle-based flow measurement techniques, one
risks bias in the statistics of the estimated particle velocities if the expected
particle density (number of particles per unit volume) varies in the flow, c.f.,
Buchhave et al. 1979 [51]. Thus it is important, form a fundamental point-
of-view, that the seeding particles be uniformly distributed in the entire enclo-
sure. If, for example, the jet flow was seeded with particles but not the rest of
the enclosure, then the fluid that the jet entrains would not be represented and
the velocity of fluid particles originating from entrainments would not be mea-
sured. In order to minimize this bias, a forked tubing system delivered seeding
particles both to the vicinity of the fan intake and the surrounding air. After
seeding was introduced the facility was left to run, allowing the jet seeding and
the entrained flow seeding to be thoroughly mixed with each other. Data was
acquired while the particle density in the field-of-view was adequate, then the
procedure was repeated.

4.4.4 Data Acquisition and Validation

Particle images were acquired with a time between pulses of ∆t = 300µs. The
sampling frequency was 1 Hz < 1.5 Hz required to sample statistically inde-
pendent turbulence in both cameras. A total of 10,850 samples were acquired
in a series of blocks. In-between the blocks, the seeding levels were monitored
and replenished as needed. Note that it was later discovered that due to an
unknown system dysfunction, 9 of the double frames were exposed on the first
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frame only. This reduced the total number of double frames per camera to
N = 10, 841.

Once acquired, the particle images were evaluated with the Dynamic Stu-
dio software. The interrogation window size was 32 pixels × 32 pixels for both
cameras. With 50 % overlap of the interrogation windows a multi-pass interro-
gation with window shifting and moving average validation of displacements
resulted in 127 × 127 vectors in each camera field of view. Sub-pixel correla-
tion peak fitting was performed relative a Gaussian curve. As indicated above,
the particle image diameter was 1 pixel. Table 4.1 summarizes the output.

xa [mm] xb[mm] za[mm] zb[mm] WI[mm] M Nx Nz

C0 315 632 -166 150 2.5 0.048 127 127
C1 622 1006 -196 188 3.0 0.039 127 127

Tab. 4.1: Fields of view and resolution for PIV output. Subscripts 0 and 1 indi-
cate the upstream and downstream cameras respectively. Subscripts
a and b indicate the boundaries of the fields-of-view in each camera.

4.5 Single Point Statistics

The single point first and centered second moments estimated from the data
will be examined below. The estimates were obtained as the arithmetic average
according to section 4.3.1.

4.5.1 Optimization of jet data coordinate system

When measuring a free flow like the jet there is no fixed coordinate system rel-
ative to which the flow can be expected to develop. Instead the flow coordinate
system is one defined by the statistical centerline of the jet itself - the loca-
tion of which is not a priori known. In order to position the laser sheet in the
proper plane a preliminary investigation of the alignment of the traverse with
the mean streamwise velocity was performed. At several downstream posi-
tions the mean velocity was measured with a stereoscopic PIV system and the
centerline location was determined. In this fashion a 0.5◦ lateral deviation of
the jet centerline relative to the traverse axis was established. This deviation
was accounted for when positioning the laser sheet.

Nonetheless, when the outputted velocity was averaged it was obvious that
the coordinate system defined by the traverse and cameras rig was not fully
vertically aligned with the jet coordinate system. This was evident from the
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fact that the flow centerline did not coincide with the data position of r = 0.
The statistical centerline is characterized by the mean streamwise velocity U
being maximum in any cross section and by the mean radial velocity V going
through zero there. As evident from figure 4.5.1 the vertical distance from the
data coordinate system streamwise axis to the jet centerline increased linearly
with downstream position.

300 400 500 600 700 800 900 1000

−100

−50

0

50

100

xe [mm]

z 
e  [m

m
]

FoV 1 FoV 2

Fig. 4.4: Contour lines of U(x, z) corresponding to 0.5, 1.5, 1.75, 2, 2.5, 3 and
4 m/s. Solid black line indicating xe axis and maximum of contours,
traced by the dashed line, indicate location of xf axis.

In order to correct for the misalignment an optimization scheme consisting
of iterative curve-fitting was performed. In the range 0 ≤ η ≤ 1.5, the radial
curvature of the mean streamwise velocity can be described to a reasonable
approximation by a sech2(cη) curve:

Ufit(x, r) = Uc(x)sech
2(c

r

δ1/2(x)
) (4.50)

where c = asech(1/
√

2) and similarity scaling of the mean velocity givesUc(x) =

BM
1/2
o (x − xo)

−1 and δ1/2(x) = A(x − xo). Nonlinear least squares fits of the
mean streamwise velocity data from the two cameras were performed sepa-
rately, yielding initial values for the scaling constants BM 1/2

o , A and xo. Then
a misalignment consisting of a rotation of α radians about the out-of-plane
coordinate axis y and a translation zo along the vertical axis z was proposed:

[
xf

zf

]
=

[
cos(α) sin(α)
−sin(α) cos(α)

][
xe − 0
ze − zo

]
(4.51)

[
uf

x(xf , zf )
uf

z (xf , zf )

]
=

[
cos(α) sin(α)
−sin(α) cos(α)

] [
ue

x(xf , zf )
ue

z(x
f , zf )

]
(4.52)

where the superscript ’f ’ stands for ’flow’ and the superscript ’e’ stands for
’experiment’. The rotations and displacements for the two cameras were found
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as the ones that minimize
∣∣∣∣∣U

f (xf , zf ) − B
√
Mo

xf − xf
o

sech2

[
c

|zf |
A(xf − xf

o )

]∣∣∣∣∣ (4.53)

where xf , zf are defined in equation 4.51 and

Uf (xf , zf ) = Ue(xf , zf )cos(α) + V e(xf , zf )sin(α)

Note that the scaling parameters BM 1/2
o , A, xf

o are characteristics of the flow
coordinate system. Thus the minimization 4.53 must be done iteratively, with
alternatively the scaling parameters or the mapping parameters being held
fixed. The optimization was considered as completed when the change in out-
putted velocity profile was negligible. The resulting parameters are summa-
rized in Table 4.2 below. Note the slight differences in coordinate system
mapping between camera 0 (upstream position) and camera 1 (downstream
position).

BM
1/2
o A xo/D zo/D α

C 0 1.754 0.0933 2.05 -0.24 0.008
C 1 1.747 0.0935 2.63 -0.05 0.005

Tab. 4.2: Resulting scaling and mapping parameters.

Figures 4.5(a) through 4.5(d) show the mean velocity components in simi-
larity coordinates before and after the coordinates system optimization. Note
that for camera 1 only the first upstream half of the field of view was used, as
the gradual influence of the enclosure walls would otherwise adversely influ-
ence the fit.

4.5.2 The x-dependence of Uc and δ1/2

Customarily graphs of δ1/2(x) and Uo/Uc are generated in order to establish
the virtual origin xo of the mean streamwise flow, which reflects the distance
for transients from the source to die off and in general is expected to depend
on the source conditions. However, as the virtual origin was one of the param-
eters in the jet coordinate system optimization, it has already been established
together with Uc(x) and δ1/2(x). In order to see if the goodness of the fit was
uniform over the domain, figures 4.6 and 4.7 show the local values relative to
the a line corresponding to the scales established by the optimization.

A consequence of momentum conservation is that the product of the cen-
terline mean velocity and the half-width must be constant. This is possible
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Fig. 4.5: Comparison of the mean velocity profile collapse. (a) and (c) before
coordinate optimization, (b) and (d) after coordinate optimization.
• : U(x, η)/Uc(x). • : |V (x, η)|/(Uc(x)A)

only if both have the virtual origin. Note that examples are commonly found
in the literature where different virtual origins allow better fits to individual
quantities. These are reflections of a lack of real similarity, and can usually
be attributed to a failure to satisfy the momentum integral equation due to
return flow, experimental error, etc. (Hussein et al.[16]).) For the experiments
reported herein:

δ1/2(x) = A(x− xo) (4.54)

Uc(x) = BM1/2
o (x− xo)

−1 (4.55)

where A = 0.093, B = 6.5 and xo = 2.4 has been obtained as from the average
of the scaling parameters of the upstream and downstream cameras. These
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Fig. 4.6: Variation of δ1/2 with downstream distance from the obtained virtual
origins. Solid line corresponding to A(x − xo) where A was obtained
from optimization. Data in blue from C0 and data in magenta from
C1.
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Fig. 4.7: Variation of (1/Uc)
−1 with downstream distance from the obtained vir-

tual origins. Solid line corresponding to (x−xo)/BM
1/2
o where BM1/2

o

was obtained from optimization. Data in blue from C0 and data in
magenta from C1.
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results are in close agreement with the experiment of Hussein et al.[16] at
an exit Reynolds number of 100,000, and Panchepakesan and Lumley [52] at
10,000 who obtained (0.094, 6.5, 4) and (0.096, 6.1, 0) respectively. Note that
the mean centerline velocity for top-hat exit profiles (which all these jets closely
approximate) can also be expressed as:

Uo

Uc
=

1

Bu

[
x− xo

D

]
(4.56)

where Bu = 2√
π
B. For this experiment, the exit velocity was 30.3 m/s, so

Bu = 5.8.

The local Reynolds number for these measurements is given by:

Ucδ1/2

ν
= 0.094(5.8)RD ≈ 0.55RD (4.57)

where RD is the exit Reynolds number defined as:

RD =
UoD

ν
(4.58)

For the experiments reported later, Uo = 30.3 m/s, D = 0.01m, and ν = 14.7 ×
10−6m2/s, so Re ≈ 20, 000. Thus the local Reynolds number of the fully-
developed jet is approximately 11,000.

4.5.3 The mean velocity profiles

Figure 4.8 shows the final profile plotted together with the LDA and flying hot-
wire data obtained by Hussein et al. 1994 in a jet at exit Reynolds number of
100,000. In spite of the large difference in Reynolds number and measurement
technique, the profiles are quite similar.

The radial velocity is almost two orders of magnitude smaller than the
streamwise one, and as a result exhibits much more scatter. It has been divided
by δ1/2/dx = 0.093 before plotting in figures 4.5(c) and 4.5(d). In order to check
the validity of the radial measured mean velocity one can calculate it from
the smoother streamwise curve via the mean continuity equation in similarity
variables:

V (x, r)/Uc(x) = −
[
dδ

dx

]{
1

η

∫ η

0

f(η)η dη − ηf

}
(4.59)

Figures 4.9(a) and 4.9(b) display the results.

Note that in order to perform the numerical integration the scaled profiles
f(η) had to be interpolated onto a new grid which was equidistant in η. The
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Fig. 4.8: Means streamwise velocity in similarity coordinates, with comparison
to the curvefit from Hussein et al.[16]. Data in blue from C0 and data
in magenta from C1.

agreement between the directly measured V/Uc and that computed from conti-
nuity is quite spectacular actually. Thus it seems that V has been determined
to an accuracy that is at least at limits of what is commonly believed possi-
ble with PIV, in large part perhaps because of the extremely large number of
independent samples.

4.5.4 The second order moments

The scaled single point second order moments of the two velocity components
are shown in figures 4.10(a) and 4.10(a), together with the corresponding LDA
profiles from the experiment of Hussein et al.[16]. The variances are about 10%
below those of Hussein et al.[16]. While it is tempting to interpret this as be-
ing primarily due to the spatial filtering by the relatively large interrogation
volumes, it may be in part due to the much lower Reynolds number (20,000
versus 100,000), since they are actually quite close to the data of Panchep-
akesan and Lumley [52] at an exit Reynolds number of 10,000. In particular,
for the scaled centerline turbulence moments Panchepakesan/Lumley obtained
〈u2/U2

c 〉 = 0.06 and 〈v2/U2
c = 0.036〉 = 0.06 compared to the corresponding val-

ues of 0.06 and 0.04 obtained herein. S Interestingly, all three experiments get
approximately the same value for the peak in the Reynolds shear stress; i.e.
〈uv〉 = 21, 19 and 20 for the Hussein et al.[16], Panchepakesan and Lumley
[52]and the present experiment respectively. Note that there was some evi-
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Fig. 4.9: Measured mean radial velocity profiles in similarity variables, (•)
V/Uc/A, and calculated from measured mean streamwise velocity and
the mean continuity equation, (-) − 1

η

∫ η

0 fη̄dη̄ + ηf .

dence in the latter for spatial filtering as well, since the streamwise turbulence
intensity never reached an equilibrium value.

It should be noted that as only in-plane velocity components can be out-
putted from the planar PIV, the azimuthal out-of-plane component is folded
into the variances above. This error should affect the variances as (1+tan2(α)),
where tan(α) ≈

√
(x− xc)2 + δ1/2(x)2η2/Z, where xc is the center of each cam-

era and Z is the distance to the lens. In our case the maximum value for
tan2(α)) is 0.02, so it is not a significant contributor to the variance. Also note
that in the absence of swirl there should be no effect on the mean velocity
components.

4.5.5 Spatial filtering versus noise

The fact the Reynolds shear stresses among the different experiments are quite
close, while the normal stresses are not, suggests the differences are mostly
attributable to spatial filtering, since the shear stresses (as noted below) are
much less affected. While figures 4.10(a) and 4.10(b) indicate the general levels
of the scaled second moments of velocity, they do not indicate the streamwise
spatial variation of those quantities. Figures 4.11(a) through 4.11(c) show con-
tours of the variance and covariance of the streamwise and radial turbulent
velocity, with the streamwise growth scaled out. The color scales are differ-
ent for each plot. Note the progressive increase of the variance in each of the
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Fig. 4.10: Variance and covariance profiles in similarity variables, compared
with LDA data curve fits form Hussein et al.[16]. (•)〈u2〉/U2
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two cameras. Since the turbulence is fully developed, the contours of constant
color should fall within parallel lines. Only the Reynolds shear stresses do so.
The rise in the normal stresses must either be due to an increase in the noise
downstream, or a decrease in the spatial filtering.

It will be argued in the next chapter that the only noise source whose mean
square value is dependent on interrogation volume size is the quantization
noise, and it can be shown to be negligible. Therefore the dominant effect is
due to the spatial filtering of the turbulence which decreases linearly in each
camera field of view. This is because the interrogation window has constant
dimensions for reach camera, 2.5mm and 3 mm respectively, while the scales
of the turbulence grows proportionally to x− xo as shown previously. Thus for
each camera, the filtering effect is maximum at the upstream boundary and
gradually decreases. At the transition from the upstrem camera to the down-
stream camera the filtering jumps due to the change in interrogation window
physical dimension. The cut-off wave number for the spatial filtering is approx-
imately 2π/li, where i is an index for camera. From the figures it is clear that
the effect is most prominent in the variance of the radial velocity component.
It will be shown later that in the range of wavenumbers which are affected
by the filtering, the spectral density of the radial auto correlation has higher
values than both the streamwise power spectral density and the cross-spectral
density, which indicates that more of the energy would be filtered out for a
given cut-off wavenumber. In fact, the relative filtering effect on the Reynolds
shear stress is virtually negligible, since its spectrum drops much more rapidly
and its primary contribution is from wavenumbers below the cutoff.
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Fig. 4.11: Contour plots of second moments of the velocity components in sim-
ilarity variables for the two fields of view. Note that the color scales
are individual.

4.5.6 Noise and bias

There are a number of effects that can affect the single point correlations of
measured data. In PIV it is generally established that under good measure-
ment conditions with standard interrogation methods the rms measurement
error from all sources (optical imperfections, peak detection, etc.) corresponds
to about 0.1 pixel equivalents. In the current case this number could well be
larger, due to the small particle images caused by the low magnification. How-
ever, if the 0.1 pixel estimate is used as an order of magnitude, and since the
mean velocity corresponds to about 3 to 7 pixel displacements over the plane
of our measurements, this translates into a nominal value in our experiment
of about a 2 % contribution to the rms turbulence moments. More importantly
it corresponds to an increase in the scaled rms velocity across one camera of
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about 1-2 %. This is clearly not enough to account for the increase along the
centerline of the turbulence variances of figure 4.11(a), consistent with the
spatial filtering explanation offered above.

A second source of error in the rms values is the quantization arising from
the fact that the signal is outputted digitally. This is identical to the usual
quantization noise whose mean square value is ε2/12 where ε is also given in
pixels. It will be argued in the next chapter that this contribution corresponds
approximately to 0.01 pixels, which is clearly negligible compared to the effects
discussed in the preceding paragraph. Nonetheless, it will turn out in the next
chapter to be visible as the last high wavenumber tail of the spectrum, in large
part because of the normalization by Uc(x).

Finally, George(2009) has identified a potential source of bias for both the
mean and rms values which is a consequence of the fact the the PIV output
velocity is based on an average over the particles present at any instant. The
problem for estimates of the mean velocity is that the realizations with fewer
particles are weighted the same as the realizations with more particles. The
net effect is the mean velocity is overestimate by a factor of (1+1/Np) whereNp

is the average number of particles in the interrogation volume. Thus the lower
the expected number of particles, the more the bias. This theory is very new,
and needs to be tested more thoroughly before conclusions can be definitively
drawn, but it has been recognized for a long time that errors result if there
are too few particles in the volume. Moreover, to-date, no software provides an
estimate of how many particles contribute to the instantaneous results, so at
this point the question of correction is moot.

Another consequence of the George (2009) theory is that there is an ‘tur-
bulence’ noise contribution, the mean square value of which is also inversely
proportional to the expected number of particles in the interrogation volume
and proportional the mean square fluctuating volume averaged velocity itself;
i.e., 〈uiuj〉/Np. The spectral properties of this ‘noise’ are discussed in the next
chapter, and shown to contribute negligibly to the measured spectra. Unfor-
tunately it is not possible at this point to say whether its contribution to the
single point second moments is significant or not.
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COORDINATES

This chapter exploits the streamwise homogeniety of the logarithmically trans-
formed and scaled velocity field. In particular it develops the two-point corre-
lations and spectra of the scaled velocity field in the ‘homogenized’ streamwise
coordinate.

5.1 Instantaneous velocities into similarity coordinates

As outlined above in the previous chapter, the purpose of the large field of
view is to accommodate spectral estimates with a minimum of spectral leakage
due to finite domain window width. In order to do so, the two fields of data
were interpolated onto a common grid which was equidistant in the multi-
point similarity coordinates ξ = ln[(x−xo)/D] and η = r/δ1/2(x). The resulting
new coordinate system has grid points defined by equation 5.1 and table 5.1
below.

ξs = ξa + s∆ξ = ξa + s
Lξ

Nξ − 1
, s = 0, 1, ..., S

ηp = p∆η = p
Lη

Nη − 2
, p = 0,±1, ...,±P (5.1)

Here the maximum values of the grid indices are defined as S = Nξ − 1 and
P = (Nη − 1)/2.

The velocity data from each camera field of view was normalized by the
local mean velocity and interpolated onto the common equidistant similarity
coordinate grid above. The interpolation scheme was cubic and the values in
the area of field of view overlap were evaluated as the average of the contribu-
tions from the two cameras. The resulting data should then correspond to:

υi(ξs, ηp) =
ui(xs, rp)

Uc(xs)
(5.2)

where xs = Deξs + xo and rp = δ1/2(xs)ηp. The effect of this mapping is visu-
alized in figures 5.1(a) through 5.1(f) below. Note that though the similarity
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Axis a L N ∆ S
ξ 3.4013 1.1788 512 0.0023 511

Axis L N ∆ P
η 4 51 0.08 25

Tab. 5.1: Equidistant grid in two-point similarity coordinate system. Note that
the η - domain spans across the entire jet. The effective number of
grid point spanning the upper or lower part of the jet individually is
P + 1 = 26.

scaled instantaneous velocities appear ‘visually homogeneous’ in the stream-
wise direction, exactly as expected from the similarity theory, the true test of
homogeneity is that the two-point correlations are independent of origin. This
will be shown to be the case in the following section.

5.2 Two-point correlations in similarity coordinates

The similarity scaled two-point Reynolds stress should depend only on the dif-
ference variable ζ = ξ′ − ξ. Figure 5.2 shows the centerline two-point correla-
tion coefficients of the scaled streamwise fluctuations, i.e.,

Ci,j(ζ, 0) =
〈υi(ξ, 0)υj(ξ + ζ, 0)〉
〈υi(ξ, 0)υj(ξ, 0)〉 (5.3)

evaluated from four different locations in the ξ domain. The black and blue
data points correspond to the auto-correlation coefficients of the streamwise
and radial velocity components respectively. The red data points in this par-
ticular figure correspond to the non-normalized cross-component correlation
values inflated by a factor 20. For comparison, figure 5.3 shows the normalized
centerline correlation of the streamwise velocity produced by Frohnapfel [41]
(see also Ewing et al. [7]) obtained from as the correlation between an up-
stream LDA probe and a downstream hot wire. Also in figure 5.3 is shown the
spatial lag correlation as obtained by time-autocorrelation of hot-wire anemome-
ter data which was converted using Taylor’s frozen field hypothesis.

When comparing the correlations in figures 5.2 and 5.3, it should be noted
that the combined LDA/hot-wire two-point correlations were based on up to
60,000 independent realizations while the number of independent samples in
the PIV experiment was 10,000. Recalling that the variability for the auto-
correlation is inversely proportional to the correlation coefficient; i.e., ε2ρ =
(1/N)(1/ρ2

uu)), it indicates that the PIV results should exhibit larger relative
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.1: One instantaneous realization of the turbulent jet velocity field. Left
column correspond to streamwise velocity and right corresponds to
radial. Figures (a) and (b) show the physical velocity in physical coor-
dinates, ũi(x, r), (c) and (d) the physical velocity in similarity coordi-
nates, ũi(ξ, η), and (e) and (f) the similarity scaled velocity in similar-
ity coordinates, υ̃i(ξ, η).
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η = 0

ζ = ξ´ − ξ 

Fig. 5.2: Elements of the correlation coefficient tensor in similarity coordi-
nates, Ci,j(ζ, η, η), at the centerline and evaluated for several non-
overlapping downstream positions in ξ which are indicated by the
different symbols. Black symbols correspond to C1,1(ζ), blue sym-
bols to C2,2(ζ) and the red ones, in this particular graph, to 20 ×
〈υ1(ξ, 0)υ2(ξ + ζ, 0)〉, since the expected value of the cross-correlation
function is zero along the centerline. Both normal tensor elements
show independence of origin and dependence only on ζ = ξ ′ − ξ. The
cross-correlation is indeed zero to within measurement error.
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Fig. 5.3: Spatial correlation of the axial velocity fluctuations in similarity co-
ordinates measured with simultaneous LDA and hot-wire, together
with the ‘spatial’ correlation inferred from temporal hot-wire data us-
ing Taylor’s hypothesis, from Frohnapfel[41].

error for large separations. In addition, a consequence of the decreasing fil-
tering effect in the streamwise direction is that the correlation at zero lag will
increase, causing the correlation coefficients to be normalized with a progres-
sively larger value as the origin of the two-point correlations increase in ξ. This
leads to an apparent lack of collapse that is not characteristic of the correla-
tions themselves, but an artifact of the normalization.

A striking feature of the results in figures 5.2 and 5.3 is the this correlation
remains positive (to within statistical error) for all values of the separation.
The same characteristic has has previously been noted for the longitudinal
correlations in decaying grid turbulence (c.f. Comte-Bellot & Corrsin [53]),
and although not theoretically predicted (to the best knowledge of the author),
seems to be a characteristic of homogenous turbulence. The ‘homogenized’ jet
turbulence appears to behave the same way.

Unlike the C1,1 correlations, the C2,2 correlations go negative. They are
also surprisingly like the corresponding correlations for homogeneous turbu-
lence (Comte-Bellot and Corrsin 1971[53]). In isotropic turbulence the chang-
ing of sign of the spanwise correlation can be shown to be a consequence of
the two-point continuity equation and the monotonic behavior of the longitudi-
nal correlation (Batchelor [54], Lumley [28]). At the present, a corresponding
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Fig. 5.4: Correlation coefficient tensor elements in similarity coordinates
Ci,j(ζ, η, η) at six radial locations |η| = 0.5, 1 and 1.5. Ci,j(ζ) is eval-
uated for several non-overlapping downstream positions in ξ which
are indicated by the different symbols. Black symbols correspond to
C1,1(ζ)blue symbols to C2,2(ζ) and red ones to C1,2(ζ).
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causal relation has not been established for the current ‘homogenized’ flow.

Figures 5.4(a) through 5.4(f) show the correlation coefficients at positions
|η| = 0.5, 1 and η = 1.5. Like the centerline results, C1,1(ζ) remains positive
for almost all values of ζ. Another obvious feature is the decreased rate of
correlation decay with increasing ξ′ − ξ with increasing radial distance from
the centerline, so much so that the curves at |η| = 1.5 do not quite reach zero.
This result is quite surprising, and indicates that the longitudinal integral
scale for the streamwise velocity fluctuations has increased by nearly a factor
of 2 with increasing radius. This does not appear to have been previously
observed, perhaps due to the great difficulties of measuring in this part of the
flow with conventional techniques given the high local turbulence intensity.

In summary, the degree of collapse of the correlation coefficient curves with
origin in ξ exhibited in all figures and for all the elements of the correlation
coefficient tensor demonstrates unequivocally the independence of position of
the two-point statistics in two-point similarity coordinates and confirms the
theoretical results of Ewing [55]. Therefore it is legitimate to represent the ho-
mogenized turbulence by spectral analysis, which is presented in the following
section.

5.3 Spectral analysis in ξ

The homogeneity in ξ for the transformed velocity data opens up the possibil-
ity of directly computing the one-dimensional spatial spectra. Most ‘spatial’
(or wavenumber) spectra in turbulence have been produced from either DNS
attempts to simulate homogeneous turbulence, usually with periodic boundary
conditions, or have used Taylor’s hypothesis together with the corresponding
hypothesis of local homogeneity to relate frequency spectra obtained by a fixed
probe (e.g., Comte-Bellot and Corrsin [53], Kang et al. [56] for decaying grid
turbulence). Spatial spectra from PIV data have been estimated by Foucaut
et al.[57] as early as 2004. In their paper they showed that spectral analysis
can be used as a tool for determining the local interrogation window dimension
which optimizes the compromise between resolution and measurement noise
due to limited number of particle images in the interrogation volume. More
recently, Herpin [58] made comparisons of spatial PIV spectra with DNS data.
In both cases, however, streamwise variations of boundary layer turbulence
were decomposed under the assumption of local homogeneity. Thus the results
in this thesis are, to the best knowledge of the author, the first experimental
spatial spectral analysis of a globally ’homogenized’ turbulent field.
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5.3.1 Evaluation of spectral estimates

The finite Fourier transforms along the similarity coordinate axis ξ were im-
plemented with an FFT algorithm which calculates the Fourier coefficients of
the instantaneous fluctuating velocity υi(ξn, ηp) as:

υ̂
Lξ

i (κs, ηp) = ∆ξ

Nξ−1∑

n=0

υi(ξn, ηp)e
−iκsξn/Nξ (5.4)

Note that the fluctuations are relative to the arithmetic average over the whole
set of independent realizations, not relative to an average estimated from the
Nξ = 512 grid points over which the finite Fourier transform is applied. That
means that the instantaneous value of the finite transform corresponding to
wavenumber κ0 is simply the instantaneous average over the ξ domain.

The expected values of the spectral densities were estimated as

Φ
(1)Lξ

i,jN (κm, ηp, ηq) =
Lξ

2πN

N∑

n=1

υ̂
Lξ∗
i (κm, ηp, tn)υ̂

Lξ

j (κm, ηq , tn) (5.5)

where the superscript (1) reminds us that the spectra are one-dimensional and
function of a wavenumber in the streamwise direction only. Lξ indicates the
finite domain length (for clarity, this superscript will be suppressed in the re-
mainder of the section) and subscript n is used to indicate the N independent
realizations. Thus the spectral density associated with the artificial wavenum-
ber κ0 is simply the the variance of the deviations of the instantaneous domain
mean velocities relative to the ensemble mean. The theoretical spectral den-
sity at wavenumber κ0 can be found by extrapolating from the lowest resolved
wave numbers. The variance of an individual spectral estimator is equal to
twice the value of the spectrum itself (for discretely sampled data). Thus if the
spectra are averaged over N blocks of data, then relative error (or variability),
is equal to ε2ΦN (κ) = 2/N . For these experiments, N ≈ 10, 000, so the spectra
are remarkably well-converged from all wavenumbers.

5.3.2 Spectra at the centerline

Figure 5.5 shows the streamwise and radial velocity spectra at the centerline.
Note that the corresponding cross-spectrum at this location should be zero,
since the Reynolds stress (to which it integrates) is identically zero at the cen-
terline. Appendix I below shows how to interpret the logarithmically trans-
formed data produced herein in the more traditional physical coordinates, and
vice versa. In particular, if the usual local physical coordinate wavenum-
ber spectra, say F

(1)
i,j (k1(x);x), are scaled as F (1)

i,j (k1;x)/(U
2
c [x − xo]) and the
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Fig. 5.5: Elements of the one-dimensional spectral tensor estimate Φ
(1)
i,j (κ)

along the jet centerline where η = 0. (-) Φ1,1(κs, 0, 0), (-) Φ2,2(κs, 0, 0),
(-) |Φ1,2(κs, 0, 0)| and the dashed lines indicate slopes of κ−5/3 and
κ−7/3 respectively.

streamwise wavenumber as k1[x − xo], then these are local approximations to
the logarithmic spectra Φ

(1)
i,j (κ).

Figure 5.6 shows the streamwise velocity component spectrum from Fig-
ure 5.5 plotted together with spectra obtained from the experimental data of
Frohnapfel [41] using the same experimental facility at a slightly higher exit
velocity (40 m/s corresponding to an exit Reynolds number of 26,000). The hot-
wire data were processed using an FFT, while the LDA data were produced
using the randomly arriving samples together with a residence-time weighted
algorithm (described in detail in Velte [47]). The LDA spectra have consider-
ably more variability which also increases with wavenumber, a consequence of
the random sampling.

All three spectral estimates are exhibit similar behavior at the lower wavenum-
bers, until the effects of the finite measuring volume begins to influence the
PIV data (see discussion below). This lends considerable credibility to the re-
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Fig. 5.6: One-dimensional spatial streamwise spectrum Φ
(1)
1,1(κ) at η = 0 from

PIV in black, together with scaled local one-dimensional spectra com-
puted using Taylor’s hypothesis. In green, HWA data from Frohnapfel
[41], and in red residence time weighted LDA data processed by Velte
[47].

sults of the analysis presented in this thesis. Also as with the correlation data
of the previous section, Taylor’s hypothesis does remarkably well, at all scales
of motion, in spite of the relatively high turbulence intensity (25 %). As noted
earlier, this is somewhat surprising, and currently lacks theoretical explana-
tion.

It is perhaps not too surprising, given the observations about the corre-
lations functions in the preceding section, that the centerline spectra show
approximately the same overall characteristics as those of isotropic turbulence
(c.f. Comte-Bellot and Corrsin [53], Tennekes and Lumley [18]). In particu-
lar, the streamwise spectrum, Φ

(1)
1,1 rolls off monotonically from its maximum

(presumably as κ → 0). By contrast, Φ
(1)
2,2 has its maximum away from the

origin, a consequence of the corresponding correlation function going negative
somewhere. For isotropic turbulence, the ratio of the auto-spectral densities
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Φ
(1)
1,1/Φ

(1)
2,2 = 2 in the limit as κ → 0. Clearly this is not the case here. Since

Φ
(1)
1,1(0) = 〈υ2

1〉L1/π and Φ
(1)
2,2(0) = 〈υ2

2〉L2/π where L1 and L2 are the stream-
wise and cross-stream integral scales in similarity coordinates. For isotropic
turbulence L1 = 2L2. Thus the fact that the ratio of Φ

(1)
1,1/Φ

1
2,2 > 2 is greater

than 2 is clearly a consequence of the anisotropy, both of the turbulence inten-
sities and the integral scales.

In spite of the anisotropy of the lowest wavenumbers, however, the spectra
behave similarly to their isotropic counterparts. The Φ

(1)
2,2 spectrum crosses

the Φ
(1)
1,1 spectrum and both roll-off at approximately κ−5/3 until about κ ≈

300 − 500. For isotropic turbulence, Φ
(1)
1,1/Φ

(1)
2,2 = 4/3 in the κ−5/3 range. This

ratio is being approached in figure 5.5, but not quite reached before the roll-off
cuts in, a roll-off consistent with the spatial filtering by the finite interrogation
volumes. The approach to the 4/3 ratio can be interpreted as a trend toward
isotropy with increasing wavenumber.

The cut-off wavenumber due to the averaging of the velocity across the
interrogation volume is approximately π/l where l is the size of the interroga-
tion window (see appendix II below). The values for the two cameras were 2.5
mm and 3 mm respectively, corresponding to physical cut-off wavenumbers of
1.25×103m−1 and 1.05×103m−1 respectively. These physical cut-off wavenum-
bers can be converted to the similarity wavenumber as κ ≈ k1 × (x − xo). So
for the most upstream position of x/D = 30, the cut-off is approximately at
κc ≈ 375; while at, x/D = 95, the most downstream position, κc ≈ 994. The
equally-spaced logarithmic coordinates in ξ-space are more densely spaced
upstream in physical space. Since the spectra represent a composite of the
measurement over the entire domain with the upstream data more heavily
weighted, a nominal value of the cutoff wavenumber of about 400-500 is a rea-
sonable estimate. Indeed Φ

(1)
1,1 spectra appear to roll-off about about κ ≈ 500,

while Φ
(1)
2,2 appears to roll-off a bit earlier. Approximately the same roll-offs will

be seen to be exhibited by the other spectra for other values of η well.

Finally, the streamwise velocity spectra and the approximate κ−5/3 slope,
which corresponds to the usual k−5/3

1 -range in physical coordinates (see Ap-
pendix 1), presents the opportunity to test the universal inertial subrange)
arguments put forth by Batchelor [54] using Kolmogorov’s 1941 universal equi-
librium range ideas. If the physical space one-dimensional spectra had a uni-
versal inertial subrange, it would be described by:

F
(1)
1,1 (k1) =

9

55
αKol ε

2/3k
−5/3
1 (5.6)

where ε is the rate of dissipation of turbulence energy per unit mass and αKol

is presumed to be a universal constant approximately equal to 1.5. Following
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Appendix 1 this can be mapped into jet similarity coordinates as k1 = κ/(x −
xo) and F

(1)
1,1 (k1) = Φ

(1)
1,1(κ)U

2
c (x − xo) to obtain the dimensionless spectrum

resulting from the logarithmically transformed data as:

Φ
(1)
1,1(κ) =

9

55
αKol ε̃

2/3 κ−5/3 (5.7)

where ε̃ is the dimensionless rate of dissipation defined by:

ε̃ =
ε(x− xo)

U3
c

(5.8)

The best fit line to the inertial subrange in the streamwise spectrum of fig-
ure 5.6 corresponds to Φ

(1)
1,1 = 0.1κ−5/3. Together with equation 5.7 yields an

estimate for ε̃ as 0.26. This can be compared to the various efforts of Hus-
sein et al. [16] to measure the dissipation directly using parallel flying hot-
wires, albeit at a much higher jet exit Reynolds number (100,000 versus 30,000
here). Their preferred value using a local axisymmetry estimate (see George
and Hussein [59]) was 0.35, but other estimates based on local isotropy were
0.23 (based on 〈(∂u/∂y)2〉) and 0.28 (〈(∂u/∂x)2〉). Thus the estimate from the
spectrum here is remarkably close, and the differences may be more due to the
difference in Reynolds number than to the methodology.

As a final note, the dissipation rate in similarity variables can be used to
define the local Kolomogorov microscale as ηK(x) = (ν3/ε(x))1/4 = (ν3/ε̃)1/4(x−
xo)

1/4Uc(x)
−3/4 = η̃K(x−xo)(BM

1/2
o )−3/4 where η̃K = 3.38×10−4 and BM1/2

o =
1.72 was established for the current flow. Thus the local size of Kolmogorov
microscale increases linearly downstream, and for this experiment is given by
ηK(x) ≈ 2.25 × 10−4(x − xo). At x − xo = 30D the dissipation range is at a
physical scale of 6.74× 10−5m and at x− xo = 95D it is 2.14× 10−4m.

5.3.3 The off-axis spectra

Figures 5.7(a) through 5.7(f) show the velocity spectra at off-centerline po-
sitions across the jet corresponding to |η| = 0.5, 1 and 1.5. Note that such
spectra have never been presented before, since hot-wire probes do not work
reliably away from the jet core because the local turbulence intensity rises
rapidly. Even flying hot-wires can not work since the traverse the flow too
quickly to obtain a measurement record length long enough to avoid window
effects. Burst-mode LDA cannot be used either, since Taylor’s hypothesis fails
at these very large local turbulence intensities.

All of streamwise and radial velocity spectra show almost the same char-
acteristics as noted for the centerline. The major difference is the non-zero
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Fig. 5.7: One-dimensional spatial spectral tensor elements Φ
(1)
i,j (κ, η, η) at sev-

eral radial positions. Black curves indicate Φ
(1)
1,1, blue curves Φ

(1)
2,2 and

red curves Φ
(1)
1,2. Dashed lines correspond to slope of κ−5/3 and κ−7/3

respectively.
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cross-spectrum, the integral of which is the Reynolds shear stress. These show
the κ−7/3 inertial subrange behavior that has been previously noted for turbu-
lent shear flows (like the atmosphere), c.f., Panofsky and Lumley [60]). The
basic argument for this is that the Reynolds stress spectrum should be pro-
portional to the mean velocity gradient (using an eddy viscosity argument),
so the only possibility using ε and κ as parameters is κ−7/3. As a qualitative
overview of the overall radial distribution of the three one-dimensional single
point spectra, figures 5.8(a), 5.8(b) and 5.8(c) show the spectral estimates on
logarithmic axes.
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Fig. 5.8: Elements of the single point one-dimensional spectrum tensor
Φ

(1)
i,j (κs, ηp).

5.4 Contribution of noise to the spectral estimates

The predominant adverse effect on the spectra presented in this chapter has
been recognized to the be the spatial filtering resulting from the finite interro-
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gation volume size. The filtering removes energy from the highest wavenum-
bers so the the overall turbulence energy captured is reduced. Since the spatial
interrogation volumes for the two cameras is fixed while the scales grow down-
stream, the amount of energy removed is progressively less so the turbulence
intensities appear to grow downstream. The net result is that the energy is
slightly less than might have been expected from the Hussein et al. [16] mea-
surements with LDA and flying hot-wire. As a consequence any contributions
from noise are not obvious. Since these data will be used in the next section
for POD analysis, it is important to estimate what the contribution of the noise
are, and where it appears in the spectrum. The primary sources of noise in this
experiment are three-fold: first, the noise which arises from the turbulence it-
self due to the finite number of particles on which the individual velocities are
estimated by the PIV; second, the noise added to the process by the distort-
ing effect of imperfections of the imaging of particles on the PIV correlation
peak, and finally, the quantization, i.e., the rounding off of the measured sig-
nal value by the smallest available level quantification. For standard PIV data
obtained under good conditions, an total rms error on the order of 0.1 pixel can
be expected.

The total measurement uncertainty is considered by Foucaut et al. [57] to
manifest as a random noise that is filtered by the PIV interrogation window. It
should thus appear in the spectra as a constant multiplied to the spectrum of
the interrogation window (a sinc2(k1l/2), l window dimension) which is added
to the true spectrum, see equation 4.32, possibly distorted by the convolving
effect of a finite domain window. It should be noted that while the spectra
estimated by Foucaut et al. [57] show distinct evidence of the lobes of the car-
dinal sine function at the higher end of their spectra, this feature has note been
observed in the spectral estimates calculated herein. The reason for this differ-
ence is possibly due to a spectral ´smearing’ effect when Fourier transforming
a signal subject to locally linearly varying filtering.

In the analysis below the last two sources of measurement uncertainty will
be considered to have been added to the velocity data and therefore treated
independently from the it. It is also considered to be uncorrelated from the ve-
locity estimates. The unique problem for this experiment is that the data have
been re-scaled, both in amplitude and space by logarithmically transforming
it and by dividing each realization by the mean centerline velocity. Thus, al-
though the mean square value of the quantization noise, for example, can be
estimated as ε2/12 and its spectrum to be white, the contribution to the trans-
formed data is not so simple. Moreover, unlike the original errors, the errors in
the transformed environment are not even homogeneous (since they have been
divided by the centerline velocity which diminishes downstream as (x−xo)

−1).
Nonetheless, as shown in Appendix 3 of this chapter, the contribution to the
ξ-space spectra can still be shown to be white, but with a spectrum which de-
pends on the domain and is given by:

77



ΥLξ(κ) =
ε2

48πB2Mo

[
e2Lξmax − e2Lξmin

4πLξ

]
(5.9)

In discrete spectral computations the quantization noise variance is spread
evenly over the spectral domain from (−π/∆ξ , π/∆ξ). For the spectra shown
above the computed quantization level assuming a resolution of 0.01 pixel
corresponds below the level at which the spectra flattens out at the highest
wavenumbers, or nearly an order of magnitude less than the conventional
value of 0.1 pixels. It also dominates the spectrum only at wavenumber well be-
yond those at which spatial filtering dominates the measured spectrum. Thus
the contributions from white noise sources would appear to be negligible. Note
also that (as observed) the effect of quantization noise on the Reynolds stress
spectrum would be expected to be significantly less (or perhaps even zero),
since there is little to no correlation between the quantization of one velocity
component and another. For the cross-spectra (not shown here) the quantiza-
tion noise would be expected to be identically zero.

Another contribution to the spectral noise arises from the finite and ran-
dom number of particles on which an individual realization is based. This has
recently been considered theoretically by George (2009, private communica-
tion) who estimates the mean square contribution to be var{u}/N where N is
the average number of particles in the interrogation volume. The spectrum
of this contribution has a shape determined by the Fourier transform of the
interrogation volume and is given by:

Υturb(κ) =
1

4πN

〈uiuj〉
U2

c

∆

(x − xo)

[
sin(k1l/4)

k1l/4

]2
(5.10)

For even a nominal number of particles (say N = 10) this is several orders
of magnitude below the spectra shown above for all values below the cut-off
wavenumber.

Thus in summary: the sources of noise we have been able to consider to not
significantly affect the spectral data presented herein. In part this is because
these noise levels are low, and in part because the spatial filtering restricts our
wavenumbers of interest to those well below any wavenumber at which their
effects would be felt.

5.5 Summary

The two-point correlations and spectra (including cross-spectra) of the loga-
rithmically transformed data in similarity variables are remarkably consis-
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tent, both with other experiments in the same facility and with prevailing
theory and conventional wisdom. Thus both the PIV methodology and the
two-point similarity theory would seem to have been well-substantiated. The
former is particularly gratifying given the extraordinary large windows used,
which very much stretched the limits of the hardware.
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As explained in Chapter 3, the optimal decomposition in the radial direction
of the turbulent jet is the so-called ‘classical’ proper orthogonal decomposition
(POD). In many ways, the radial extent of the jet this the the perfect appli-
cation for the POD, since the the fundamental constraints on its use are that
the region be of finite total energy, which the jet in the radial direction satis-
fies. Moreover the ratio of lateral extent to the integral scale is relatively small
(L/I ≈ 4 − 5), so the number of eigenvectors necessary to capture most of this
energy is quite small. This can be contrasted the streamwise direction where
the ratio is effectively infinite, hence the need for as continuous wavenumber
Fourier representation.

6.1 POD analysis of two-point velocity cross - spectra

The implementation of the POD begins by first decomposing the field into
streamwise Fourier modes for each wavenumber, κ, then using the two-point
cross-spectra for different values of normalized radial position as the kernel in
the POD integral; i.e.,

∫ ∞

0

Φ
(1)
i,j (κs, η, η

′)φj(κ, η
′)η′dη′ = λ(κ)φi(η, κ) (6.1)

Thus for each value of κ, a separate eigenvalue problem must be solved.
Since the field in the η-direction has finite total energy (for each wavenum-
ber), the integral problem reduces to the classical Karhunen-Loéve expansion
discussed in Chapter 3. There are in principle a countably infinite number of
eigenvectors, say φ

(n)
i (η, κ), and eigenvalues, say λn(κ). These solutions are

optimal in the sense that λ11 > λ2 > λ3, etc. Moreover, the sum over all the
eigenvalues yields the energy for a given wavenumber, κ. The kernel can be
reconstructed as:
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Φ
(1)
i,j (κ, η, η′) =

∞∑

n=1

λnφ
(n)∗
i (η, κ)φ

(n)
j (η, κ) (6.2)

Finally, and most importantly from the perspective of understanding the
physics, the instantaneous Fourier transformed velocity field can be also recon-
structed from the eigenfunctions using coefficients determined by projecting
the eigenfunctions onto it; i.e.,

υ̂i(η, κ) =

∞∑

n=1

an(κ)φ
(n)
i (η, κ) (6.3)

where the an(κ) are random coefficients given by:

an(κ) =

∫ ∞

0

φ
(n)∗
i (η, κ)υ̂i(η, κ)ηdη (6.4)

This chapter is about the application of this theory to the streamwise ex-
periment, and the results of doing so.

6.2 Implementation over a finite, discretely sampled domain

The techniques applied herein have previously been applied to jets by Glauser
et al. 1991, Citriniti and George [37], Jung et al. [61]and Gamard et al. [8], but
using frequency data obtained from rakes of hot-wire probes. This is believed
to be the first time it has been applied to actual spatial wavenumber cross-
spectra, at least without the need to invoke Taylor’s hypothesis.

The first major difference from the theory outlined in the introduction
above is that the domain itself is not only of finite total energy, it is spatially
finite and truncated at η = 2. The corresponding integral equation is:

∫ 2

0

Φ
(1)
i,j (κs, η, η

′)φj(κs, η
′)η′dη′ = λ(κs)φi(η, κs) (6.5)

where the subscript s indicates the discrete nature of the wavenumber space.
As noted in the previous chapters, it would perhaps have been better had the
integral been truncated at η = 2.5, although it is not obvious immediately what
the effect would be.

Second, solution by standard matrix techniques requires a Hermitian sym-
metric kernel. Because of the radial metric, the kernel η′Φ(1)

i,j (κ, η, η′) is not
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symmetric with respect to both η and η′. However, if, as first suggested by
Glauser et al. [], the kernel can be symmetrized by re-defining the basis func-
tion as:

φ̃i(κs, η) = η1/2φi(κs, η) (6.6)

and absorbing the remaining dependence on η and η′ into the kernel as:

Φ̃
(1)
i,j (κs, η, η

′) = η1/2η′1/2Φ
(1)
i,j (κs, η, η

′) (6.7)

Lastly, the integral equation 6.5 must be approximated by a discrete sum
as:

P∑

q=0

Φ̃
(1)
i,j (κs, ηp, ηq)φ̃j(κs, ηq)∆η = λφ̃i(κsηp) (6.8)

where ηp = p∆η, p, q = 1, 2, ..., P and P is the total number of grid points in η.

The corresponding matrix equation can be solved with a matrix eigenvalue
solver in matlab. If the matrix As is formed as

As = ∆η

[
Φ̃

(1)
1,1(κs, ηp, ηq) Φ̃

(1)
1,2(κs, ηp, ηq)

Φ̃
(1)
2,1(κs, ηp, ηq) Φ̃

(1)
2,2(κs, ηp, ηq)

]
(6.9)

the eigenvalue solver outputs matrices Vs and Ds such that

AsVs = VsDs (6.10)

where Ds is a diagonal matrix with the eigenvalues λn(κs) of As as diagonal
elements and where the columns of Vs contain the vector elements of corre-
sponding 2P eigenvectors φ̃(n)

i (ηp). The desired eigenvectors φ(n)
i (κs, ηp) of the

discrete kernel ∆ηΦ
(1)
i,j (κs, ηp, ηq)ηq are then found from equation 6.6 as

φ
(n)
i (κs, ηp) = η−1/2

p φ̃
(n)
i (κs, ηp) (6.11)

It should be noted that the division of the modified eigenvectors φ̃(n)
i (κs, ηp)

by η1/2 would correspond to dividing by zero at the origin. Therefore the values
of φ(n)

i (0) are instead determined from the definition of the POD integral, which
for η = 0 is:

φ
(n)
i (κs, 0) =

1

λn

∫ ∞

0

Fi,j(κs, 0, η
′)φ(n)

j (κs, η
′)η′dη′ (6.12)

This operation is possible to perform, despite lack of knowledge of φ(n)
i (κs, 0),

since the integrand of 6.12 is zero at the lower boundary η′ = 0. For the discrete
case, this operation corresponds to
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φ
(n)
i (κs, η0) =

∆η

λn

P∑

q=1

Fi,j(κs, 0, ηq)φ
(n)
j (κs, ηq)ηq (6.13)

The only drawback of this method is that the last eigenvalue, λ2P , is zero,
causing the values of φ(2P )

i (κs, 0) to be undefined. These are however the very
least energy relevant modes to be determined by the analysis and as can be
seen in figures 6.5(a) through 6.9 in section 6.4, the radial grid resolution has
long since been unable to resolve the shape of the modes. In summary, the
end result of the POD decomposition is that the correlation tensor has been
expanded on a composite Fourier and POD mode basis so that

Φ
(1)
i,j (κs, ηp, ηq) =

2P∑

n=1

λn(κs)φ
(n)∗
i (κs, ηp)φ

(n)
j (κs, ηp) (6.14)

6.3 Eigenspectra

The spectral energy density per POD mode number n = 1, 2, ..., 2P , where
P = 26 is the number of radial grid points, and wavenumber κs, s = 0, 1, ..., S
where S = 255 is simply λn(κs). The distribution over all the combinations
of n and s is presented on linear axes in figure 6.1(a). This representation is
not particularly illuminating, since the magnitude of the eigenvalues appear
to drop quite rapidly with both POD mode number n and wavenumber κs. If
instead the axes are made logarithmic, as in figure 6.1(b), the variation of spec-
tral density over the basis functions is more evident.

More specific comparisons of the POD eigenvalues, their rate of conver-
gence and the variation over wavenumbers space can be made if the eigen-
values are normalized. The energy of the Fourier transformed field is, in the
continuous case,

∫ ∞

0

〈υi(η)υi(η)〉ηdη =

∫ ∞

0

dη

∫ ∞

−∞
ηΦ

(1)
i,i (κ, η, η)dκ

=

∫ ∞

−∞
dκ

∞∑

n=1

λn(κ)

∫ ∞

0

φ
(n)∗
i (κ, η)φ

(n)
i (κ, η)ηdη

=

∫ ∞

−∞

∞∑

n=1

λn(κ)dκ (6.15)

In the the current discrete case this infinite integral over an infinite sum of
POD eigenvalues is a finite sum and the total energy represented in the field
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is:

E = ∆η

P∑

p=0

〈υi(ξs, ηp)υi(ξs, ηp)〉ηp = ∆κ

S∑

s=0

2P∑

n=1

λn(κs) (6.16)

so that the relative energy per POD mode and Fourier mode is simply λn(κs)/E .

The rate of convergence of the POD expansion 6.14 can be evaluated by
the slope of a partial sum over the mode numbers: the steeper the the slope
of the curve formed by the partial sum, the less POD modes must be retained
in order to represent the spectral density at a given wave number. Defining a
partial sum over POD mode numbers per wavenumber as :

ΛN (κs) =

N∑

n=1

λn(κs) (6.17)

the rate at which each POD expansion converges to the relative spectral den-
sity is

χN (κs) =
λN (κs)

E (6.18)

Figure 6.3 shows such a distribution on linear axes. While it appears that the
POD expansions for the lower wavenumbers converge quickly, the rate appears
to slow down with increasing wavenumber.

In order to highlight the varying convergence rates at different wavenum-
bers the ratio of the eigenvalue magnitude relative to the spectral density per
wavenumbers can be formed as:

γn(κs) =
λn(κs)

Λ2P (κs)
(6.19)

Forming ΓNκs, the partial sum over γn(κs) as:

ΓN (κs) =
N∑

n=1

γn(κs) =
ΛN (κs)

Λ2P (κs)
(6.20)

The relative rate of convergence of the POD expansion per wavenumber is
visualized in figure 6.3. From the figure it is clear that the rate of convergence
for the POD expansions does indeed decrease with increasing wavenumber in
the interval 0 ≤ κ ≤ 450, but that the rate of convergence then increases for
the rest of the wavenumbers. Figure 6.3 shows a more detailed curve for Γ1(κs)
from which it is evident that the relative fraction of energy drops from about
60% to about 7% between κ = 0 and κ = 450. Based on the arguments made
for the spectral roll-off due to the filtering of the finite PIV interrogation win-
dow, it is likely that this also affects the POD decomposition results. Thus the
apparent increase in POD expansion convergence rate evident in the interval
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450 ≤ κ ≤ 1350 is not believed to be physically representative. As will be seen
from the inspection of the eigenvectors in the following chapter, the character
of the eigenvectors changes markedly a about κ = 450.

At the low wavenumber end of the interval 0 ≤ κ ≤ 450 the values of
ΓN are the highest in the entire distribution and the rate of convergence is
rapid. However, as the wavenumber increases towards the higher end of the
sub-interval, the values of Γ1 drop radically and, as noted above, appear to be
approaching a constant value. That means that the lowest order POD mode in
each expansion captures less and less of the available spectral density. Since
the theory dictates that each POD mode eigenvalue is larger than the following
ones, it also means that the relative difference in magnitude among the POD
eigenvalues decreases. This in turn indicates that a truncated representation
of the flow requires higher and higher orders of the expansion. As will be seen
in the following section, the POD modes themselves exhibit higher and higher
sequency values (i.e. number of zero-crossings per unit length). In combination
with the decreasing rate of convergence observed in the partial sums of the
magnitudes of the eigenvalues, this could be consistent with the idea that the
turbulence develops locally homogeneous features at the small scales so that a
Fourier representation would be suitable.

6.4 Eigenvectors

The number of eigenvectors produced by the POD matrix decomposition is 2P
= 52 per wavenumber κs. The real parts of the eigenvectors for all POD mode
numbers for κ1 = 5.3 are presented in figures 6.5(a) through 6.9. As the POD
mode number n increases, the sequency, i.e., the number of zero-crossings of
the radial modes, appears to increase as well. In fact for n = 10 and higher,
the eigenfunctions resemble Fourier modes. This is quite consistent with the
idea of local homogeneity of the small scales of motion, and the historical use of
spectra and Fourier analysis to characterize them (c.f. Tennekes and Lumley
[18]).

In order to properly display a discrete curve which exhibits zero-crossings
as a smooth curve, the number of grid points per zero-crossing should be 10
(at least without using an interpolation formula). Since the number of grid
points is fixed at P=26, it is inevitable that the higher order POD modes which
exhibit high sequency have the appearance of saw-tooth functions. This is
noted for n > 30. It is also seen that the eigenvector components become more
and more singular at the extremes of the radial domain and approach zero
inside the domain. It is thought that this behavior is due to the numerical
method of finding linearly independent vectors rather then representative of
some property of the turbulence.
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Another interesting feature of the decomposition is the variation of eigen-
vector shape per POD mode number and wavenumber. In order to investigate
this feature of the basis, the magnitude of the real and imaginary parts of the
components of the 12 first POD eigenvectors are plotted as surfaces in figures
6.10(a) through 6.17(d) below.

Before trying to interpret these result, first recall that spatial filtering
dominates the wavenumber spectra on which the POD analysis is based for
wavenumbers beyond κ ≈ 300 − 500, as discussed in detail in the preced-
ing chapter. Low-pass filtering almost always brings with it significant phase
shifts as well. All of the surface plots show a significant change in character
beyond about κ = 400, consistent with the spatial filtering and also consistent
with the change in the partial POD eigenvalue sums for κ > 450, see figure 6.3.
Thus nothing beyond this value is of interest.

What is of considerable interest, however, is the nature of the eigenfunc-
tions for both the streamwise and cross-stream components below κ ≈ 50: the
horizontal columns in the figures mean that the shape of the eigenfunctions
is relatively independent of wavenumber. Moreover the eigenfunctions are al-
most pure real-valued. This behavior persists through all of the plots below
κ ≈ 50, even to the highest POD mode. This has important implications for
how the Reynolds shear stress is produced, since from equation 6.2,

Φ
(1)
1,2(κ, η, η) =

N∑

n=1

λn(κ)φ
(n)
1 (η, κ)

∗
φ

(n)
2 (η, κ) (6.21)

It is clear that the eigenfunctions must produce Reynolds shear stress in pro-
portion to the turbulence energy density at a given wavenumber if they do not
have a significant complex part.

The change in character of the eigenfunctions at about κ ≈ 50 corresponds
to where the turbulence component energy spectra appeared to be beginning
to develop an inertial subrange (or k−5/3-range). First the distance between
the surfaces gets smaller with increasing n. Second the basic character re-
mains nearly wavenumber independent until the filtering begins to affect the
data. Third, and perhaps most importantly, the higher the mode number and
wavenumber within these limits, the more significant the complex parts. This
is very consistent with the observation above about the Reynolds shear stress,
and explains (or at least correlates with) the fact that the Reynolds shear stress
cross-spectrum falls faster than either velocity component (κ−7/3 versus κ−5/3).
It is also consistent with the long-alleged trend toward local isotropy (and zero
Reynolds stress) with increasing wavenumber, since the real and imaginary
parts become nearly equal. This can also be taken to be supportive of the idea
that the scales of motion smaller than those characteristic of the inertial sub-
range might be nearly universal, at least statistically speaking.
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Fig. 6.1: Distribution of the eigenvalues λn(κs) over streamwise wavenumber
κs and radial POD mode number n on linear axes in (a) and on loga-
rithmic axes in (b).
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Fig. 6.10: Magnitudes of the real and imaginary parts of the eigenvector
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Fig. 6.11: Magnitudes of the real and imaginary parts of the eigenvector
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Fig. 6.12: Magnitudes of the real and imaginary parts of the eigenvector
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i (η, κs), n = 3.
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Fig. 6.13: Magnitudes of the real and imaginary parts of the eigenvector
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Fig. 6.14: Magnitudes of the real and imaginary parts of the eigenvector
φ

(n)
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7. INTRODUCTION TO PART II

The second part of this thesis continues a series of experimental investigations
which have been carried out on incompressible axisymmetric jets in the Tur-
bulence Research Laboratory over the past 25 years, beginning with Glauser
and George [33], Citriniti and George [37], and most recently represented by
the papers of Jung et al. [62] and Gamard et al. [63]. Earlier versions of this
work were presented by Wänström et al. [64], [65], [66]. The common pur-
pose of the above experiments has been the application of Proper Orthogonal
Decomposition (POD) techniques to this canonical flow, a methodology which
aims at uncovering statistically identifiable azimuthal and radial constituents
of the flow so that further insight into the dynamic interactions within the flow
may be gained. The particular goal of this ongoing study was to enhance un-
derstanding how of the dynamical processes by which turbulence is produced
and sustained via interaction with the mean flow.

Evolution of flow measuring equipment and methodology has made possi-
ble measurements that were previously impossible, with the result that each
generation of experiments has extended our ability to probe the dynamics of
turbulent flow. Attention should be brought to a number of parallel studies, for
example Ukeily and Seiner [67, 68], Glauser et al. [69], Tinney [70] and Iqbal
[71]. Earlier versions of the work presented in this chapter have appeared in
Wänström et al [64, 72, 66] and Tutkun et al.[73].

7.1 Historical Review

The early studies (e.g., [33, 37] focussed on the jet mixing layer (i.e., at x/D =
3) and showed clearly evidence for a vortex ring-like structures. They sug-
gested it was the breakdown of these rings into azimuthal modes between 4
and 6 that were the natural process for the turbulent jet mixing layer, and per-
haps even the asymptotic jet (c.f., Grinstein et al.[74]).1 Figure 7.1 from Jung
et al.[62] presents the main characteristics.

1 The recent success of chevrons, especially 6, at reducing jet noise can in part trace
its origins to these observations.
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“At at x/D = 2.0...the azimuthally coherent ‘volcano-like’ erup-
tion described by [37] is clearly present in the uppermost figure,
and it evolves in the same manner they described. It was suggested
by [37] that this was the result of the attempted leap-frogging of
the azimuthally coherent vortex rings proposed by [74]. The erup-
tion (figure 7.1 a) forces high-velocity fluid through its center along
with the remnants of mode-6 in the potential core, while a new az-
imuthal mode-6 structure appears outside. The ‘volcano’ passes
quickly leaving an azimuthally coherent structure (mode-6) in the
potential core. Note that the higher modes (4 to 6) dominate the
temporal pictures since they are mostly outside the core of the flow
and are therefore swept past the probes more slowly. But it is the
eruption that has most of the energy. The animation at higher
Reynolds number shows the same evolution, but with more veloc-
ity fluctuation...”

Subsequently Gamard et al.[8] were able to extend the 138-hotwire-rake
measurements to downstream locations as well. As is clear from figure 7.2, the
picture of a single vortex ring like structure breaking down (or volcano-like
event) was clearly too simplistic. In their words:
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Fig. 7.1: Time sequence of reconstructed velocity field at x/D = 2 for ReD=
117 600 using only the first POD mode, and azimuthal mode numbers
m = 0, 3, 4, 5, 6, 7. From [62].

“Unlike the reconstructions at x/D = 2 and 3, those at x/D = 4
are quite different, as shown in figure 7.2. The ‘volcano-like’ erup-
tion still exists, but it is very weak. The most evident azimuthal
mode changes from mode-4 to mode-3, consistent with eigenspec-
tra ....”
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Fig. 7.2: Time sequence of reconstructed velocity field at x/D = 4 for ReD=
117 600 using only the first POD mode, and azimuthal mode numbers
m = 0, 1, 2, 3, 4, 5. From [62].

And they continued:

“By 5 diameters downstream for all Reynolds numbers, the fea-
tures show disorganized evolution, and are not periodic. Mode-0
is very small and has almost disappeared. Unlike the volcano-like
eruptions, a ‘propeller-like’ motion is observed, which rotates (or
precesses) slowly from frame to frame. By x/D = 6.0, the struc-
ture is simpler. Mode-0 is almost gone, and only lower mode num-
bers are observed for all Reynolds numbers. Azimuthal mode-2
and mode-3 appear in figure 7.3, showing quite large-scale struc-
ture. Energy shifting from one peak to another is quite obvious.
Various mode numbers are observed, but the lower mode numbers
dominate the evolution.”

Inferences from inviscid linear stability theory had long predicted that the
most unstable mode should be governed by mode-1 [12]. However, the study by
Gamard et al. [63] found that the evolution of the dominant modes in the near
jet did not continue all the way to mode-1 in the far jet (as expected). Instead,
eigenspectra of the time-resolved streamwise velocity showed that the modal
distribution of energy evolved towards dominance of azimuthal mode-2 in the
far jet. Figure 7.4 from [63] shows the evolution of the azimuthal modes of the
POD eigenspectra. Both the [62] and [63] studies were based on POD of two-
point two-time correlations of the streamwise velocity fluctuations and their
corresponding cross-spectra.

Almost simultaneously with the Gamard findings, Freund and Colonius
[75] found supporting results for their low Reynolds number jet DNS, and

105



7. INTRODUCTION TO PART II

1

0

1

1

0

1
5

0

5

y/d
z/d

t
p
=1270

u
’ 
(m

/s
)

 1  0.5 0 0.5 1
 1

 0.5

0

0.5

1

y/d

z
/d

1

0

1

1

0

1
5

0

5

y/d
z/d

t
p
=1542

u
’ 
(m

/s
)

 1  0.5 0 0.5 1
 1

 0.5

0

0.5

1

y/d

z
/d

1

0

1

1

0

1
5

0

5

y/d
z/d

t
p
=1620

u
’ 
(m

/s
)

 1  0.5 0 0.5 1
 1

 0.5

0

0.5

1

y/d

z
/d

Fig. 7.3: Time sequence of reconstructed velocity field at x/D = 6 for ReD=
117 600 using only the first POD mode, and azimuthal mode numbers
m = 0, 1, 2, 3, 4, 5. From [62].

Kopiev and co-workers [76] discovered mode-2 dominating the radiated noise
spectrum beyond a few jet exit diameters downstream. The implications of this
on the theoretical questions were quite significant, since a majority of the com-
munity had assumed that the linear stability theory would capture the basic
instability that drives the dynamics of even fully developed turbulent shear
flows. Subsequent re-examination of the linear theory by George et al. [77]
showed the possibility of mode-2 disturbance growth, but numerical studies
by Chomaz and others (private communication) showed these disturbances to
be stable. Liang and Maxworthy [78] were able to show that swirling flows
could be unstable to mode-2, but there was no evidence of swirl in any of the
jets subject to study. Nevertheless, the result of Gamard clearly showed that
the turbulence kinetic energy of the streamwise fluctuations settles into an
azimuthally modal variation best represented by mode-2 after the breakdown
of the jet potential core, where mode-0 had most energy (which was itself con-
sistent with linear theory because of the near top-hat profile at the exit). This
would indicate that mode-2 could only arise from non-linear interactions.

In the light of these findings, the measurements by Thomas et al. [80, 79],
seemed only to add to the confusion. As shown in figure 7.5 taken from their
paper, they found that the eigenspectra peak at azimuthal mode 1 when the
POD basis functions are found from the full velocity spectral tensor. This was
in direct contrast to the results of [32, 33], who found no significant difference
between the three-component and streamwise component decompositions for
the jet mixing layer.

There were a number of differences among the experiments which compli-
cated a direct comparison. First, the [79] jet was at much higher Reynolds exit
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function of mode number. First row, near field results, second row
2.54 cm jet with 15 hot-wire array, third row 1 cm jet with 139 hot-
wire array. From [63].
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Fig. 7.5: Azimuthal mode distribution ψ(n)(m) for POD modes n = 1 and n = 2
where ψ(n) is the fraction of energy in each azimuthal mode. From
[79], figure 14.
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Fig. 7.6: Comparison of the azimuthal mode number dependence of u-
component eigenspectra. From [79], figure 16.
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number, 380,000, compared to the [63] experiments which ranged from 40,000
to 84,700. The [80, 79] experiments used cross-wire probes in two rakes (in the
manner of [32]), and was thus not able to look at an entire cross-section simul-
taneously. The relevant cross-spectra were obtained sequentially by moving
one of the rakes azimuthally. While in principle the results of this should be
satisfactory, [45] showed that aliasing from one mode to another could occur
if the azimuthal grid was too coarse, and they illustrated this with two exper-
iments in the jet mixing layer. The earlier [80] experiment was performed on
the coarser grid, thereby leaving open the possibility that the results were grid
dependent. This concern was addressed in a subsequent experiment by [79],
which used a finer measurement grid and achieved essentially the same re-
sults. Also lending further credibility to their findings was the result shown in
figure 7.1 from their paper: they achieved the same results as the [62] and [63]
experiments when only the streamwise component of velocity was used. Even
so it was not at all clear whether lower Reynolds number jets would behave
in a similar manner, especially since the DNS results of Freund and Colonius
[75] found the snapshot POD eigenspectra to peak at azimuthal mode-2.

A major concern about the hot-wire results from all previous experiments
was whether the spatial resolution in the radial and azimuthal directions was
adequate, since all of the hot-wire experiments used a limited number of probes
(typically 6 to 13). Also, the use of hot-wires in any far jet flow is problemati-
cal because of the cross-flow and rectification errors arising the the high local
turbulence intensity. (The minimum local turbulence intensity is nearly 30%,
and away from the centerline it rises rapidly, c.f. Hussein et al.[81].) These
problems are much more severe for multi-wire probes than for single-wire
probes, c.f. [82]. High turbulence intensities also complicate the use of Taylor’s
frozen field hypothesis, which was used in at least the Glauser et al.[32, 33]
and Thomas et al.[80, 79] experiments to obtain the 〈uru

′
θ〉 cross-spectra from

the continuity equation.

7.2 The goal of the SPIV cross-plane study

The objective of the work reported herein was to attempt to establish which of
the previously reported conflicting results are correct. With the use of stereo
PIV it was thought that the following questions could be answered :

• Are similar differences between the three-component and streamwise-
only decompositions observed at Reynolds numbers below 100,000?

• Was the number of probes (or measurement locations) and lateral spa-
tial extent of the hot-wire experiments adequate to properly perform the
POD?
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• Were the previous results significantly influenced by the relatively high
turbulence intensities on the hot-wire probes?

The same jet facility as in Part I of this thesis was used. It is also the same
jet as was used by Gamard et al.[63]. Three-component velocity estimates
were obtained in cross-streamwise planes. From an ensemble of 1000 statisti-
cally independent PIV snapshots, all independent components of the Reynolds
stress tensor, Ri,j(~x, ~x

′) = 〈ui(~x, t)uj(~x
′, t)〉, which forms the POD kernel, were

estimated. In addition, the spatial resolution exceeded that possible with hot-
wire probes, and the hot-wire technique problem with high turbulence intensi-
ties was avoided. The goal was to answer all of the above stated questions. As
will be clear the use of stereo-PIV proved to be a substantial challenge.





8. CROSS-PLANE EXPERIMENTS

As was stated in the previous chapter, measuring the far jet with stereoscopic
PIV proved to be quite a challenge. In fact, two independent investigations
of the jet cross-planes have been performed. The first data set was analyzed
and reported on in Wänström[72], but upon subsequent inspection was found
to exhibit features that are incompatible with the flow under investigation,
namely lack of azimuthal symmetry in the second order velocity moments. An
extensive search for possible sources of the asymmetry was initiated. The pro-
cess and its conclusions are described in the following section, since it provides
a context for the design and execution of the second measurement campaign,
the results of which will be given in detail in the following chapter. It is also
relevant in the sense that it highlights several of the difficulties of attempt-
ing to measure free shear flows with stereoscopic PIV. Primarily, attention is
directed towards possible sources of artificial azimuthal variations due to rela-
tive misrepresentation of the in-plane fluctuation intensities. Earlier versions
of this chapter appeared as [66]. Note that in the following sections ’Cross-
plane Experiment 1’ will refer to the flawed first measurement campaign and
’Cross-plane Experiment 2’ as the subsequent attempt to improve on it. Note
that while in previous chapters the notation for the polar coordinate system
velocities were denoted as u, v, w, in this chapter the they will be referred to as
ux, ur, uθ to distinguish from the Cartesian coordinate ones.

8.1 Cross-plane Experiment 1

The same jet facility as in Part I of this thesis was used. For further details on
the facility, see section ??.

8.1.1 Stereoscopic PIV setup

The stereoscopic setup used in Experiment 1 was of the side-view type is shown
in figure 8.1.
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x/D=60, 70, 100

Cam 2Cam 1

•x

Double cavity Nd YAG laser

Fig. 8.1: Stereoscopic PIV setup for Experiment 1.

The nominal exit ReD of the jet was 17,700. The air in the tent was seeded
with glycerine droplets generated by an atomization device producing parti-
cles of 2-3 µm mean diameter. Illumination of the measurement plane was
provoded by a Continuum Surelite I-10 double-cavity Nd:YAG laser delivering
coherent 532 nm wavelength light with an energy of 150 mJ/pulse. The optical
configuration for laser sheet formation produced a light sheet of approximately
3 mm in thickness.

Two Kodak MegaPlus ES1.0 1Mpxl CCD cameras, both fitted with 60 mm
Nikkon camera lenses, were operated in dual frame single exposure mode. The
cameras were positioned relative to the laser sheet so that they viewed the
measurement plane at approximately plus and minus 30 degrees respectively.
In order to satisfy the Scheimpflug condition, both camera backplanes were
rotated relative to the respective lenses’ field of view, allowing the plane illu-
minated by the laser to be fully in focus.

The SPIV system was controlled via a Dantec FlowMap processor and a
PC operating with Dantec FlowManager 4.4 software. The software handled
the calibration image processing and data acquisition as well as subsequent
validation of the raw images. The sampling frequency was 1 Hz. The Eulerian
integral time scale can be estimated as TE = Lε/Uc where Lε = u′3/ε is the
pseudo-integral length scale. At x/D = 100, TE ≈ 0.07s, so each snapshot could
be assumed to be an independent realization.

Particle image displacements were evaluated with Dantecs Flowmanager
4.4 which provdes standard FFT-based correlation methods, including window
shifting and adaptive multi-pass interrogation. The final interrogation area
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was 32×32 pixels and the interrogation window overlap was 50%. The particle
image displacements were validated by a moving average. A mapping from the
image space to the object space was obtained by stereoscopic calibration using
the Soloff method and was estimated by the Dantec software. The resulting
common camera field of view had physical dimensions of Ly = 0.28m and Lz =
0.15m and spatial resolution was approximately ∆y = 3mm and ∆z = 6mm.

8.1.2 Single point statistics

Figure 8.2 shows contours of mean streamwise velocity at x/D = 100. The
centreline mean velocity at x/D = 100 was found to be Uc(x) = 1.72m/s and
the half-width δ1/2(x) = 0.094m, both in excellent agreement with previous
experiments from Hussein et al.[16].
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Fig. 8.2: x/D = 100Contour plot showing mean streamwise velocity.

The Cartesian velocity data was rotated to evaluate the polar coordinate
vector components and the second moments of the velocity was estimated us-
ing N = 1000 independent samples. In an axisymmetric, azimuthally homo-
geneous jet, the single-point statistics are expected to be symmetric as well.
While the out-of plane streamwise velocity component variance, 〈uxux〉, ap-
peared normal to within statistical errors, inspection of the in-plane radial
and azimuthal normal stresses, 〈urur〉 and 〈uθuθ〉, exhibit strong azimuthal
asymmetry, as seen in figures 8.3(a) and 8.3(b).

As no known disturbance to the flow itself, such as swirl, could have caused
the distortion evident in the variances, it was clearly some feature of the mea-
surement of the data that caused the errors. In fact it can be shown that the
radial and azimuthal statistics will be rotationally symmetric only if the Carte-
sian coordinate system statistics, from which they are derived, are of ellipsoids
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Fig. 8.3: Variation of the variance of the radial and azimuthal velocity com-
ponents, 〈urur〉 and 〈uθuθ〉. Both are expected to exhibit rotational
symmetry. Instead a lobed pattern is in evidence.

of equal magnitude rotated by 90◦ relative to each other. This is evident from
the following relations, where x, y, z and u, v, w denote coordinate positions and
velocity components along the out-of-plane streamwise, horizonal and vertical
axes respectively and r2 = y2 + z2, tan θ = z/y.

ux(x, r, θ) = u(x, y, z)

ur(x, r, θ) = v(x, r, θ) cos θ + w(x, r, θ) sin θ

uθ(x, r, θ) = v(x, r, θ) cos θ − w(x, r, θ) sin θ (8.1)

The corresponding rotation from polar to Cartesian coordinates is given by:

v(x, r, θ) = ur(x, r, θ) cos θ − uθ(x, r, θ) sin θ

w(x, r, θ) = uθ(x, r, θ) cos θ + ur(x, r, θ) sin θ (8.2)

It follows immediately that the in-plane second moments of velocity can be
expressed in terms of their Cartesian counterparts as

〈u2
r〉 = 〈v2〉 cos2 θ + 〈w2〉 sin2 θ + 2〈vw〉 sin θ cos θ

〈u2
θ〉 = 〈w2〉 cos2 θ + 〈v2〉 sin2 θ − 2〈vw〉 sin θ cos θ (8.3)

and since the radial and azimuthal velocities are uncorrelated, i.e., 〈uruθ〉 = 0,
the corresponding polar coordinate variances are

〈v2〉 = 〈u2
r〉 cos2 θ + 〈u2

θ〉 sin2 θ

〈w2〉 = 〈u2
θ〉 cos2 θ + 〈u2

r〉 sin2 θ (8.4)

Thus only the sum of the Cartesian in-plane single point statistics is ex-
pected to be axisymmetric, since 〈v2〉 + 〈u2

3〉 = 〈u2
r〉 + 〈u2

θ〉. Individually, the
variance of Cartesian fluctuations in a cross-plane must each be described by
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the same family of ellipsoids, where the major axis are perpendicular to the
Cartesian coordinate direction of the respective velocity component. These
constraints can be visualized by substituting the in-plane variance profiles of
Hussein et al. [16] into equation 8.4 and the result is shown in figures 8.4(a)
and 8.4(b) below.
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Fig. 8.4: Contours of the horizontal and vertical velocity variances, 〈v2〉 and
〈w2〉, in axisymmetric jet.

The in-plane Cartesian variances estimated from Experiment 1 data are
in fact not of equal magnitude, the horizontal variance 〈vv〉 being significantly
larger than the vertical 〈ww〉, see figure 8.1.2 where they are shown as ra-
dial profiles. The discrepancy is particularly obvious at zero radius, where
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Fig. 8.5: Radial profiles of in-plane Cartesian variances from Experiment 1,
which must be of equal magnitude to obtain axisymmetric polar coor-
dinate variances. ( · ) 〈vv〉,(◦) 〈ww〉.

the individual in-plane variances, in both coordinate systems, should be equal.
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Instead, the horizontal variance is about 40% larger than the vertical one.
Clearly, either the vertical velocity component is underestimated relative to
the real one, the horizontal is overestimated, or a combination of both.

One possibility is that the in-plane velocity components are spatially re-
solved unequally, due to the non-cubic interrogation window in physical co-
ordinates, and thus that the turbulent velocity are subjected to differing de-
grees of filtering. This hypothesis was tested using a simple energy spectrum
model for homogeneous isotropic turbulence, including a window function cor-
responding to the physical lengths of the PIV window. Another possibility is
that the signal noise levels are different for v and w. The presence of different
size uncertainties in the two components will show up as increased variance in
the signal, masquerading as turbulence. A third possible explanation is that
there is something fundamentally wrong about the experimental setup and
calibration of the PIV instrumentation, for example misalignment of the light
sheet relative to the jet flow and misalignment of hte calibration plane and the
laser light sheet.

8.1.3 Underestimation of vertical turbulent fluctuations due to spatial
filtering

This section will examine whether the results displayed in Figures 8.3(a) and
8.3(b) can be explained by the spatial filtering introduced by the finite inter-
rogation volume of the SPIV, and especially that fact the dimensions of the
volume are different in different directions. The filtering effect of the PIV in-
terrogation window on the turbulent velocity filed was modeled as the local av-
erage of isotropic turbulence by a volume with physical Cartesian dimensions
l1, l2, l3. As described in a previous section, spatial filtering corresponds to
multiplication of the three-dimensional turbulence spectrum by sinc2(kili/2).
The resulting filtered variances of the initially isotropic model are obtained by
integrating the filtered spectral tensor.

The computational wavenumber grid was equidistant and equal in all three
spectral space coordinate directions k̃i = kiL/keL. The grid spacing ∆k̃i =
∆k̃ = 0.5 was chosen small enough that grid independence was ensured. Trun-
cation of the wave number spectrum is inevitable, but the filtering itself causes
the spectrum to roll off faster, which increases the rate of convergence at high
wave numbers. At the maximum wave number used, k̃max = 150, the ratio
between filtered and unfiltered variances is virtually unchanged by further in-
crease in integration interval length. The values for the filtering volumes were
l1 = 3mm, l2 = 6mm and l3 = 3mm and the integral scale L in k̃i = kiL/keL
corresponds to the local longitudinal length scale at x/D = 100, which for
D = 0.01 gives L1(x) = 53mm. The von Karman/Howarth energy spectrum
model parameters were keL = 0.7468 and C = 6.2528.
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The resulting values for the spatially averaged turbulence variances are
〈v2

m〉/u2 = 0.88 〈w2
m〉/u2 = 0.87, which is a difference of about 1%. Clearly the

spatial filtering due to lack of symmetry in the interrogation volume l1, l2, 2l3
cannot account for the 40% difference in the variances of the horizontal and
vertical velocity components.

8.1.4 Overestimation of horizontal turbulent fluctuations due to noise

Figures 8.6(a) through 8.6(b) show the two-point correlations computed using
a single location near the centerline as reference. Since the spatial resolution
was approximately equal to the Taylor microscale, the value of these correla-
tions at zero lag should be nearly equal to that at the first non-zero lag. Clearly
this is not the case. This suggests that instead of representing the mean square
of the filtered velocity component, the value for zero lag represents the filtered
mean square velocity plus any noise added to it. This interpretation presumes
that any measurement errors are uncorrelated at different spatial locations, so
the noise only appears at zero lag. An example of such noise quantization noise
due to the inability to fully represent the actual value of the particle image
displacement, causing round-off errors. Inspection of the data shows that the
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Fig. 8.6: Correlation functions showing sharp peaks at zeros lag, indicative of
uncorrelated self-noise. The different levels of noise are indicated by
the slopes near zero. (a) R2,2(y, z, y, z

′), (b) R3,3(y, z, y, z
′).

added contribution to the horizontal component is substantially larger. This
section examines whether the answer lies in different levels of relative errors
of the two in-plane velocity components, and the resulting additive ‘noise’.
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8.1.5 The displacements with uniform errors

IfX1, Y1 andX2, Y2 are the image plane coordinates of cameras 1 and 2, one can
estimate the reconstructed object space displacements ∆x,∆y,∆z of the cam-
era configuration in Experiment 1 as (c.f., van Doorne and Westerweel [83]):

∆x = (−∆X1 − ∆X2)/2cos(α)∆ (8.5)
∆y = (∆X1 − ∆X2)/2sin(α) (8.6)
∆z = (∆Y1 + ∆Y2)/2 (8.7)

where the angle angle α is the angle between the field of view and the cam-
era. In the current setup the cameras are positioned α = 30◦ to either side of
the laser sheet. If one assumes that every displacement found in the image
plane is associated with a fixed uncertainty, say ε, which is the same for all
displacements in both cameras, we can express the measured displacements
as:

∆xm = (−[∆X1 + ε] − [∆X2 + ε])/2 cosα

∆ym = ([∆X1 + ε] − [∆X2 + ε])/2 sinα

∆zm = ([∆Y1 + ε] + [∆Y2 + ε])/2 (8.8)

In the absence of errors, squaring and averaging yields the mean square dis-
placements as:

〈∆x2〉 = (〈∆X2
1 〉 + 〈∆X2

2 〉 + 2〈∆X1∆X2〉)/4 cos2 α

〈∆y2〉 = (〈∆X2
1 〉 + 〈∆X2

2 〉 − 2〈∆X1∆X2〉)/4 sin2 α

〈∆z2〉 = (〈∆Y 2
1 〉 + 〈∆Y 2

2 〉 + 2〈∆Y1∆Y2〉)/4 (8.9)

If there are errors present in the displacement estimates and if these errors are
uncorrelated with both each other and the displacements, it is straightforward
to show that the mean square ‘measured’ displacements are given by:

〈∆x2
m〉 = 〈∆x2〉 + 〈ε2〉/2 cos2 α

〈∆y2
m〉 = 〈∆y2〉 + 〈ε2〉/2 sin2 α

〈∆z2
m〉 = 〈∆z2〉 + 〈ε2〉/2 (8.10)

Since the camera and laser configuration in Experiment 1 corresponds to α =
30◦, sin2 α ≈ 1/4 and cos2 α ≈ 3/4 and the relative magnitude of the errors on
the in-plane components of the displacements should be:

〈∆x2
m〉 − 〈∆x2〉

〈∆z2
m〉 − 〈∆z2〉 ≈ 2/(3/2) = 4/3

〈∆y2
m〉 − 〈∆y2〉

〈∆z2
m〉 − 〈∆z2〉 ≈ 2/(1/2) = 4 (8.11)
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Thus the mean square ‘noise’ (or quantization noise) added to the horizontal
in-plane component is 4 times that added to the vertical in-plane component.
In Experiment 1, it was estimated that the typically the displacement associ-
ated with the mean out-of-plane velocity is about 5 pixels. If the turbulence
intensity associated with the vertical velocity components is nominally 20%,
then the number of pixels associated with the rms vertical displacement is
about 2pixels. Given a sufficient number of particle image pairs in the inter-
rogation area, a particle image size of two pixels or more and an appropriate
correlation peak fitting algorithm, the rms uncertainty of the displacement
can be expected to be about 0.1 pixel, (Raffel et al.[50] and Westerweel [84])
so (〈ε2〉/2)/〈∆z2〉 ≈ ((0.1)2/2)/22. Thus the increase in the mean square 〈wm

2〉
due to the quantization (or pixel) noise can be estimated as approximately
0.125 %. Because of the geometry of the imaging system, represented by equa-
tion 8.11, this corresponds to a 0.5% contribution to 〈vm

2〉. Even with a some-
what less accurate correlation peak fit, the contribution to the mean squares is
far too small to account for the nearly 30-40 % increased value of 〈vm

2〉 relative
to 〈wm

2〉.

8.1.6 Noise from the turbulence itself

As discussed previously, the finite number of scattering particles in the inter-
rogation volume at any instant, which are used to estimate the local average
over the Eulerian turbulent velocity field, also gives rise to a kind of error in
the estimated velocity field. When the average particle image displacement
of an interrogation window is evaluated, the output is representative only of
the average of the displacements of the particles. In a turbulent flow, even if
the particles follow the flow perfectly, the continuous Eulerian velocity field is
then represented by a finite number of scattering particles. The displacements
obtained from detecting the average particle motion can be considered as a fi-
nite sample estimate of the volume average of the actual continuous velocity
field present in the interrogation volume. This estimate can be expected to
deviate from the local average since only a subset of the volume is represented
by the particles present therein, and thus an error is incurred. Intuitively, the
magnitude of this error due to sparse representation of the Eulerian velocity
should be inversely proportional to the square root of the number of particles
present in the interrogation volume. In fact, recent analysis by W.K. George
(private communication), indicates that the net effect of this representability
error on the single-point moments is to increase them relative to their spatially
filtered values by a factor proportional to the inverse of the average number of
particles Np in the volume ; i.e.

〈uiuj〉PIV =

[
1 +

1

Np

]
〈uiuj〉E,f (8.12)
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where the subscript E, f indicates the perfectly represented Eulerian velocity
field evaluated as the local average over the PIV volume, i.e., spatially filtered.
This was source of noise empirically recognized earlier by Foucaut et al. [57],
but was expressed instead in terms of interrogation volume area (which is
proportional to Np for fixed particle concentrations). In practice Np is not easy
to determine but is typically at least 10. (Foucaut et al. [57] suggest that
approximately 0.03 particles per pixel is optimal, which would correspond to 30
particles per interrogation volume for the experiment under discussion here.)
The two-point correlation of this noise can be approximated by:

〈ni(~x, t)nj(~x+ ~r, t)〉 =
1

Np
〈ui(~x, t)uj(~x+ ~r, t)〉W (~r) (8.13)

where W (~r) is the triangle function given by:

W (~r) =





(1 − |r1|
l1

)(1 − |r2|
l2

)(1 − |r3|
l3

) , |r3| ≤ l1, |r2| ≤ l2, |r3| ≤ l3

0 , otherwise

As noted earlier, this ‘turbulence’ noise manifests itself in the one-dimensional
spectrum as being of broadband with amplitude proportional to the interroga-
tion volume length times the Fourier transform of sinc-function squared.

Because of the small spatial dimensions of the interrogation volume, the
contribution from this noise source is approximately just a contribution at
|~r| ≈ 0. In fact, it is of both the magnitude and character to account for the
correlation anomalies at zero lag in figures 8.6(a) and 8.6(b). Note that the
corresponding contribution to the spectra is quite small because it is spread
over a very wide band.

Since the additive noise contribution is proportional the volume-averaged
moments themselves, this means that this noise source cannot disturb the rel-
ative balance. Thus it cannot explain the asymmetries since it cannot change
the components relative to each other. So part of the mystery is solved, the
origin of the correlation peaks, but not main question of what is causing the
asymmetries noted at the beginning of this chapter.

8.1.7 Disparity errors due to misalignment between the calibration plane
and the laser sheet

In stereo PIV there will always be a small misalignment between the calibra-
tion target plane and the actual position of the laser sheet. Since the mappings
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from the two image planes of the cameras to the common object plane is derived
from an object space defined relative to the position of the calibration target,
even small misalignment between the target plane and the laser sheet can
cause significant distortion in the reconstructed displacement field. For exam-
ple, Willert [85] cites misalignment errors of only 0.6 degrees between the laser
sheet and the calibration plane which yielded up to a 10 pixel shift between the
interrogation areas seen by the two cameras. In brief, such a misalignment
causes a particle located at the midplane of the laser sheet to be interpreted
(from the image to object mapping from the stereo calibration) as though it
were at a different position for the two cameras. While the particle image dis-
placements can be estimated accurately for each camera individually, they will
be erroneously combined in the reconstruction of the three-dimensional dis-
placement, since the reconstruction mapping associates the location of a given
point in the laser sheet plane to two different, displaced points in the calibra-
tion plane. If velocity gradients are large enough to cause a detectable change
of the velocity between these two points, a significant measurement error oc-
curs.

The effect and how to correct for it is well-understood (v. Coudert and
Schon [86], Raffel et al. [50]). However, at the time of the execution of Cross-
plane Experiment 1, the author was not aware of the problem. The magnitude
and direction of such the disparity between the calibration plane and mea-
surement plane can be estimated by cross-correlation of images from the two
cameras exposed at the same time and to which their individual mappings
have been applied. A perfect match between the laser sheet and calibration
plane should result in best correlation at zero displacement everywhere in the
common field of view of the cameras. If non-zero displacement is found the
disparity between the planes can be found and is readily corrected for by ad-
justing the calibration mappings of the cameras relative to each other.

In the case of Experiment 1, the horizontal in-plane velocity component v
will be much more sensitive to this type of error since it is constructed as the
difference between the difference between the two horizontal displacements
seen by the cameras and at the same time is much smaller than the other
horizontal component u. When cross-correlation was applied to the images of
the two cameras as described above, the disparity found was horizontal in the
camera coordinate system and varied linearly from bottom to top (from 0 to -14
pixels), corresponding to a tilt of about 1.4 degrees. This in turn corresponds
to 3-4 mm near the location corresponding to the jet center. For the camera
angles used, that would imply a 2 mm misalignment between laser sheet and
calibration plane or about half the laser sheet thickness.

The effect on the velocity measurement can be estimated by Taylor expand-
ing the velocity around a point (say at a location between that seen differently
by the two cameras): i.e., considering only a horizontal displacement varying
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in the vertical direction yields:

ui(x, y + ∆y) = ui(x, y) +
∂ui

∂y
∆y + · · · (8.14)

The increase in the apparent turbulence mean square can thus be estimated
as:

〈∆v2〉 ≈ 〈
[
∂v

∂y

]2
〉∆2 ≈ 〈v2〉2∆2

λ2
(8.15)

where λ2 is the transverse Taylor microscale. Using the estimate λ2 ≈ 0.008(x−
xo) the resulting increase in the variance of v is approximately

〈u2
2m〉 ≈ 〈v2〉

(
1 + 2

[
∆y

0.008(x− xo)

]2)
(8.16)

A horizontal misalignment ∆y of 3-4 mm at x/D = 100 (estimated virtual ori-
gin of x0 = 3D) would then yield a measured horizontal variance 30 to 50%
larger than the actual turbulent one, which is indeed on the order of the ob-
served 40%. Thus the asymmetry observed in the SPIV data of the cross plane
is very nearly entirely due to a tilt of the calibration target relative to the laser
light plane. After failed attempts to correct for the disparity it was decided to
redo the measurements, paying more close attention to the calibration proce-
dure.

8.1.8 Summary and Conclusions

The lack of axisymmetry in the single point statistics obtained with SPIV in
the far field of a turbulent round jet has been discussed in detail. The veloc-
ity moments in Cartesian coordinates were shown to be elliptical, quite un-
like those in polar coordinates which were circular. It was demonstrated that
only if the measurements in Cartesian coordinates are measured to the same
relative accuracy will the polar coordinate moments computed from them be
axisymmetric.

Velocity moment data from an initial SPIV jet experiment [72] were used
to demonstrate the problems this presents for measurement. In particular,
the vertical and horizontal velocity moments do not fulfill the requirements of
being identical ellipses but rotated 90 degrees with respect to each other. A
number of possible reasons for this were explored, among them varying de-
grees of spatial filtering, quantization noise addition, finite particle represen-
tation noise and disparity between the calibration of laser plane. Only the
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latter could be shown to incur a large enough effect on the data to cause the
asymmetries observed and is interpreted as the sources of the error. In the
time between the first and second rounds of experiment, the software provider
of the laboratory had developed a calibration correction scheme similar to the
ones described above, which was applied in the subsequent data processing. In
addition, extra care was taken during calibration, making sure that the focus
settings were not disturbed and calibrating before and after measurements.

8.2 Cross-plane Experiment 2

The jet facility used in these experiments was the same as in the streamwise
experiment and is described in section ??. Therefore only changes in the exper-
imental setup will be discussed below. The nominal exit velocity chosen was
Ue = 30.3m/s, corresponding to an exit Reynolds number of ReD = UeD/ν =
20000, where ν is the kinematic viscosity defined as ν = µ/ρ for air at standard
temperatures and pressure.

8.2.1 SPIV Setup

In order to facilitate measurements of cross-planes at several downstream lo-
cations, the SPIV configuration used in Cross-plane Experiment 2 was modi-
fied relative to that used Cross-plane Experiment 1. Both the laser and the
camera rig was mounted rigidly onto the base plate of the traverse so that the
entire unit could be traversed together, see figures 8.7(b) and 8.7(a).

Seeding particles were droplets of DEHS with an average particle diameter
was dp = 2µm. The illumination was provided by the same New Wave double-
cavity 120 mJ YAG laser. As indicated by the sketch, the laser sheet was
reflected by a mirror positioned below the jet axis and thus provided a sheet
perpendicular to it. The position of the mirror could be adjusted to allow for
variable distance L from the cameras to the laser sheet. The thickness in sheet
at the hight of the field of view of the cameras was approximately 3 mm.

Two HisSense MkII cameras were positioned horizontally and at 45◦ rel-
ative to the jet axis and laser sheet. The cameras were supported by a cross-
beam and could be shifted laterally in order to facilitate several sizes of the
field of view while maintaining the same angle to the laser light. The sensor
dimensions of the cameras were 1280 pixels by 1024 pixels and the pixel pitch
was 6.5µm. The senors were rotated to for as large as vertical field of view as
possible. In the three data sets presented here, efforts were made to maintain
the same distance L from the jet nozzle to the camera rig cross-beam. This was
done in order to keep any blockage of the flow constant in the three cases and
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(a) Side view.

(b) Top view.

Fig. 8.7: Sketch of experimental setup in Cross-plane Experiment 2.

was facilitated by using lenses with different focal lengths while adjusting the
distance A from the camera sensor to the laser sheet by changing the distance
B from the camera to the jet axis and the distance L. The downstream loca-
tions of the measured cross-planes were x/D = 31, 46 and 71 respectively and
were chosen to since the focal lengths of the lenses available were f = 35, 60
mm. The 35 mm lens was used to evaluate the cross-plane at x/D = 71, the
60 mm lens for x/D = 46 and with the use of teleconverters, the focal length
was doubled to f = 120mm at x/D=31. Since the length scales of hte jet grows
linearly, the relative resolution of the three data set are held approximately
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constant. It should be noted that for the most downstream location, x/D = 71,
the position of the mirror could not be adjusted enough to correspond to view-
ing angles of 45◦ so the viewing angles were decreased to 41◦. This decreased
the aspect ratio of this data set relative to the other two.

In order to be able to correct for the inevitable disparity between the cali-
bration target plane and the light sheet, careful calibrations were made with
displacements in the out-of-plane direction that spanned ± 10 laser sheet
thicknesses. The calibration target was a white plane with black dots that
could be fixed to the flow generating box at the time of calibrations. By travers-
ing the entire camera/laser/mirror unit until the laser light intersected the
calibration target the relative angles could be maintained. The calibration cor-
rection supplied by the Dantec software Dynamic studio was used to find the
disparity between the camera mappings and correct for them. It should be
noted that the method used assumes that the light sheets given by the two
laser pulses overlap completely and if they do not an error will be incurred.
Therefor no attempt to shift the laser pulses relative to each other was made.
This could otherwise have been used to increase the dynamic range of the mea-
surements, which is constrained by the large out-of-plane velocity component.
Instead, particle drop-out was minimized by shrinking the time between pulses
∆t at the different downstream locations.

The sampling frequency was 3 Hz, which allowed for independent sam-
ples at all downstream locations. A total of N = 1000 samples were acquired
at each downstream location. Once acquired, the particle images were eval-
uated with the Dynamic Studio software. The interrogation window size was
64 pixels × 64 pixels for all downstream locations. With 50 % of interrogation
windows were and the particle image displacements were estimated with a
standard FFT-based multi-pass interrogation with window shifting and mov-
ing median validation. Spurious vectors were replaced with the local mean
of the surrounding displacements. Sub-pixel accuracy was obtained with the
’High-Accuracy’ setting in Dynamic Studio, which is believed to based on a
centrioding method. The apertures were adjusted to give particle image diam-
eters of 2 pixels in each camera. After the individual planar PIV processing,
the three-component displacements were found by stereoscopic reconstruction
based on a pin-hole model. Table 8.1 summarizes the output for the three
downstream locations. It should be noted that the spatial resolution obtained
with the 64 × 64 pixel interrogation area is quite low, and thus the filter-
ing of the PIV volumes, following the reasoning presented earlier, should be
quite sever. This is confirmed in the variances estimated in the following sec-
tion. The choice of the present interrogation window dimension was dictated
by time constraints on the part of the author. Any future work with the present
database will be performed with a smaller interrogation window size.
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x/D f [mm] Ly[mm] Lz[mm] ly[mm] lz[mm] M Ny ×Nz

31 120 107 105 3.9 2.7 0.085 29 × 40
46 70 186 183 6.2 4.7 0.049 29 × 40
71 35 273 290 11.4 7.2 0.039 25 × 41

Tab. 8.1: Fields of view and resolution for SPIV output.

8.2.2 Single Point Statistics

In order to define the polar coordinate system, the deviation of the data coor-
dinate system from that defined by the jet flow mean centerline velocity must
be corrected for, i.e., r = ((y − yo)

2 + (z − zo)
2), θ = atan((z − zo)/(y − yo))

where yo, zo is due to the filed of view being imperfectly centered around the
jet axis. The in-plane origin shift, along with the local centerline velocity Uc(x)
and half-width δ1/2(x), was found from non-linear least square optimization of
the mean streamwise velocity relative to a

Ufit = Uc(x)sech
2

[
c
((y − yo)

2 + (z − zo)
2)1/2

δ1/2(x)

]
(8.17)

for each cross-plane data set individually. The results of the optimization is
shown in table 8.2.

x/D Uc[m/s] δ1/2[mm] yo [mm] zo [mm]
31 5.9 26.9 -8.8 -8.1
46 3.7 42.1 -7.6 -6.6
71 2.4 65.9 -2.8 -5.1

Tab. 8.2: Scaling parameters, Uc(x) and δ1/2(x), and origin shift found from
optimization.

Figure 8.8(a) shows the inverse of the variation of the centerline velocity,
the variation of the half-width and figure 8.8(b) shows the square of their prod-
uct, normalized by the value at x/D =31.

The radial profiles of the mean streamwise velocity are presented in single-
point similarity variables, where it is also compared with the curve-fit of the
LDA measurements of Hussein et al. [16] from a much larger ReD. The col-
lapse of the SPIV profiles is excellent. The profiles do not quite resemble that
of [16], but this can be attributed to the difference in ReD.
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Fig. 8.8: Figure (a) shows the downstream variation of the inverse of the cen-
terline velocity (∗) Uc(x)

−1 and half-width (◦). Figure (b) shows the
product U2

c δ
2, which should be constant in a momentum conserving

flow, normalized by the value at x/D = 31. The decline of this curve
indicates a slight momentum loss, possibly due to the blockage of the
camera rig cross bar.

The normal stresses in polar coordinates are shown in figure 8.2.2. Clearly,
the effect of the filtering of the PIV interrogation window is significant,since
it removes about 40% of the available variance from the velocity components.
This is consistent with the modeling of the analysis presented earlier, and also
with previous work by the author, [44], where the local spatial resolution was
similar. Since this amount of filtering is not optimal for the subsequent analy-
sis, it should be considered a preliminary result.

As it appears that the disparity errors have been handles by the calibra-
tion correction, the azimuthal asymmetries in the polar coordinate variances
observed in Cross-plane Experiment 1 should be missing from the ones pro-
duced in the subsequent Cross-plane Experiment 2 data. Figure 8.2.2 shows
contours of the radial and azimuthal variances. While some azimuthal vari-
ation is still exhibited, it is not at all as significant as in the previous experi-
ment with large disparity errors and it appears that the asymmetry has been
largely avoided in two two first downstream cross-planes. Surprisingly, the
data form x/D=71 shows an axisymmetric distribution of radial variance, but
the azimuthal variance has a distinct lobed pattern. At the present time, no
explanation can be given for this discrepancy.
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Fig. 8.9: Radial profile of the mean steamwise velocity in similarity coordi-
nates, U/Uc. Red symbols corresponding to x/D =31, blue to x/D =46
and green to x/D =71. Solid line indicates the profile of [16].

130



8. CROSS-PLANE EXPERIMENTS

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

η

U
/U

c

(a) 〈u2
x〉/U2

c

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

η
U

/U
c

(b) 〈u2
r〉/U2

c

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

η

U
/U

c

(c) 〈u2
θ〉/U2

c
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Fig. 8.11: Contours of the variances of the radial and azimuthal velocity. Left
column is the radial variances and right column the azimuthal ones.
Rows, from top to bottom, correspond to the downstream locations
x/D=31, 46 and 71 respectively.
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DATA

Velocity data sampled at the three downstream positions x/D = 31, 46, 71 were
scaled by the local mean velocity Uc(x) and the radial positions scaled by the
local half-width δ1/2(x). Then the velocity components were interpolated onto
a polar coordinate grid with a cubic interpolation scheme. The extent and
resolution of the grid is listed in table 9.1.

The purpose of the dense grid is to be able to facilitate grid sensitivity
with respect to changes both in radial resolution and extent and azimuthal
extent of the combined Fourier and POD analysis. However, at the time of the
measurement campaign, the importance of the radial domain extent was not
fully appreciated appreciated. In hindsight, it is clear that radial extent of the
data set is vital to the output of the POD analysis. The reason for this is that
in order to uniquely determine the radial eigenvectors of the covariance of the
flow, the magnitude of turbulence kinetic energy integrand must be zero at the
outer radial boundary point ηb, that is ηb〈υi(ηb)υi(ηb)〉 = 0. From previous work
on the current jet facility by both Gamard et al. [8] and the author herself
[44], it is clear that this occurs at ηb = 3, i.e., at three jet half-widths from
the centerline. In fact, the effect of partial radial domain extent was directly
studied by Gamard et al. by comparing the the results of their analysis from
a case of η = 1 and one of η = 4.3. The conclusion was that the peaks in the
spectral spaces and the POD space shifted when the coverage was low - clearly
indicating that the analysis is not robust with respect to the choice of domain.
However, no direct conclusions regarding the general coverage requirements
were drawn in Gamard et al., since their comparison test was unable to isolate
the radial extent factor from the radial and azimuthal resolution of the flow
field. In fact, beside this one test case, none of the measurements presented in
Gamard et al. extend beyond η = 1.5, and neither do the results of Iqbal and
Thomas [71].
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x/D ηa ηb Nη ∆η Nθ ∆θ

31.0 0 1.70 36 0.05 129 2.7
46 0 1.90 38 0.05 129 2.7

71.0 0 1.85 37 0.05 129 2.7

Tab. 9.1: Equidistant polar grids for the three downstream locations.

9.1 Two-point cross velocity Fourier coefficients

The the coefficients of the azimuthal Fourier series expansion of the two-point
velocity correlation tensor function Ri,j(η, η

′,∆θ), B(m)
i,j (η, η′), was estimated as

the finite sample ensemble average of the Fourier series coefficients of the az-
imuthal variation of the instantaneous fluctuating velocity components υi(η, θ) =
ui(η, θ)/Uc(x). These Fourier coefficients were evaluated with an FFT algo-
rithm corresponding to

υ̂
(m)
i (ηq , xs, tk) =

1

2π

P−1∑

P=0

υi(ηq , θp, xs, tk)e−imθp∆θ (9.1)

where θp = −π + p∆θ, ∆θ = 2π/(Nθ − 1), p = 0, 1, 2, . . . , P − 1 and m =
0,±1,±2, .... The standard notation of for Fourier series coefficients has been
modified in order to facilitate the velocity vector index notation. ThusB(m)

i,j (η, η′, x)
is estimated as

B
(m)
i,jN (ηp, ηq , xs) =

1

N

N∑

k=1

υ̂
(m)∗
i (ηp, xs, tk)υ̂

(m)
j (ηq , xs, tk) (9.2)

where subscript ‘s’ indicates the different measurements planes and ‘k’ the in-
dependent samples. Note that as the velocity field is by definition 2π-periodic
in θ, no unlike the streamwise spectral analysis in the preceding chapter, the
no spectral leakage will incurred by a finite azimuthal window (unless only a
partial domain is used). In addition, aliasing should be minimal, since the PIV
was done with 50% overlap of the interrogation windows and the streamwise
variation of velocity was is completely suppressed by averaging over all par-
ticle variation in that direction. As in the streamwise experiments case, the
velocity data has been filtered (the relative amount should be the same for all
data sets) and noise as consequence of measuring with PIV. There is also the
possibility of introducing error via the calibration procedure and stereoscopic
imaging. This was commented on in the previous section. In addition, there is
the effect of slight momentum loss described in section 8.2.2. However, as the
velocities of the three data sets are scaled by the local mean centerline velocity,
this difference should also be suppressed in a comparison of the data analysis
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results. In fact, the only quantitative difference is the slightly varying radial
coverage.

9.2 Fourier coefficients of the two-point correlation

While the primary reason for obtaining the Fourier series expansion of the
azimuthally homogeneous and periodic two-point similarity scaled correlation
tensor, B(m)

i,j (η, η′), is that it facilitates the subsequent POD decomposition, it
also has it’s own theoretical merits. As has been explained in the previous sec-
tion, a somewhat heated debate regarding the turbulence kinetic energy man-
ifestation of particular Fourier modes have been on-going in the community.
The argument has been centered on the primacy of azimuthal Fourier mode
m = 1 versus m = 2. The hypothesis underlying the argumentation is that
there should be one azimuthal mode that dominates distribution of turbulent
kinetic energy and that it does so because it has access to the energy source
of the flow, i.e., it is able to extract turbulent kinetic energy form the radial
mean flow gradient. The remainder of the modes are then expected to receive
their energy through some cascade of turbulent kinetic energy within the basis.
However, it can be shown experimentally that several azimuthal modes exhibit
the necessary property for tapping into the mean flow kinetic energy, namely
significant levels of the primary Reynolds shear stress 〈B(m)

1,2 (η, η)〉. Such ev-
idence is presented in figures 9.1(a) through 9.3(c), which also show the dis-
tributions of the Fourier coefficients three normal Reynolds stresses over the
radial domain and azimuthal mode number 0 ≤ m ≤ 24. Note that only the
real parts are presented. The normal stresses are real due to their symmetric
correlation functions and the imaginary part of the shear stress is very small.

From the figures one could draw the conclusion that there are several low
order azimuthal modes that should have access to the turbulent kinetic energy
source. Thus they are active participants in any energy cascade and not simply
passive receivers of energy passed by some single predominant energy-dense
mode. From this perspective the arguments about the energy dominance of a
particular modes appears obsolete. This will be substantiated with the POD
analysis in the following chapter.
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Fig. 9.1: Radial variation B
(m)
i,j (η, η), the Fourier coefficients of azimuthal se-

ries expansion of the two-point Reynold stress tensor, evalauted at
η = η′ and presented on mode number axis. (a) B(m)

1,1 , (b) B(m)
2,2 , (c)

B
(m)
3,3 , (d) < B

(m)
1,2 . Streamwise position is x/D = 31.
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Fig. 9.2: Radial variation of B(m)
i,j (η, η), the Fourier coefficients of azimuthal

series expansion of the two-point Reynold stress tensor evalauted at
η = η′ and presented on mode number axis. (a) B(m)

1,1 , (b) B(m)
2,2 , (c)

B
(m)
3,3 , (d) < B

(m)
1,2 . Streamwise position is x/D = 46.
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Fig. 9.3: Radial variation of B(m)
i,j (η, η), the Fourier coefficients of azimuthal

series expansion of the two-point Reynold stress tensor evalauted at
η = η′ and presented on mode number axis. (a) B(m)

1,1 , (b) B(m)
2,2 , (c)

B
(m)
3,3 , (d) < B

(m)
1,2 . Streamwise position is x/D = 71.
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10.1 POD Implementation

The Fourier coefficients of the correlation tensor function is then formed as:

B
(m)
i,j (ηp, ηq) = 〈υ(m)∗

i (ηp)υ
(m)
j (ηq)〉 (10.1)

and a basis of mutually orthogonal radial modes was found for each azimuthal
Fourier modes by solving the discrete version of the POD integral equation

∫ ∞

0

B
(m)
i,j (η, η′)η′φ(m,n)

j (η′)dη′ = λm,nφ
(m,n)
i (η) (10.2)

where the integer mode number azimuthal dependence is indicated by m. Sim-
ilarly to the procedure outlined in the previous chapter on streamwise planar
PIV experiement, the radial basis functions were found by solving the matrix
corresponding to B̃

(m)
i,j (η, η′) = η1/2η′1/2B

(m)
i,j (η, η′) for the data sets from the

three downstream positions x/D = 31, 46 and 71. The major difference com-
pared to the previously implemented case is that the stereoscopic PIV setup
allows for all elements of the set of eigenvectors to be estimated. This induces
the matrix solver to obtain a set of 3P orthogonal eigenvectors, where P is the
number of radial grid points. However, as was also the case in the streamwise
experiment, the full radial extent of the jet was not covered by the field of view.
As will be shown later, this affects the eigenvalue spectra that are obtained.

10.1.1 Eigenspectra

As in the analysis of the streamwise experiment, the distribution of the eigen-
values of the POD matrices are shown in figure 10.1.1. Only the subset of
positive series expansion mode numbers are presented, the distribution be-
ing hermitian symmetric in m. In comparison with the eigenspectra of the
streamwise wavenumber distribution POD analysis, figure ?? in chapter 6,
the azimuthal series expansion distribution appears to be more compact, with
more of the available spectral density in the lower modes. From this represen-
tation, the distributions also appear to be unchanging in steamwise location
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x/D, which is consistent with the similarity theory of the far jet. In order to
evaluate the convergence rate of the POD expansion, the partial sums of the
eigenvalues can be inspected.

The energy of the Fourier expanded cross-plane fields are, in the continu-
ous case,

∫ ∞

0

〈υi(η)υi(η)〉ηdη =

∫ ∞

0

dη

∞∑

m=−∞
ηB

(m)
i,i (η, η)

=

∞∑

m=−∞

∞∑

n=1

λm,n

∫ ∞

0

φ
(m,n)∗
i (η)φ

(m,n)
i (η)ηdη

=

∞∑

m=−∞

∞∑

n=1

λm,n (10.3)

In the the current discrete case this double infinite sum over of POD eigenval-
ues λm,n is a finite double sum and the total energy represented in the field
is:

E = ∆η

P∑

p=0

〈υi(ηp, xs)υi(ηp, xs)〉ηp =

M∑

m=−M

3P∑

n=1

λm,n (10.4)

so that the relative energy per radial POD mode and azimuthal Fourier mode
is simply λm,n/E .

The rate of convergence of the POD expansion 10.2 can be evaluated by
the slope of a partial sum over the mode numbers: the steeper the the slope
of the curve formed by the partial sum, the less POD modes must be retained
in order to represent the spectral density at a given azimuthal mode number.
Defining a partial sum over POD mode numbers per Fourier mode number as :

Λm,N =

N∑

n=1

λm,n (10.5)

the rate at which each POD expansion converges to the relative spectral den-
sity is

χm,N =
λm,N

E (10.6)

Figures 10.2(a) through 10.2(c) show such distributions on linear axes for the
three downstream cross-plane locations and it appears that the convergence
rate of the radial expansion decays with azimuthal mode number.

In order to highlight the variation in convergence rates at different Fourier
modes and downstream location, the ratio of the eigenvalue magnitude relative
to the spectral density per azimuthal Fourier mode number can be formed as:

γm,n =
λm,n

Λm,3P
(10.7)
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Fig. 10.1: Distribution of the radial POD eigenvalues λm,n over POD mode
number n over azimuthal mode number m. (a) x/D = 31, linear
axes, (b) x/D = 31, logarithmic axes, (c) x/D = 46, linear axes, (d)
x/D = 46, logarithmic axes, (c) x/D = 71, linear axes, (f) x/D = 71,
logarithmic axes.
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Fig. 10.2: Distribution of χm,N , the partial sums over POD mode number n
per azimuthal mode number m normalized by the total energy of the
field. (a) x/D = 31, (b) x/D = 46, (c) x/D = 46.
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Evaluating Γm,N , the partial sum over γm,n as:

Γm,N =

N∑

n=1

γm,n =
Λm,N

Λm,3P
(10.8)

The relative rate of convergence of the POD expansion per Fourier mode num-
ber is visualized in figures 10.3(a) through 10.3(c).
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Fig. 10.3: Distributions of Γm,N , the partial sums of the POD eigenvalues nor-
malized by the total spectral density available at each azimuthal
Fourier modes m.

From the slopes of the distributions of Γm,N is evident that the convergence
rate of the POD modes do decay with azimuthal mode number, so that less and
less of the available spectral density in each Fourier mode is captured by the
same number of POD modes. However, the decay in convergence rate is not
as drastic at that found in the streamwise analysis, see figure 6.3. Also, the
changing character of the distribution noted in figure 6.3 and attributed to the
PIV filtering of the streamwise spectra is not present in the azimuthal Fourier
expansion. Since it is obvious that the SPIV data is heavily filtered, it can
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perhaps indicates that it is the varying degree of filtering in the streamwise
experiment that causes the problem.

Lastly, the customary graphs that show the azimuthal mode variation of
the magnitude of the first POD mode eigenvalue relative to the total energy
presented in figures 10.9(d) through 10.4(c) together with an indication of the
sum of all POD eigenvalues. Note that this corresponds to distributions of χm,1

and χm,3P as defined earlier. If one chooses to consider only the first and largest
POD mode, it is clear that the azimuthal modes 1 and 2 are very close. As
indicated by the figures, the total sum of the POD modes per azimuthal mode
number compared to the total available energy is peaks at azimuthal mode 1,
which would substantiate the results of Thomas and Iqbal [79].. Again, the
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Fig. 10.4: Distributions of χm,1, the first POD mode eigenvalues normalized
by the total energy in the field and varying over azimuthal Fourier
mode number m. The symbols (∗) indicate the values of χm,2P , the
ratio of energy represented by all the POD modes relative to the total
energy.

high dimensionality of the jet turbulence is confirmed by the distribution of
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the total energy over the POD and Fourier modes.

10.1.2 Eigenvectors

The number of eigenvectors produced by the POD matrix decomposition is 3P
= 105 per azimuthal Fourier mode m. Figures 10.6(a) and 10.6(b) show the
variation over POD mode number n of the real parts of the 0th order Fourier
mode eigenvectors φ(0,n)

i (η) for 1 ≤ n ≤ 16. As in the streamwise case, the
sequency of the POD eigenvectors increase with the POD mode number n and
resemble tapered Fourier modes. From close inspection of the component-to-
compopenent variation oft he eigenvectors it seems that there is a tendency of
their magnitude to alternate, so that when one vector component is large, the
other two are small. Also, for azimuthal mode numbers m > 20, the values of
the vectors at the radial position closest to the origin blow up. The cause for
this is currently not known.

In order to compare the POD decompositions for the three cross-planes,
figures 10.7(a) through 10.7(f) shows, for all three cross-planes, the three eigen-
vector components of the first and second order POD mode for azimuthal Fourier
mode m = 0. The subsequent figures 10.8(a) through 10.8(f) show the same
POD modes for azimuthal mode m = 1.

10.1.3 Grid radial extent sensitivity study

It has been noted previously by Gamard et al[8] that the degree to which the
measurement covered the radial extent of the jet influences the eigenspectra.
In order to investigate this aspect of the POD decomposition, the radial extent
of the data sampled at x/D = 46 was reduced from η = 1.9 to 1.8, 1.6, 1,4 and
1.2 respectively. It should be noted that the results of Thomas and Iqbal[79],
part of which are which are presented in figure 7.5, indicate strongly that the
energy relative energy distribution between azimuthal modes 1 and 2 shift
towards mode 1 as the flow develops downstream. However, their radial extent
was shrinking as the probe rig moved moved downstream. Already at their
x/D = 8 location, the radial extent is no more than η = 1.2. The figures below
show the effect of on POD mode 1 and 2 as functions of azimuthal mode number
for the different radial extents.

Clearly the results of the analysis is sensitive to the radial coverage. This
makes sense, since the inner product on which the POD is based gets worse
and worse approximated as the radial extent decreases. This brings to the
question also the data sampled in this study, since none of the data presented
here actually covers the jet beyond η = 1.9. Still, from the perspective of the far
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jet, one must ask oneself what the gain in attempting to determine what mode
is more dominant - clearly a whole spectrum of modes is required to represent
the turbulence in the far jet.
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11. SUMMARY AND CONCLUSIONS

11.1 The experiments

Two experiments were carried out in fully-developed flow downstream of a 10
cm top-hat jet at exit Reynolds number of 20,000. The jet was operated in air
at a nominal exit velocity of 30 m/s. The primary interest of both experiments
was in the scales of the turbulence that produce the Reynolds shear stress
and which contain most of the turbulence energy. The value of the Reynolds
number was chosen to be near the minimum for which one could expect the
characteristics of high Reynolds number jets to be manifested. The most im-
portant of these was to insure the existence of a spectral gap between the small
dissipative scales and those containing most of the energy and producing the
Reynolds shear stress. The similarity of the single point statistics to earlier
measurements at much higher Reynolds number, as well as the limited in-
ertial subrange in the spectral measurements themselves, suggest that the
flow indeed satisfied this requirement. The scale of the experiment was also
the smallest in air that was consistent with being able to resolve the physical
scales of interest and for which the scattering particles could be assumed to
follow the flow to at least the time scales of interest.

The streamwise experiment used two-component PIV to examine the en-
tire flow field simultaneously in the x−r-radial plane from 30 ≤ x/D ≤ 95. The
cross-stream experiment used stereo PIV to examine the flow in cross-sectional
(r − θ)-planes at three downstream distance. Both experiments exploited the
single and two-point equilibrium similarity theory of [7] and [11], and provided
independent experimental confirmation of it.

11.2 The measurement difficulties

A considerable effort was made in both experiments to understand the sources
of error and noise arising from the PIV itself. These problems are intrinsic
to any instrument, but exacerbated in these experiments because of the large
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physical extent of the flow that had to measured simultaneously: 0.4m× 0.7m
in the streamwise experiment and 0.4m×0.4m in the cross-stream experiment.
Also complicating measurement was the large dynamic range of velocities that
had to be measured simultaneously. In spite of the difficulties, the success
of the measurements makes clear the unique value of such an instrument:
the ability to look at large scale experimentally realized exact solutions of the
Navier-Stokes equations.

The major adverse effect on the second moment and spectral measure-
ments was the spatial filtering from the finite interrogation volume. This prob-
lem was analyzed using the established methodologies for spatial filtering, and
estimated to have reduced the turbulence intensities by approximately 10-15
%. The effect on the spectrum was obvious, and caused a sharp departure from
the inertial subrange behavior at wavenumbers corresponding to the inverse of
the interrogation volume dimension. Since the effect was primarily to remove
the small scales by averaging them out, it did not affect the measurements (or
inferences from them) at the wavenumbers and scales of interest.

Of the many sources of error considered, two dominated. The first was a
consequence of bad experimental practice and inexperience (but corrected for
the final measurements with great effort); namely, the disparity errors which
very much contaminated our early attempts at SPIV. These errors result when
the calibration plane and the light plane are not perfectly aligned. These ‘reg-
istration errors’ were well-understood by the PIV community, but were initially
discounted as not being important for measurement of the large scales of our
experiments since the mean flow gradients were small. Nothing could have
been further from the truth. In fact, as argued in chapter 8.1.7, the higher the
Reynolds number, the smaller the Taylor microscale relative to the misalign-
ment (for fixed large scales), and the more critical the alignment becomes. The
Taylor microscale enters since it measures the fluctuating velocity gradients
in the flow. Such errors were easily spotted in the jet measurements because
they introduced asymmetries into what should have been azimuthally sym-
metric contour plots.

The second source of source of error was the noise arising from the fact
that each PIV realization is based on a relatively small number of individual
scattering particles, typically 10 to 30. This source of noise had also been pre-
viously recognized by the PIV community, but was overlooked by us (in part
because the observations were reported as an interrogation area dependence
instead of number of particles and we did not see the significance). The net
effect is to increase the turbulence moments by a factor of (1 + 1/Np), and add
a broadband spectrum proportional to Fourier transform of the interrogation
window function squared (i.e., sinc-squared) times the interrogation volume
dimension. In our experiments the contribution to the mean square velocity
from this source was estimated to be approximately 3-5 percent, but fortu-
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nately spread over a very large band so its contribution to the spectra (and
cross-spectra) was negligible.

In part the problems encountered were a consequence of inexperience. But
in part they must also be attributed to the unique nature of these jet investiga-
tions. Much of the focus in PIV books and meetings is on improving the signal
processing to provide more accurate velocity determination. As a result our
focus was entirely on things that, while important, were simply overwhelmed
by other considerations intrinsic to the device. The nuances in performance
from different algorithms were simply buried by the large and poorly resolved
fields-of-view with which we were forced to work to investigate a flow that was
interesting. That these experiments succeeded in spite of the difficulties can
largely be attributed to effective use of statistics and flow theory - and very
large statistical ensembles. In many ways, this may be a harbinger of the fu-
ture of PIV, at least in applications, since if application of the PIV is restricted
to only small experiments at relatively low Reynolds number that can be mea-
sured to great accuracy, then it can only provide a fraction of the information
available at the same Reynolds numbers with a DNS.

11.3 Insights into flow scaling

As noted above, both experiments, especially the streamwise one, provided
strong support for the equilibrium similarity theory of [? ? ], and as well
for the extension to two-point similarity by [6? ]. The thesis carried those
ideas one large step forward by exploring the consequences for instantaneous
velocity fields, in particular the re-mapping of the velocity field by the local
mean centerline velocity, normalizing the radial coordinate by the local half-
width, and stretching the streamwise axis logarithmically. From all observable
quantities the velocity field was effectively homogeneous in the streamwise
direction.

While such a mapping may seem a great leap of faith it follows naturally
from the fact that the original (in this case mapped field) can be recovered from
its POD and Fourier modes. These modes can be entirely determined from
second-order quantities. So if these satisfy equilibrium similarity conditions,
then so must reconstructions based on them. In fact, it is possible to show by
a simple scale analysis that the instantaneous equations for a fully developed,
axisymmetric jet are also scale invariant. Moreover, this applies to all of the
terms in the equations, including the neglected terms in a first or second-order
boundary layer-type analysis. This means that the flow at any cross-section,
if scaled up or down, also represents a possible realization of the flow at any
upstream or downstream position. It is not entirely clear at the present time
what the implications of this may be, but they might be profound.
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All of the above depended crucially on the fact that as consequence of con-
servation of momentum in the axisymmetric jet, [Ucδ1/2]

2 = constant once the
flow becomes fully-developed (typically x/D ≥ 30). Hence the local Reynolds
number for the turbulent jet, Ucδ1/2/ν is also constant. This means that all
of the turbulence length and time scales, no matter how defined and from in-
tegral scale to Kolmogorov microscale, maintain the same ratio as the flow
develops downstream. Only one other flow, the plane wake appears to share
this property.

11.4 Insights into how the jet sustains itself

An extensive decomposition of cross-stream planes was carried out using Fourier
series and slice-POD decompositions. Previous experiments have had to de-
pend on measurements with rakes of individual probes. These have, of ne-
cessity, been limited in number by the physical constraints of how many can
be squeezed into a given space without blocking the flow, and as well by the
sheer difficulty of operating them (139 is the record for a jet investigation).
For example, the smallest angle for azimuthal correlation separations is typ-
ically 7.5 deg and often more. (For the PIV experiments here it was 1.5 deg.)
Also these previous investigations have had to depend on heuristic arguments
more than experiment to determine parameters like spatial extent and probe
density. Moreover most probes (especially hot-wires) are operating well beyond
their comfort level in jets, where the local minimum turbulence intensity is 25
% at the centerline and rises rapidly with increasing radius from it. Finally, it
was virtually impossible to adjust the fixed probe rakes to the growing shear
layer, so for each position a different spatial discretization was realized, and a
different largest dimension.

For the PIV experiments reported herein, the domain and discretization
were adjusted to the local domain size. Moreover, the effective number of
probes was equal to the number of overlapping interrogation volumes, the
overlap minimizing aliasing. As a consequence, not only was the field better
resolved, it was possible to investigate the effect of changing the domain and
discretization. Not surprisingly, some of the results proved to be quite sensi-
tive, and it was possible to resolve a number of outstanding issue and explain
the reason why different investigators saw what they reported. Of particular
interest was whether the azimuthal decomposition of the jet peaked at mode-1
or mode 2. It appears that mode-2 wins by a very small amount, and any sig-
nificant reduction in radial extent of the field tips the balance the other way.

This issue has been of historical importance only because of the attempt to
create simplistic views of turbulence based on linear (or non-linear) stability
theories. Of far greater importance to the field than mode-1 versus mode-2 and
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to the future theories was the observation that there is a virtual continuum of
modes, a spectrum of them if you will. Moveover, it was possible to show that
each of these modes has Reynolds shear stress that it is in direct proportion to
its energy. This means that each mode is directly receiving a significant (and
relatively equal) percentage of its energy directly from the mean flow! Since
this balance is maintained (by similarity) for all downstream positions, does
this means that the non-linear energy transfer has effectively shut-down, or at
least makes no net contribution? This question appears to be quite profound,
and gets the core of what it means for a flow to have achieved an equilibrium
similarity state. A consequence of this is that perhaps linear theories might
indeed be able to predict after all how each mode receives its energy, consistent
with the suggestion of Morris et al.[87] many years ago.
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APPENDIX





A. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN
CYLINDRICAL COORDINATES

Assuming a incompressible flow in a Newtonian fluid medium, conservation of
mass for a fluid volume element requires that

∂ρ

∂t
+ ∇ · (ρũ) = 0 (A.1)

ρ = ρo ⇒ ∇ · ũ = 0 (A.2)

Conservation of momentum for a fluid volume element requires that

∂ũ

∂t
+ ũ · ∇ũ = − 1

ρo
∇p+ ν∇2ũ (A.3)

Expression the differential operators in cylindrical coordinates one obtains
the following set of four equations that governs the fluid motion :

∂ux

∂x
+

1

r

∂

∂r
rur +

1

r

∂uθ

∂θ
= 0 (A.4)

∂ux

∂t
+ ũ · ∇ux = − 1

ρo

∂p

∂x
+ ν∇2ux (A.5)

∂ur

∂t
+ ũ · ∇ur −

u2
θ

r
= − 1

ρo

∂p

∂r
+ ν(∇2ur −

uθ

r2
− 2∂uθ

r2∂θ
) (A.6)

∂uθ

∂t
+ ũ · ∇uθ +

uruθ

r
= − 1

rρo

∂p

∂θ
+ ν(∇2uθ +

2∂uθ

r2∂θ
− uθ

r2
) (A.7)

Reynolds decomposition separates the steady mean parts of the fluid ve-
locity and expresses the turbulence as a fluctuation relative to the mean, i.e.,
~u′ = ~U + ~u . The continuity equation becomes:

∂Ux

∂x
+

1

r

∂

∂r
rUr +

1

r

∂Uθ

∂θ
= 0 (A.8)

∂ux

∂x
+

1

r

∂

∂r
rur +

1

r

∂uθ

∂θ
= 0 (A.9)



A. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN
CYLINDRICAL COORDINATES

The mean momentum conservation equations are: ’

∂Ux

∂t
+ Ũ · ∇Ux + 〈ũ · ∇ux〉 =

−1

ρ

∂P

∂x
+ ν∇2Ux (A.10)

∂Ur

∂t
+ Ũ · ∇Ur + 〈ũ · ∇ur〉 −

U2
θ

r
− 〈u2

θ〉
r

=

−1

ρ

∂P

∂r
+ ν(∇2Ur −

Uθ

r2
− 2∂Uθ

r2∂θ
) (A.11)

∂Uθ

∂t
+ Ũ · ∇Uθ + 〈ũ · ∇uθ〉 +

UrUθ

r
+

〈uruθ〉
r

=

− 1

rρ

∂P

∂θ
+ ν(∇2Uθ +

2∂Uθ

r2∂θ
− Uθ

r2
) (A.12)

Due to azimuthal homogeneity all terms involving ∂
∂θ drop out and no swirl

causes all terms explicit in Uθ to be zero. Stationarity causes time derivatives
of mean quantities to be zero.

Continuity eqns:

∂Ux

∂x
+

1

r

∂

∂r
rUr = 0 (A.13)

∂ux

∂x
+

1

r

∂

∂r
rur +

1

r

∂uθ

∂θ
= 0 (A.14)

Mean momentum conservation equations:

Ux
∂Ux

∂x
+ Ur

∂Ux

∂r
+ 〈ũ · ∇ux〉 = −1

ρ

∂P

∂x
+ ν∇2Ux (A.15)

Ux
∂Ur

∂x
+ Ur

∂Ur

∂r
+ 〈ũ · ∇ur〉 −

〈u2
θ〉
r

= −1

ρ

∂P

∂r
+ ν∇2Ur (A.16)

〈ũ · ∇uθ〉 +
〈uruθ〉
r

= 0 (A.17)
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B. SPECTRAL ANALYSIS DERIVATIONS

B.1 Windowing

A spectral estimate for a finite sampling domain width (window) of an infinite
domain signal corresponds to the convolution of the true infinite domain spec-
trum and the Fourier transform of the symmetric convolution of the window
function with itself, i.e.,

(B.1)

This can be shown via the finite domain estimator: where and Thus

û[L](k) =
1

2π

∫ L

0

u(x)e−ikxdx =
1

2π

∫ ∞

−∞
u(x)wL(x)e−ikxdx (B.2)

While the infinite length window would generate the true spectrum as the
Fourier transform of Buu(r), the statistical correlation function of a homoge-
neous signal u(x), according to equation 4.5, we can only estimate the spectrum
based on a finite record length. Recalling the convolution theorem B.2 and its
special case the correlation theorem B.2, the estimator 4.6 corresponds to:

FL
uu(k) =

2π

L
〈ûL(k)∗ûL(k)〉

=
2π

L

1

2π

∫ ∞

−∞

∫ ∞

−∞
〈u(x)u(x+ r)〉wL(x)wL(x+ r)dxe−ikrdr

=
2π

L

1

2π

∫ ∞

−∞
Buu(r)

∫ ∞

−∞
wL(x)wL(x+ r)dxe−ikrdr

=
2π

L

[
1

2π

∫ ∞

−∞
Buu(r)e−ik′rdr ⊗ 1

2π

∫ ∞

−∞
WL(r)(r)e−ik′rdr

]
(k)

=
2π

L
[Fuu(k′) ⊗ ŴL(k′)](k) =

2π

L
[Fuu(k′) ∗ |ŵL(k′)|2](k) (B.3)

where WL(r) is the auto-correlation of the window function wL(x). Note that
this is not the same definition as of a correlation function of a stochastic vari-
able. As an example, the auto-correlation of the rectangular unity window
of length L is a unity peak triangular window of length 2L. The rectangular
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window has a Fourier transform of :

ŵL(k) =
sin(kL)

kL
(B.4)

Thus the standard sampling window will, when estimated with 4.6, generate
a spectrum as

FL
uu(k) =

1

2π

∫ ∞

−∞
Fuu(k′)ŴL(k − k′)dk′

=
1

2π

∫ ∞

−∞
Fuu(k′)

(
sinL(k − k′)

L(k − k′)

)2

dk′

= Fuu(k) ⊗
(

sin(Lk)

Lk

)2

(B.5)

Due to the curvature variation of the correlation function, the net effect of
the windowing will be to redistribute spectral energy from lower wavenumbers
to higher wavenumbers, a process labeled ’spectral leakage’.

B.2 Spatial Filtering due to finite probe volume

As a probe length cannot be infinitely small, each probe approximates a point
measurement of the local velocity by spatial integration over a length lp. The
spatial integration of the local process effectively discards the contributions
from structures smaller than lp (leaving less aliased energy to claim wrong
wavelengths). Thus the probe integration can ameliorate the effect of spatial
aliasing, which is why low-pass filters are called anti-aliasing filters. If the
probe spacing was the same size as lp the effect of aliasing would be minimal.
Consider a 1D case. Let the random velocity signal to be sampled be u(x),
x ∈ [−∞,∞]. The velocity field is homogenous, so that the auto-correlation
function, i.e. the expected value of any product of a realization u(x) with the
realization at a spatial separation r, is

Buu(x, x+ r) = 〈u(x)u(x+ r)〉 = Buu(r) (B.6)

The Fourier transform of the correlation function is :

Fi,j(k) =
1

2π

∫ ∞

−∞
drBuu(r)e−ikr (B.7)

When sampling the field u(x) with a finite sized probe in such a way as to
obtain a local average of the velocity field one effectively performs a running
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convolution with a spatial sampling window wl(x). The window is symmetric
about x = 0 and non-zero only if |x| ≤ l

2 . Note that the window is normalized
by it’s own dimension in order to resemble the local average. Thus the sampled
velocity is filtered as:

ul(x) =

∫ ∞

−∞
u(y)wl(y − x)dy (B.8)

=

∫ ∞

−∞
u(y)wl(x− y)dy (B.9)

= [u(y) ⊗ wl(y)](x) (B.10)

where the shift in variables between equations B.8 and B.9 is possible due to
the mirror symmetry around y − x = 0 of the window.

The resulting filtered signal is of infinite extent and has a corresponding
filtered expected correlation function Bl

uu(r):

Bl
uu(x, x′) = 〈ul(x)∗ul(x+ r)〉 = 〈[u⊗ wl](x)[u⊗ wl](x + r)〉 (B.11)

The convolution theorem states that if:

h(r) = g(x) ⊗ f(x) =

∫ ∞

−∞
g(x)f(r − x)dx (B.12)

then
ĥ(k) = 2πĝ(k)f̂(k) (B.13)

where ĥ indicates the Fourier transform of h. A special case of B.2 is the corre-
lation Theorem which states that if

h(r) = g(x) � f(x) =

∫ ∞

−∞
g(x)f(x + r)dx (B.14)

then
ĥ(k) = 2πĝ(k)∗f̂(k) (B.15)

where ∗ indicates a complex conjugate. B.2 reduces to B.2 if f or g is symmetric
in x.

Let the filtered velocity ul(x) be the inverse Fourier transform of ûl(k) so
that

Bl
uu(x, x′) =

(
〈
∫ ∞

−∞
ûl(k)e+ikxdk

)∗ ∫ ∞

−∞
ûl(k′)e+ik′x′

dk′〉 (B.16)

=

∫ ∞

−∞
dk

∫ ∞

−∞
ê−ikxe+ik′x′〈ûl(k)∗ûl(k′)〉dk′ (B.17)
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Since the filtered velocity is the result of a convolution in space, it’s Fourier
transform is the product of the individual functions transforms respectively,
e.g.,

ûl(k) = 2πû(k)ŵl(k) (B.18)

Inserted into B.17, it gives

Bl
uu(x, x′) = (2π)2

∫ ∞

−∞
dk

∫ ∞

−∞
dk′ê−ikxe+ik′x′

ŵ∗
l (k)ŵl(k

′)〈û∗(k)û(k′)〉 (B.19)

As the expected value of the product of Fourier transforms in non-overlapping
wavenumber bands is zero, and equal to the power spectrum 〈û∗

i (k)ûj(k
′)〉 =

Fuu(k)δ(k′−k) in overlapping ones, the integral over dk′ will eliminate all func-
tional dependence on k′ in the expression B.19, lest k′ = k, resulting in:

Bl
uu(x, x′) = (2π)2

∫ ∞

−∞
Fuu(k)ŵ∗

l (k)ŵl(k)e
+ik(x′−x)dk (B.20)

As x′ − x = r, and invoking again the convolution theorem, we have:

Bl
uu(x, x + r) = 2π

∫ ∞

−∞
Fuu(k)e+ikrdk ⊗

∫ ∞

−∞
|ŵl(k)|2e+ikrdk (B.21)

= Buu(r) ⊗ [wl(x) � wl(x)](r) (B.22)
= Buu(r) ⊗Wl(r) (B.23)

where Wl(r) = [wl(x) � wl(x)](r) =
∫∞
−∞ wl(x)wl(x+ r)dx

The above yields a filtered spectrum that, again according to the convo-
lution theorem, consists of the true spectrum multiplied in with the modulus
squared of the filter window, i.e.,

F l
uu(k) = 2πFuu(k)Ŵl(k) = (2π)2Fuu(k)|ŵl(k)|2 (B.24)

A rectangular probe window would be

wl(x) =

{
1/l , |x| ≤ l/2
0 , |x| > l/2

(B.25)

ŵl(k) =
1

2π

sin(kl/2)

kl/2
(B.26)

and the velocity spectrum and correlation function obtained from it would be
respectively
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F l
uu(k) = Fuu(k)

[
sin(kl/2)

kl/2

]2
(B.27)

and
Bl

uu(r) = Buu(r) ⊗ [l − |r|/l]/l (B.28)

Filtering model for isotropic turbulence sampled with 3D rectangu-
lar probe Isotropic turbulence is three-dimensionally homogenous turbulence
that is also invariant of rotation. Since homogenous, the turbulence can be rep-
resented in the spectral domain as Fi,j(~k). From this three-dimensional tensor
quantity one can extract the energy spectrum E(k) by integrating out two of
three spectral space coordinates. The variable k = |~k| is a radial distance in
a spherical polar coordinate system and at every value of k the values of the
spectrum tensor trace are Fi,i are integrated over the angles, i.e.,

E(k) =
1

2

∫ π

−π

dθ

∫ π/2

−π/2

Fi,i(~k)k
2dψ (B.29)

The integral of the energy spectrum is the average turbulence kinetic energy,
∫ ∞

0

E(k)dk =
1

2
〈q2〉 =

1

6
〈(u2

1 + u2
2 + u2

3)〉 (B.30)

Isotropy, together with incompressibility, enables the solving of Fi,j(~k) in
terms of E(k):

Fi,j(~k) =
E(k)

4πk4
[k2δij − kikj ] (B.31)

Clearly, if a model for E(k) was available, one could easily compute Fi,j . THe
model that is utilized here is the von Karman/Howarth model, which is rep-
resentative for the large scale turbulence and the spectral gap, but fails to
decrease sufficiently fast enough with wavenumber to accurately predict the
purely dissipative range of scales. George & Wang [25] models the von Kar-
man/Howarth spectrum as

E(k) = C
(kI)4

[1 + (kI/keI)2]17/6
(B.32)

where I is the integral length scale of the turbulent flow, C = 6.2528 is a con-
stant and keI = 0.7468 is non-dimensional wavenumber where the energy spec-
trum peaks. George & Wang list several choices for the set of parameters, the
one choice here represents p = 4.

The modeled spectral tensor function scan be integrated over the three-
dimensional spectral space to yield the average turbulence kinetic energy 〈q2〉
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or the space coordinate components. Changing the the variable ki to yi =
kiI/keI gives:

1

2
〈q2〉 =

(keI)
7

I3

C

2π

∫ ∫ ∫
d~y

y2

[1 + y2]17/6
(B.33)

and

〈u2
1〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
2 + y2

3 ]

[1 + y2]17/6
(B.34)

〈u2
2〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
1 + y2

3 ]

[1 + y2]17/6
(B.35)

〈u2
3〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
1 + y2

2 ]

[1 + y2]17/6
(B.36)

Introducing a finite probe window of dimensions l1, l2, l3 in the three space
dimensions gives:

1

2
〈q2〉 =

(keI)
7

I3

C

2π

∫ ∫ ∫
d~y

y2

[1 + y2]17/6
sinc2(y1d1)sinc

2(y2d2)sinc
2(y3d3)

(B.37)
where sinc(x) = sin(x)/x and di = (keI)(li/2I). The components are. and

〈u2
1〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
2 + y2

3 ]

[1 + y2]17/6
sinc2(y1d1)sinc

2(y2d2)sinc
2(y3d3)

(B.38)

〈u2
2〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
1 + y2

3 ]

[1 + y2]17/6
sinc2(y1d1)sinc

2(y2d2)sinc
2(y3d3)

(B.39)

〈u2
3〉 =

(keI)
7

I3

C

4π

∫ ∫ ∫
d~y

[y2
1 + y2

2 ]

[1 + y2]17/6
sinc2(y1d1)sinc

2(y2d2)sinc
2(y3d3)

(B.40)

Thus any ratio of the filtered variances can be estimated for any value of the
ratio between the filter dimensions li and the integral scale I by direct com-
putation. From such an analysis it was found that in order resolve 88% of the
available energy in each component, the probe window dimension must be a
tenth of the integral scale, see also Wanstrom et al[42].
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C. SINGLE POINT VERSUS “HOMOGENIZED” SPECTRA

What is the relation between the spectra one would measure at a single point,
x, using Taylor’s hypothesis, say F 1

i,j(k1(x), x), and the spectra we determine
from our ‘homogenized’ jet, say Φ(κ)? The connection between the two is the
two-point correlation function,

Bi,j(x, x+ r) = 〈ui(x)uj(x+ r)〉. (C.1)

Note that we have used on the streamwise coordinate and suppressed the other
coordinates (at least for now). From the two-point similarity hypothesis,

〈ui(x)uj(x+ r)〉 = Uc(x)Uc(x+ r)〈υi(ξ)υj(ξ + ∆ξ)〉 (C.2)
where

ξ = lnx/D, (C.3)

υi(ξ) =
ui(x)

Uc(x)
(C.4)

and Uc(x) is the centerline velocity at x. Note that x should be taken to be the
distance from some virtual origin xo.

The single point spectrum really only makes sense if the flow is homoge-
neous, but we follow convention, ignore that and write anyway the inverse
transform relation:

〈ui(x)uj(x+ r)〉 =

∫ ∞

−∞
eik1(x)rF

(1)
i,j (k1(x), x)dk1 (C.5)

For a truly homogeneous flow both sides would be independent of x.

Our transformed field is in fact homogeneous so we can write exactly:

〈υi(ξ)υj(ξ + ∆ξ)〉 =

∫ ∞

−∞
eiκ∆ξΦ

(1)
i,j (κ)dκ (C.6)

Multiplying equation C.6 by Uc(x)Uc(x+ r), expressing ∆ξ as a function of
x and r, and equating equations C.5 and C.6 yields:

∫ ∞

−∞
eik1rF

(1)
i,j (k1, x)dk1 =

∫ ∞

−∞
eiκ ln(1+r/x) [Uc(x)Uc(x+ r)] Φ

(1)
i,j (κ)dκ (C.7)



C. SINGLE POINT VERSUS “HOMOGENIZED” SPECTRA

The idea of ‘local homogeneity’ is that one only consider small values of spa-
tial separation r, the exact definition of ‘small’ being in general rather vague.
But in the current case it is possible to be quite precise and expand the expo-
nential in equation C.7 for small values of the physical local relative separation
r/x. First regroup the terms to obtain:

eiκ ln(1+r/x) ≈ eiκr/xeiκ[ln(1+r/x)−r/x] (C.8)

Then expand the second exponential to obtain to second order in r/x:

eiκ[ln(1+r/x)−r/x] ≈ 1 + iκ(r/x)2 + . . . (C.9)

Similarly we can expand Uc(x+ r) about the point x to obtain:

Uc(x+ r) ≈ Uc(x) +

[
dUc

dx

∣∣∣∣
x

r +
1

2

[
d2Uc

dx2

∣∣∣∣
x

r2 (C.10)

where for reasons which hopefully will become obvious later we have kept the
second term.

Combining both of the expansions above and substituting into equation C.7
and keeping only the leading terms in r/x yields:

∫ ∞

−∞
eik1rF

(1)
i,j (k1, x)dk1 ≈

∫ ∞

−∞
ei(κ/x)r

[
U2

c (x)Φ
(1)
i,j (κ)

]
dκ (C.11)

Dividing and multiplying the RHS by x, regrouping and identifying k1 = κ/x
yields immediately:

∫ ∞

−∞
eik1rF

(1)
i,j (k1, x)dk1 ≈

∫ ∞

−∞
eik1r

[
xU2

c (x)Φ
(1)
i,j (k1/x)

]
dk1. (C.12)

Comparing the two sides, it is obvious that our one-point one-dimensional
local spectrum is related to the ‘true’ decomposition by:

F
(1)
i,j (k1) ≈

[
xU2

c (x)
]
Φ

(1)
i,j (k1/x) (C.13)

Or alternatively, to a first approximation to our true homogenized spec-
trum is given by:

Φ
(1)
i,j (κ) ≈ 1

[xU2
c (x)]

F
(1)
i,j (k1x) (C.14)
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The RHS is exactly the normalized form used by Gamard (2002), Gamard et
al. (2004), and Frohnapfel (2003).

Note that it should be possible to evaluated the effect of the higher order
of the local expansion by integration by parts. That way the effects of jet flow
physical space inhomogeneity on the single point one-dimensional spectra can
be investigated.





D. PROOF THAT FINITE DOMAIN SPECTRUM OF
SIMILARITY SCALED UNCORRELATED NOISE IS WHITE

The noise on the local velocity measurements is absolute at some level indepen-
dent of the position (if one disregards the fact that the two cameras are differ-
ent). However, as the similarity scaling is applied to form υi(ξ) = ui(x)/Uc(x),
the noise level gets scaled up as (x − xo). The estimation of finite domain
velocity spectral densities of the resulting homogeneous velocity plus an inho-
mogeneous noise is considered below. It should be noted that the reasoning
applies to random noise of the round-off quantization type.

The finite domain Fourier transform in the logarithmically transformed
coordinate system of the noise, νL(ξ), given by:

ν̂L(κ) = FTL{ν(ξ)} (D.1)

=
1

2π

∫ L

0

e−iκξν(ξ)dξ

The noise, ν(ξ), relates to the original discretization error of the PIV in the
following way:

ν(ξ) =
n(x)

Uc(x)
(D.2)

where x = Delnx/D (i.e., ξ = ln x/D, D is the jet diameter, and Uc(x) is the
mean centerline velocity at the downstream location in physical space, x, which
is assumed measured from a virtual origin. We know that the centerline veloc-
ity varies inversely with distance downstream from the virtual origin; i.e.,

Uc = BM1/2
o x−1 (D.3)

where B is a constant (about 6.5 from Hussein et al. 1994) and Mo is the rate
at which kinematic momentum is added at the source. For a top-hat jet, Mo =
πU2

oD
2/4.



D. PROOF THAT FINITE DOMAIN SPECTRUM OF SIMILARITY
SCALED UNCORRELATED NOISE IS WHITE

We also know that the noise itself is homogenous in physical space and
uncorrelated from one location to another; i.e.,

〈n(x)n(x′)〉 = Cn(x′ − x) = 〈n2〉∆xδ(x′ − x) (D.4)

where L is a length scale providing the necessary dimensions to the delta func-
tion (Note that we will not need it later when we move to dimensionless coor-
dinates).

The mean square value of the noise is given by 〈n2〉 = ∆2/12 where ∆ is
the quantization level which is assumed x-independent. It follows immediately
that the mean square value of ν is:

〈ν2〉 =
∆2

12U2
c

=

[
∆2

12

][
x2

B2Mo

]

=

[
∆2

12

][
D2

B2Mo

]
e2ξ (D.5)

We can put all of this together and express the noise correlation directly in
the transformed coordinate system as:

〈ν(ξ)ν(ξ′)〉 =

[
∆2

12

] [
D2

B2M2
o

]
e2ξ ∆ξ δ(ξ′ − ξ) (D.6)

Note that the noise is not homogeneous in the transformed coordinate system
(because of the presence of the exponential which depends on ξ.

D.1 The finite spectrum of the transformed noise

The spectrum computed from the finite Fourier transform (the finite spectrum)
is given by:
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FνL(κ) =
2π

L
〈ν̂L(κ)ν̂L(κ)〉

=

[
∆2

12

] [
D2

B2M2
o

][
1

2πL

] ∫ ∫ L

0

e−iκ(ξ′−ξ)e(ξ+ξ′)∆ξδ(ξ′ − ξ)dξdξ′

=

[
∆2

12

] [
D2

B2M2
o

][
∆ξ

2πL

] ∫ L

0

e2ξdξ

=

[
∆2

12

] [
D2

B2M2
o

][
∆ξ

2πL

]{
1

2
[eL − 1]

}
(D.7)

The noise is clearly independent of wavenumber, so is indeed white. BUT it
also clearly depends on the size of the domain, clearly a consequence of the
fact that it is not homogenous (and consistent with the infinite value from the
infinite domain analysis).





E. THE ‘DROPOUT’ PROBLEM

This section1 looks at the problem of ‘dropout’ caused by the generation of spu-
rious vectors for whatever reason, usually poor signal quality. There has been
much written about how to detect and replace the missing information. Here
our interest is only the single and two-point statistics. We begin by creating
a mathematical model for the actual snapshot the PIV produces. Let ũi(~x, t)
represent the actual instantaneous velocity vector at any point ~x in the flow
at the time of the snapshot t. Following George and Lumley [88] (see also
Buchhave et al. [51]) we define a random function g̃(~x, t) which ‘locates’ the
spurious vectors. The statistical properties of g̃ will be discussed below, but it
is perhaps helpful for the moment to think of it as a classical delta-function
δ(~x − ~xo) which simply locates the spurious vectors at ~xo and turns on when
integrated over. At these locations the actual velocity is not available, but in-
stead another random variable, say ãi(~x, t), has been substituted for it. Using
these the instantaneous velocity field available from the PIV can be written as:

ṽi(~x, t) = ũi(~x, t) + g̃i(~x, t) [−ũi(~x, t) + ãi(~x, t)] (E.1)

We can now treat vi(~x, t) as a continuous random function of space and time,
as long as we recognize that it must be treated as a generalized function.

E.1 The velocity statistics

Of particular interest herein are the statistical properties of the ṽi, and their
relation to those of ũi. For example, consider the mean value, Vi(~x, t) = 〈ṽi(~x, t)〉.
What is its relation to the same statistics property of the original velocity field,
Ui(~x, t) = 〈ũi〉? The symbols 〈〉 imply an ensemble average, which in principle
demands an infinite number of statistically independent realizations.

In general, the averages are dependent on both time and space. But in
practice this will be usually performed (at least for statistically stationary

1 This appendix and the one following it were taken from [72] with only slight modi-
fications.



E. THE ‘DROPOUT’ PROBLEM

flows) by averaging over snapshots (or realizations) which are separated by
more than two integral time scales. For such situations, the averages are time-
independent, so we will drop the implicit dependence of the statistics on time,
and keep only the space dependence.

Since almost all flows of interest are turbulent, the properties of the fluc-
tuating velocity, vi(~x, t)ṽi(~x, t) − Vi(~x) and its counterpart in the original field
ui(~x, t) = ũi(~x, t) − Ui(~x) are also of interest. Of primary interest below is the
two-point (single time) correlation, Wij(~x, ~x

′) = 〈vi(~x, t)vj(~x
′, t)〉 and its coun-

terpart Rij = 〈ui(~x, t)uj(~x
′, t)〉.

E.2 Statistics of the g’s

Before averaging of any kind we must agree on whether the location of the
spurious vector and the original velocity field are statistically independent. We
assume in all subsequent analysis that they are. We further assume that the
occurrence and locations of the spurious vector are statistically independent of
each other. The mean value of g̃ is then given by:

〈g̃〉 = µ(~x), (E.2)

where in general the expected number of spurious vectors can be location-
dependent. If the field is statistically stationary in time, µ(~x) can be computed
by counting the relative number of snapshots in which spurious vectors occur.
Note there is no reason to assume at this point that µ is location independent.

We have assumed occurrences of spurious vectors to be at least uncorre-
lated from one interrogation volume to the next, and from snapshot to snap-
shot. It follows immediately that (c.f. George and Lumley [88] that the two-
point correlation of the fluctuations of the g’s is given by:

〈g(~x, t)g(~x′, t)〉 = µ(~x)δ(~x′ − ~x) (E.3)

or

〈g̃(~x, t)g̃(~x′, t)〉µ(~x)µ(~x′) + µ(~x)δ(~x′ − ~x) (E.4)
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E. THE ‘DROPOUT’ PROBLEM

E.3 The mean velocity

Using these the mean value of the snapshot velocities is given by:

Vi(~x) = 〈ui(~x, t)〉[1 − 〈g̃(~x, t)〉] + 〈g̃(~x, t)〉〈ãi〉 (E.5)
= Ui(~x)[1 − µ(~x)] + µ(~x)Ai(~x) (E.6)

where Ai(~x) ≡ 〈ãi(~x, t)〉.

Equation E.6 suggests two alternative strategies which could have achieved
the same end.

• The first requires replacing the spurious vectors by the mean value at
that location, since clearly if Ai = Ui, then the net effect is zero, regard-
less of the number of bad vectors (i.e., the value of µ). The problem with
this is that the mean value is not known a priori, and its determination
is the reason for the measurement in the first place.

• A second strategy is to replace the spurious vectors by simply setting
them equal to zero, then correcting the measured mean by dividing it by
the factor [1 − µ(~x)]. In many situations the estimate of the average is
computed by simply summing the different realizations (from snapshot
to snapshot) and then dividing by the number of them; i.e.

AV GN =
1

N

N∑

n=1

(realiztion)n (E.7)

where N is the number of snapshots. Thus this zero-replacement alter-
native can be implemented by simply replacing the N in the denomina-
tor by the number of non-zero realizations, say N − No(~x) where No(~x)
is the number zeroed for each x-position. This also allows a simple de-
termination of µ(~x) = No(~x)/N as the fraction of discarded data for each
x-position. This will be seen below to be quite important for determina-
tion of the two-point and higher order single-point statistics.

E.4 The two-point correlations

In turbulent flows, the single point correlations (like intensities and Reynolds
stress) are of course of considerable interest. But they are a special case of the
two-point correlations that not only contain information on them, but also on
the various scales of motion and the spatial coherence of the field. These are
of particular interest herein, since the POD-based algorithms below depend on
them.
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E. THE ‘DROPOUT’ PROBLEM

The instantaneous fluctuating velocity available to the PIV can be obtained
by subtracting equation E.6 from equation E.1. Multiplying the fluctuating
velocity at one location, ~x′, by that at another, ~x, and averaging yields the
two-point, single time velocity correlation tensor as:

〈vi(~x, t)vj(~x
′, t)〉 = 〈ui(~x, t)uj(~x, t)〉[(1 − µ(~x))2 + µ(~x)δ(~x′ − ~x)] (E.8)

+µ(~x)Ui(~x, t)Uj(~x
′, t)δ(~x′ − ~x) + µ(~x)Ai(~x, t)Aj(~x

′, t)δ(~x′ − ~x) (E.9)
−µ(~x)Ai(~x, t)Uj(~x

′, t)δ(~x′ − ~x) − µ(~x)Ui(~x, t)Aj(~x
′, t)δ(~x′ − ~x) (E.10)

+µ(~x)〈ai(~x, t)aj(~x
′, t)〉[µ(~x) + δ(~x′ − ~x)] (E.11)

+〈ui(~x, t)aj(~x
′, t)〉µ(~x)[1 − µ(~x) + µ(~x)δ(~x′ − ~x)] (E.12)

+〈ai(~x, t)uj(~x
′, t)〉µ(~x)[1 − µ(~x) + µ(~x)δ(~x′ − ~x)] (E.13)

It is easy to show that this reduces to just 〈ui(~x, t)uj(~x, t)〉 if either there
are no bad vectors, or if the replacement is exactly equal to the true velocity.
It is immediately clear what the primary problem is: All of the mismatch be-
tween the true velocity and the measured field shows up at zero displacement;
i.e., ~x = ~x′. The delta functions have important implications for both spatial
spectral analysis and application of the POD. In particular, they imply that all
of the errors show up in the means, the turbulence intensities, or the diagonal
elements of the cross-correlation tensor. The mean velocities can, in principle,
be fixed by setting the replacement vectors to zero and correcting for the num-
ber of samples used, (1 − µ). Unfortunately the contributions to the standard
deviations of this strategy will drown the actual turbulence. So to the cost of
a small reduction in spatial resolution (being equivalent to spatial filtering),
one may interpolate to compensate for an invalid data point. It seems evident
that replacement by neighboring data points is the way to proceed. However,
if, more than one vector is missing from a neighborhood, the reliability of the
interpolated value could decrease drastically.
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