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Abstract

Several turbulent wall-bounded flows are investigated by means of similarity analy-
sis, the Asymptotic Invariance Principle and Near-Asymptotics. The flows include
pipe and channel flows, plane wall jets, thermal boundary layers and zero pressure
gradient boundary layers. Inner and outer regions of these flows can be matched at
finite Reynolds number, but become asymptotically independent of it, and reduce to
similarity solutions of the inner and outer boundary layer equations in the limit.

A new theory for pipe and channel flow is developed, where Reynolds number
dependent logarithmic overlap profiles and a logarithmic friction law provide an ex-
cellent description of experimental velocity and skin friction data over more than
three and a half decades in Reynolds number. Since the overlap velocity profile is a
logarithm in y+ a, logarithmic behavior inside y* & 300 cannot be established unless
the mesolayer and offset a™ are explicitly accounted for.

A new theory is proposed for the plane wall jet, leading to new scaling parameters,
i.e. the Reynolds shear stress in the outer layer scales to first order with u2, so that
the outer layer is governed by two velocity scales, U,,, and u,. Velocity profiles in the
overlap region and the friction law exhibit power law behavior, with coefficients which
depend on local Reynolds number. New scaling laws for the turbulence quantities

are derived from the Reynolds stress equations. Excellent agreement with all the



experimental data is achieved. The hypothesis that the inner flow of all wall-bounded
turbulent flows is the same appears to be supported.

The similarity analysis of George & Castillo (1997) for the isothermal zero pressure-
gradient turbulent boundary layer on a flat plate is extended to the thermal boundary
layer of forced convection. A new outer temperature scaling is derived. Temperature
profiles in the overlap region and the heat transfer law are also power laws.

New developments are reported for the zero pressure gradient boundary layer
originally treated by George/Castillo. The scaling of Zagarola & Smits (1998b) is
found to be consistent with the fundamental scaling laws, and it is derived from a
separability hypothesis. It is suggested that 6,/0 is independent of local Reynolds
number and uniquely determined by the initial /upstream conditions. A higher order
solution for the boundary layer parameters is derived, and tools to distinguish between

the classical log-law and the George/Castillo theory are explored.
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Chapter 1

Introduction

If you would be a real seeker after truth, it is necessary that at least once
in your life you doubt, as far as possible, all things.

— René Descartes (1596-1650), French philosopher

1.1 Fluid Mechanics: Omnipresence

We live our lives constantly immersed in fluid, usually air or water. Fluid mechan-
ics problems surround us, literally: when we exhale, the flow closely resembles a
turbulent round jet; wind in our faces increases the rate of heat removed from the
skin; submerged in a bath tub the pressure the water exerts on us — integrated over
the surface of our bodies — results in a higher buoyancy force than we are used
to from an air environment. Besides providing countless daily personal experiences,
fluid mechanics is at the core of many engineering applications and applied physics
investigations.

The equations governing momentum conservation in fluid flow, the Navier-Stokes
equations®, have been known for well over a century. For a full description of a flow

one can also write equations for conservation of mass and energy, constitutive equa-

!Named after Navier (1827) and Stokes (1845), who derived them independently.



tions relating fluid stress to rate of strain (e.g. for a Newtonian fluid in the case of the
Navier-Stokes equations) and the heat flux vector to the temperature field. Combined
with two equations of state, describing e.g. pressure p and internal energy per unit
mass e as a function of density p and temperature T (p = p(p,T), e = e(p,T)), a well-
posed, closed set? of equations for the quantities of interest in a flow field (u;, p, p, e, T)
is obtained. Unfortunately, a general solution to this closed set of coupled, partial
differential equations is not known due to the nonlinearity contained in the convective
terms of the Navier-Stokes equations.> Only a handful of exact solutions exist. These
become possible if the nonlinear terms vanish due to kinematic restrictions (e.g. fully
developed laminar pipe flow), or if global symmetries in a two-dimensional flow al-
low a transformation to a new set of independent variables, in which the nonlinear
partial differential equations become nonlinear ordinary differential equations. This

is referred to as a similarity solution and will be discussed in chapter 2.

1.2 Turbulence: The Enigma

When the forces driving a flow become large compared to the forces slowing it down,
disturbances are no longer dampened and the flow becomes turbulent. This ratio
of forces* is the Reynolds number Re, very likely the most important dimensionless
parameters in fluid mechanics. Turbulent flow is always three-dimensional, rotational,
time-dependent and characterized by random fluctuations. Turbulent flows are easily
observed in the environment, e.g. the (usually buoyant) jets exhausting from smoke
stacks. Turbulence is also characterized by different sizes (scales) of eddies; the range
of scales present in a turbulent flow increases with Reynolds number.

Although the set of governing equations for the instantaneous (or stochastic) tur-

2In a well-posed problem the number of unknowns is equal to the number of equations available.
3When changing the momentum equation from an Eulerian description (fixed in space) to a
Lagrangian frame of reference (following the fluid particle) the nonlinearity would occur in the stress
term (when written with a symmetric stress tensor — the second Piola-Kirchhoff stress tensor).
4The Reynolds number can also be interpreted as a ratio of length or time scales.



bulent motion is still well-posed (a fact which is taken advantage of in Direct Numer-
ical Simulations), it is now analytically intractable since no kinematic simplifications
can be made. Usually mean values of velocity, pressure, temperature, etc. can be ob-
served, and these quantities can be decomposed into a mean and a fluctuating part,
where the mean value of the fluctuating part is zero by definition. In many engi-
neering applications the average, or mean, values of e.g. shear forces or dissipation
are of interest. Upon substituting the decompositions into the set of governing equa-
tions and averaging (time- or ensemble-averaging), something is gained and lost. On
one hand, now kinematic simplifications can again be applied to the resulting mean
(or statistical) quantities, but on the other hand the averages of non-linear occur-
rences (correlations) of the fluctuating quantities are not equal to zero and create
new unknowns, without any new governing equations. For example, in the case of
the Navier-Stokes equations, the so called Reynolds stresses < w;u; >, a symmetric
second order tensor, arise from the averaging of the fluctuating convection terms, thus
creating six new unknowns. A transport equation for the Reynolds stresses < u;u; >
can be derived, but even more new unknowns are created in the process. This is known
as the “turbulence closure problem” and has been at the heart of industrial and fun-
damental research for the past half century. A general solution to the turbulence
problem remains elusive. The quote “Turbulence is the last great unsolved problem
of classical physics.” is at different times attributed to either Einstein, Heisenberg or

Feynman.

1.3 Wall-Bounded Turbulent Flows

When a (turbulent) flow occurs near a solid wall, a boundary layer® develops in which

the velocity changes from its free stream value to zero at the wall. No matter how

5The term “boundary layer” is used loosely here. Later a distinction will be made between flows
unconstrained in the wall-normal direction (e.g. flat plate boundary layer) and fully developed pipe
and channel flows.



high the Reynolds number, or how large the scales of motion in the outer part of the
boundary layer, the scales of motion near the wall remain small to maintain the no-
slip condition. Outside a thin region near the wall, molecular viscosity effects become
negligible and turbulent transfer of momentum dominates. Thus a so-called “inner”
and “outer” region can be identified in wall-bounded turbulent flows.

Accurate prediction of boundary layer parameters such as wall shear stress is cru-
cial for controlling the flow, e.g. avoiding flow separation and the associated increase
in drag. An accurate description of how flow parameters change with Reynolds num-
ber all the way to their asymptotic limit is of great interest to both physicists and
engineers, e.g. for the “scaling-up” of industrial mixing processes. Any similarity
solution to a flow problem describes the proper asymptotic state.

Although it is generally agreed upon that the Navier-Stokes equations describe
turbulence®, they have been used only in a fleeting manner in the development of
theories for wall-bounded flows, or in the validation of experimental data bases. Here,
the Reynolds-averaged Navier-Stokes equations and the Reynolds stress transport
equations will be used as the primary tool for evaluating theories and experiments

for various wall bounded flows.

1.4 Dissertation Outline

This dissertation largely builds upon the theoretical concepts developed by George
and co-workers over the past decade. In that sense (and in a historical perspective),
it can be viewed as a third-generation work. An initial effort to raise questions about
the classical boundary layer analysis was made in the late 1980’s and early 1990’s,
e.g. George (1988) or George (1990). Simultaneously, a new approach to similarity
analyses of turbulent flows was suggested by George (1989). The second generation

consists of an application of these ideas to turbulent boundary layers, e.g. Knecht

6at least for a single-phase, Newtonian fluid.



(1990), George (1995) and Castillo (1997). The most important article is the one by
George & Castillo (1997), where the theory for zero pressure-gradient boundary layer
is developed. This work begins where the aforementioned article ended. Thus, for
completeness most of its results are reviewed in appendix A.

In chapter 2 of this dissertation, important concepts such as similarity solutions,
the Asymptotic Invariance Principle and Near-Asymptotics are explained. In chap-
ter 3, new developments for the zero pressure gradient turbulent boundary layer are
considered. A higher order solution to the constraint equation arising from Near-
Asymptotics and a displacement thickness scaling and its implications are presented
and tested against new experimental data. In chapter 4 a theory for fully developed
pipe and channel flow is developed. Chapter 5 outlines a similarity theory for the
plane turbulent wall jet and chapter 6 extends the boundary layer analysis to thermal

boundary layers with temperature as a passive scalar.



Chapter 2

Similarity Concepts and

Methodology

Every man takes the limits of his own field of vision for the limits of the

world.

— Arthur Schopenhauer (1788-1860), German philosopher

2.1 Motivation

There have been several recent developments which make reconsideration of similarity

theory of wall-bounded turbulent shear flows timely:

e George (1989) showed that the single length and velocity scale approach (in the
literature referred to as “self-preservation” or “self-similarity”) to the similarity
of free shear flows was almost never correct since it over-constrained the govern-
ing equations, and proposed the more general approach which will be applied

here.

e George (1995) suggested an Asymptotic Invariance Principle which not only

could be applied to free shear flows, but allowed the inner and outer portions



of boundary layer flows to be considered separately, then matched at finite

Reynolds numbers.

e Oberlack (1997) applied a Lie-group analysis to the equations governing the
velocity fluctuations transport (and to equations derived from them) in plane
parallel turbulent shear flows and demonstrated that both logarithmic and al-
gebraic (power-law) profiles were among a class of invariant solutions for the

mean velocity.

e New data, of greater accuracy and/or at higher Reynolds number, has become
available for various flows over the past decade (e.g. Zagarola, 1996; Eriksson,
Karlsson & Persson, 1998; ()sterlund, 1999), sparking renewed theoretical in-
terest in the overlap region of wall-bounded turbulent flows (e.g. Barenblatt,
1993; George & Castillo, 1997; Zagarola, Perry & Smits, 1997; Wosnik, Castillo
& George, 2000). The classical log-law (e.g. Millikan, 1938), long thought to be
one of the cornerstones of turbulence theory, has come under intense scrutiny
due to its various shortcomings (c.f. A.1.1) and its inability to account for finite

Reynolds number effects.

e George & Castillo (1997) successfully applied the approach outlined in George
(1995) to the zero pressure gradient boundary layer and correlated the results
with boundary layer data. The requirement that inner and outer equations sep-
arately admit to similarity solutions in the infinite Reynolds number limit, led
to different inner and outer velocity scales!. Upon matching at finite Reynolds
number, power-law overlap profiles with Reynolds number dependent coefficient

and exponent were obtained — in contrast to the classical theory.

Tt will be shown in subsequent chapters that this is always the case for wall bounded flows which
are inhomogeneous in the streamwise direction. Pipe and channel flows (chapter 4) are different, since
the convection terms in the mean momentum equation are identically zero due to the streamwise
homogeneity (a kinematic simplification).



2.2 Similarity Solutions

In all of the fundamental flow configurations considered here, “similarity” repre-
sents a (mathematical) symmetry in the problem, which can be extracted by non-
dimensionalizing the quantities of interest into a new set of “similarity variables”. If
a similarity solution exists, then one should be able to bring the profiles into congru-
ence (“collapse them”) using a scaling function which depends only on one of the new
variables. An immediate consequence would be that the governing equations become
independent of this variable. The functional dependence of the equations is then re-
duced by one variable, which is extremely helpful when dealing with a two-dimensional
or axisymmetric flow field. The governing equations for a two-dimensional flow can
thus be reduced from nonlinear partial differential equations to nonlinear ordinary
differential equations. Similarity solutions were first introduced to fluid dynamics by
Blasius (1908), who applied them in laminar boundary layer theory leading to the

well-known “Blasius-equation”.

similarity solutions

turbulence modeling

wind tunnel atmosphere
_ _ I |
DNS cars airplanes, ships

| | | | | | | |

T T T T T T T T -

102 10®° 10* 10° 105 107 10%8 10°

Reg

Figure 1: Typical Reynolds numbers of applications, experimental facilities and nu-
merical simulations of boundary layers (given in terms of the boundary layer Reynolds
number based on momentum thickness Rey = Uy.0/v)

It might be asked: Who cares whether similarity solutions to the governing equa-
tions exist or not, since most flows of industrial interest do not satisfy the simple
boundary conditions of the fundamental flow configurations? The answer is the same

as for any turbulent flow under consideration. Only a similarity solution provides an

8



unambiguous test of a turbulence model independent of computational constraints
and experimental uncertainty. It does not depend on computational grid, domain,
or differencing schemes, nor does it depend on difficulties in realizing and measur-
ing a laboratory flow. It exists independent of closure approximations, and thus
the scaling laws it offers can be used to test closure hypotheses. Its straightforward
boundary conditions are free from the finite limits of experimental facilities or com-
puter memories, and thus its profiles provide an ideal reference for testing the effects
of enclosure. Most importantly, there is no upper Reynolds number limit for appli-
cation of similarity solutions. From the moderate Reynolds numbers at which they
become approximately valid, to infinite Reynolds number, similarity solutions can
be compared to DNS, results from turbulence modeling, wind tunnel experiments to
real-life large scale applications alike (c.f. Figure 1).

An alternative definition is given by George (1989): “A flow is said to be self-
preserving if solutions to its governing equations and boundary conditions exist, for
which all quantities of dynamical significance have the same relative value at the same
relative location. The flow then has reached some kind of equilibrium where all of its
dynamical influences evolve together. Thus self-preservation is an asymptotic state
attained by a flow once its internal readjustments are complete.”

Analytical approaches to the Reynolds-averaged equations governing wall-bounded
turbulent flow have traditionally abandoned full similarity solutions at the outset, and
instead hypothesized the existence of “local similarity solutions.” The phrase “local
similarity solutions” is somewhat misleading, since these are actually not “solutions”
at all, but scaling laws proposed on purely dimensional grounds. Inner and outer
flow were then analyzed with a single velocity scale. The classical idea of “self-
preservation” in turbulent flows (in contrast with George (1989)) usually refers to a
single velocity and single length scale approach.

In the analysis presented here, however, full similarity solutions will be sought for

inner and outer sets of equations separately. A very important aspect of the theory



presented here is that no scaling laws are defined a priors; each statistical quantity
will be allowed to have its own scale. These similarity solutions will then be substi-
tuted into the governing equations, and similarity conditions are found by demanding
that all terms have the same streamwise (z) dependence. These conditions for sim-
ilarity determine the asymptotically proper? scales for the flow under investigation.
Obviously, these similarity solutions are quite different from the “local similarity”
and “self-preservation” approaches. Applied this way, similarity theory can provide
significant insight and new results without addressing directly the turbulence closure

problem.

2.3 The Asymptotic Invariance Principle

The reduced inner and outer set of equations describing wall-bounded turbulent flow
(for example, the momentum equations for ZPG-TBL A.12 and A.13) are exactly
valid only in the limit of infinite Reynolds number. Therefore similarity solutions to
these equations are also valid exactly only in the limit of infinite Reynolds number
(c.f. Tennekes & Lumley (1972)). Seen another way, the equations have neglected
terms which are Reynolds number dependent and lose these terms only in the limit.
Therefore solutions to them must likewise be Reynolds number dependent and lose
this dependence only at infinite Reynolds number. This idea was referred to as the
Asymptotic Invariance Principle (AIP) by George (1995).

The Asymptotic Invariance Principle has always been applied to turbulent free
shear flows, although not called by this name. Similarity solutions for those flows
(when they exist) are infinite Reynolds number solutions because the equations from
which they are derived are strictly valid only at infinite Reynolds number (George,
1989; Tennekes & Lumley, 1972). The difference in application here is that for wall-

bounded turbulent flows, there are two sets of solutions — one which reduces to a

2In the limit of infinite Reynolds number.
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full similarity solution of the outer equations, and another which reduces to a full
similarity solution of the inner equations.

For finite Reynolds numbers, the Reynolds number dependence of the equations
themselves, however weak, dictates that the solutions can not be similarity solutions
anywhere®. Thus, the Reynolds number enters the problem as an additional variable.

There now is one variable too many in the similarity transformation. Symbolically,

(z,y, Re) — (&, Re) (2.1)

where £ = y/0(z) and §(x) is a local length scale. The AIP then requires that a

functional form F'(€, Re) reduce to a function of £ only in the limit as Re — oo, i.e.

F(& Re) — F(§) (2.2)

Therefore exact similarity solutions are only possible in this limit. Any scaling func-
tion derived from the condition for similarity must be an asymptotically correct scale,
independent of how successful it is at collapsing data at finite Reynolds number, since
it indeed produces solutions to the equations of motion which evolve no further in
similarity variables. More elaborate scaling functions can be introduced to capture
the Reynolds number dependence, but even these must reduce to the asymptotically
correct scales in the limit (e.g. Zagarola & Smits (1998b), discussion in section 3.2)%.
George (1989) suggested the existence of a similarity state which retains a depen-
dence on initial (or upstream) conditions, and shows evidence for turbulent jets and
wakes. There now seems to be evidence, contrary to the conventional wisdom, that

this is also true for boundary layer flows, c.f. Castillo (2000) and Castillo, Walker

3But, as noted above, this is no different than for free shear flows which only asymptotically show
Reynolds number independence.

4Scaling functions like that would arise from a similarity solution which includes Reynolds number
dependence, i.e. a similarity solution to the full boundary layer equations. These functions can of
course not be derived from reduced inner and outer equations, which are only exact at infinite
Reynolds number.
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and Wosnik (2000). The asymptotic dependence on initial or upstream conditions®,

denoted here as ’x’, is reflected in the AIP as

In the following chapters, the Asymptotic Invariance Principle will be applied to
the single-point, Reynolds-averaged equations governing the zero pressure gradient
boundary layer (new developments in chapter 3, review of George & Castillo (1997)
in appendix A), turbulent pipe and channel flows (chapter 4), the plane wall jet
(chapter 5) and thermal boundary layers (chapter 6). Solutions will be sought which
reduce to full similarity solutions of the equations in the limit of infinite Reynolds
number, first for the inner layer and then for the outer. The form of these solutions will
determine the appropriate scaling laws for finite as well as infinite Reynolds number,
since alternative scaling laws could not be independent of Reynolds number in the
limit. Once the method has been established by application to the equations governing
the mean momentum, the same principle will be applied to equations governing the

Reynolds stress equations and the statistical quantities appearing in them.

2.4 Near-Asymptotics: Finite vs. Infinite
Reynolds Number

Appropriate inner and outer scaled versions of the velocity profile can be defined as
two families of curves with parameter §*; i.e. for the zero pressure gradient turbulent

boundary layer,
U

USz’ (37)

= E(y+,(5+) (24)

SInitial or upstream conditions can be e.g. the wind tunnel speed (free stream velocity), the size
and location of the trip wire or any recent flow history, i.e. how the flow got to the test section.
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and

U—-Us, .
Usw) o000 29

where §* = u,0/v. The outer velocity has been referenced to the free stream velocity
at the centerline, U, to avoid the necessity of accounting for viscous effects over the
inner layer when the limits are taken later. Here y™ and ¥ are the cross-stream variable
y normalized with an inner and outer length scale, respectively. The parameter 5t
is a local Reynolds number; it is also the ratio of outer to inner length scales y* /7.
Note that both length scales remain to be determined from the analysis.

The actual mean velocity profile at finite Reynolds number is the average of the
instantaneous solutions to the Navier-Stokes equations and boundary conditions. This
profile, whether determined from a real flow by measurement, a direct numerical
simulation, or not at all, exists, at least in principle, and is valid everywhere regardless
of how it is scaled. Therefore it is important to note that both families of curves
described by equations 2.4 and 2.5, F;(y*,6") and F,(7,0"), represent the entire
velocity profile, at least as long as the dependence on §* is retained (as long as 67 is
finite). In other words, they represent the same solutions to the governing equations,
and have simply been scaled differently.

F; and F, are quite unlike their limiting forms, F;,, and F,.,, which are only infinite
Reynolds number solutions for the inner and outer equations respectively. If F; and F,
are considered instead of Fj., and F,y, (as is usually done), the problem of determining
whether an overlap region exists is quite different from the usual asymptotic matching
where infinite Reynolds number inner and outer solutions are extended and matched
in an overlap region if one exists. The objective here is to determine whether the fact
that these scaled finite Reynolds number solutions (to the whole flow) degenerate at
infinite Reynolds number in different ways can be used to determine their functional
forms in the common region they retain in the limit. The methodology of matching

6

profiles at finite Reynolds number, termed Near-Asymptotics,” was first utilized by

6 Near-Asymptotics should not be confused with Intermediate Asymptotics as developed by Baren-
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George (1995) (see also George & Castillo, 1997; Wosnik & George, 1995; Wosnik,
Castillo & George, 2000; Gamard & George, 2000; George, Abrahamsson, Eriksson,
Karlsson, Lofdahl & Wosnik, 2000, for applications). It is necessary because the
traditional approach cannot account for the possibility of the matching parameter
tending to zero, as might be the case. By making it possible to include the Reynolds
number dependence, it also makes the results easier to compare to experiments since
most are carried out far from asymptotic conditions. The methodology of Near-
Asymptotics will be applied to the overlap layer of various wall-bounded turbulent

flows in the following chapters.

blatt (1996), where one interpolates between infinite Reynolds number solutions.
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Chapter 3

Ziero Pressure-Gradient Turbulent
Boundary Layer:

New Developments

Many a man had taken the first step. With every additional step you
enhance immensely the value of your first.

— Ralph Waldo Emerson (1803-1882), American Philosopher

3.1 Introduction

The ideas introduced in the previous chapter were first applied to the zero pressure
gradient boundary layer by George & Castillo (1997). Their work is reviewed in ap-
pendix A. In this chapter, some new insights and extensions of the analysis by George
& Castillo (1997) are presented: The displacement thickness scaling for the velocity
deficit suggested by Zagarola & Smits (1998b) is reconciled with the George/Castillo
theory. Also, improvements are made to the parameters in the George/Castillo the-
ory by means of a higher order solution (for the equation constraining C;, C, and 7).

Finally, diagnostic tools for distinguishing between logarithmic and power law regions

15
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Figure 1: Definition sketch of the zero pressure gradient turbulent boundary layer.

are discussed.

The zero pressure-gradient turbulent boundary layer (shown in Figure 1) has been
extensively investigated. It has very simple boundary conditions, yet contains the
essential physics of the subject of wall-bounded turbulent flows, and is therefore
the canonical problem. George & Castillo (1997) state: “...any general principles
which apply to it should be applicable to all [wall-bounded flows| — if they are in
fact principles and general...” Only new developments for the zero pressure gradient

turbulent boundary layer are discussed here. For a review of previous work c.f. George

& Castillo (1997) or appendix A.
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3.2 Reconciling the Zagarola/Smits Scaling with
the George/Castillo Theory

Recently, a new approach to the scaling of the velocity deficit for turbulent boundary
layers which also departs from using the friction velocity as an outer velocity scale!
was proposed by Zagarola & Smits (1998b). In apparent contradiction to George
& Castillo (1997), they show striking experimental collapse of the velocity deficit
normalized with a new scale defined as Us; = Uy6,/0, where J, is the displacement
thickness. In fact, using this scaling, near perfect collapse is also achieved for a range
of 6T from 10% to 10° (and beyond) for theoretical velocity profiles calculated from
the composite solution suggested by George and Castillo. This section shows that
there really is no contradiction and how the two points of view can be reconciled. It
also shows how the Zagarola/Smits scaling can be derived from the definition integral

of the displacement thickness.

3.2.1 The Velocity Scaling of Zagarola and Smits

Zagarola & Smits (1998b) find on empirical grounds that the velocity deficit profile

collapses with a velocity scale given by
Ox

The experimental data is shown in figure 2 with this new velocity scale and the
collapse in the outer part of the boundary layer is remarkable. Theoretical profiles
of George & Castillo (1997) are shown in figure 3, also with this new velocity scale
and for the same range of Reynolds numbers, 6, as in figure 2. The profiles collapse

perfectly. It will be explored below why this scaling works so well.

1George & Castillo (1997) derived from similarity arguments that the asymptotically proper outer
velocity scale is the free stream velocity, U
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Figure 2: Velocity profiles normalized with new velocity scale based on displacement
thickness suggested by Zagarola and Smits. Figure adapted from Zagarola and Smits
(1998).
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Figure 3: Velocity deficit profiles calculated from George/Castillo outer flow region
profile and normalized with Uyd,/d. The range of 6™ is approximately the same as
in the previous figure with experimental data
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In the classical theory (Millikan, 1938; Clauser, 1954) the outer velocity scale
was assumed to be the friction velocity, u,, and it was shown to be related to the

displacement thickness scaling

Os

The fact that 0,/d Uy collapses the data remarkably well in the outer region and
that u, doesn’t (c.f. figure 2 of Zagarola & Smits, 1998b) is further proof? that the

Millikan /Clauser approach is wrong.

3.2.2 Displacement Thickness Scaling Applied to
Velocity Deficit Profiles of Similarity Theory

The velocity deficit profiles of George & Castillo (1997) will be normalized with both
U and the displacement thickness scaling d,/6 Uy, as shown in figures 4 and 5,
respectively. The values for the similarity theory parameters given by George &
Castillo (1997) are used. Using the data of Purtell et al. (1981) and Smith and
Walker (1959), George & Castillo (1997) estimated the asymptotic values for the
boundary layer parameters to be v, = 0.0362, C,o, = 0.897, Cjoe = 55, A = 2.9,

a = 0.46 and a* = —16. In addition, they suggested on empirical grounds that

Co
5= 1+ 0.283 exp(—0.005984 ") eqn.(A.84)

[e]ee]

To compensate for the difference between the actual velocity profile and the over-
lap profile outside the overlap layer, Coles (1956) (see also Coles 1968) define a “wake
function”. George & Castillo (1997), for reason of easy integrability, adapted a slightly
different “wake function” as

_ U + a7
w (y, 5+) = U— - CO(5+) (yT)

2aside from the arguments made in George & Castillo (1997)
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Figure 4: Velocity deficit profiles calculated from George/Castillo outer flow region
profile and normalized with U,,.

= (1-C,)ysinBy (3:3)

Thus the semi-empirical velocity profile for the entire outer flow is given by

% = 14/, (7.6%) +w(7,6")

= Co(y+a)"+ (1—-C,)ysin By (3.4)

which is shown in Figure 4 for a range of Reynolds numbers 6", normalized by the
free stream velocity U.

George and Castillo were also able to deduce on theoretical grounds that 6,/ —
const. > 0. In fact, by integrating a composite velocity profile using equation 3.4
they were able to obtain an explicit relation for §,/0 (and 6/6) given to leading order
in 1/67 by

Os C,

o= - — 0.436(1 — .
; T 0 36(1 — C,) (3.5)
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ot C, C; v Uy /Uso
(given) | (eqn.A.84) | (eqn.A.82) | (eqn.A.81) | (eqn.A.83)
500 0.910 8.97 0.1288 0.0455
1,000 0.898 9.66 0.1156 0.0418
2,000 0.897 10.40 0.1052 0.0388
5,000 0.897 11.32 0.0947 0.0354
10,000 0.897 11.97 0.0884 0.0332
20,000 0.897 12.59 0.0831 0.0313
oF ) 0/6 Ry
(given) | (eqn.3.5) | (eqn.3.7) | (eqn.3.9)
500 0.155 0.113 1,244
1,000 0.151 0.112 2,669
2,000 0.144 0.108 95,581
5,000 0.136 0.104 14,725
10,000 0.131 0.102 30,621
20,000 0.127 0.100 63,608

Table 3.1: Parameters for George/Castillo theory as a function of 6

0
5

where

and

as 0t — oo. Note that since C, and ~ are specified by the above equation as a

function of §*, the parameters can easily be constructed on a spreadsheet as shown

in table 3.1, where

Co

= 1-
1

20, C,?
— 1= +

1+y 142y

% — 0.0894

b — 0.0767

J

Us 0

Ry =

Uy
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Since George & Castillo (1997) provide explicit analytical solutions for the ve-
locity profile for all Reynolds numbers, it is possible to investigate whether the Za-
garola/Smits scaling works for these theoretical profiles as well as it appears to for
experimental data. In Figures 4 and 5 a total of 12 values of §* ranging from 1 x 103
to 5 x 10* are plotted using the parameters shown in table 3.1. As a comparison,
the currently highest Reynolds number experimental data are the measurements of
Fernholz et al. (1995) Fernholz et al. (1995) on the wall of the German-Dutch wind
tunnel with a §* of 1.8 x 10%. Note that results for 6+ of 10% and 10'2 are also shown
to illustrate the asymptotic behavior of these theoretical profiles.

Figure 5 shows the Zagarola/Smits scaling, Us, = Ux0d,/d, applied to the the-
oretical profiles of George/Castillo (of Figure 4), where §,/6 was calculated from
equation 3.5. The theoretical profiles show striking collapse. In fact the differences
between the profiles are almost not discernible, and the collapse is even better than
for experimental data. For comparison with experiment, the 70 profiles of Osterlund
(1999) are also shown in deficit scaling using Ug, = Uy (Figure 6) and in the displace-
ment scaling using Us, = Uy0./6 (Figure 7). The same observations are made here.
Obviously, both the George/Castillo and Zagarola/Smits results must be regarded as

equivalent.

3.2.3 Why the Displacement Scaling Works

If we hypothesize that the dependence on Reynolds number and cross-stream position
of the velocity deficit profile (overlap + “wake”) is separable (for 7 > 0.1 approxi-

mately), then we can write

U—-Ux
Uso

= f (y, ot *) +w (y, 5t *) : all g

= G (0",%) [fooo () + weo(7)] . 7>0.1approx. (3.10)
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Figure 5: Velocity deficit profiles calculated from George/Castillo outer flow region
profile and normalized with Uyd, /0.
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Figure 6: Experimental evaluation of displacement thickness scaling: Velocity deficit
profiles of Osterlund (1999) normalized with U.

5
all 70 profiles of MTL wind tunnel experiment at KTH:
4 10m/s <U_<54m/s, 1.5m<x<5.5m
+
880s &, < 8,500
;gs r with velocity scaling proposed by Zagarola/Smits B
&
8
2
=)
T
8
22
1 |
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/é99

Figure 7: Experimental evaluation of displacement thickness scaling: Velocity deficit
profiles of Osterlund (1999) normalized with U0, /9.
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where the arguments inside the similarity function f, and wake function w are the
outer similarity coordinate, J = y/dg9, the Reynolds number dependence, 67 = du, /v,
and any possible dependence on the upstream conditions, *, respectively. “Upstream
conditions” can be e.g. the wind tunnel speed, the size and location of the trip wire
or any recent flow history. The term in square brackets is a universal profile in-
dependent of 67 (i.e. independent of Reynolds number), and is in fact the limiting
George/Castillo profile at infinite Reynolds number (i.e. f,00(7))-

From substitution into the definition of the displacement thickness, d./d, it follows

immediately that

S
*

Xfoﬂ‘%)d:

=G (6%.%) [ oo + woc@)] 7 (3.11)

Q

In the limit as 6© — oo the contribution from the inner part vanishes identically.

Moreover, the integral on the right-hand side is just JJlrim d,/6. Hence, in the limit
—00

as 67 — oo,
lim G(0*, %) — 1 (3.12)
6t —o0
i.e.,
.0, _ 0,

George and Castillo (1997) estimated 4,/d|,, = const. = 0.0894., from the data
available to them. Therefore, the function G(47, %), which contains all the Reynolds
number dependence (at least according to the hypothesis above), has to be propor-

tional to
0,/0 Oy

+ _ -
G (6%,%) = 75 > 3 (3.14)
dt—o0

It follows immediately that the “effective” velocity scale for the mean velocity deficit

profile is 0./ Uy, exactly as Zagarola & Smits (1998b) claim.
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This is not surprising, since the Reynolds number dependence of the A-function
used by George and Castillo (and manifested in C, and +) is equivalent to that which
is present in d,/d, as long as the separability hypothesis is approximately valid.

The success of the Zagarola/Smits scaling suggests an alternative way to find
the George/Castillo h-function. If it is assumed that 6./ and 6/6 are known from
experimental data, then equations 3.5 and 3.7 can be solved analytically for v(6T)
and C,(6"). But since these equations and the data for ¢,/0 and 6/6 were used in
the regression to obtain A originally, no new information can be gained. What will be
seen to be surprising, however, is that it is the initial condition dependence, %, that
determines §,/6. In fact, it will be argued that ¢,/0 is nearly independent of local

Reynolds number, 6, and uniquely characterizes the upstream conditions.

3.2.4 Variation of §,/§ with Reynolds Number

The idea that there might be a separate dependence on Reynolds number and initial
conditions was introduced by George (1989) for free turbulent shear flows. There
now is some evidence that this is also the case for turbulent boundary layers (c.f.
Castillo & George, 2000; Castillo, Walker & Wosnik, 2000). If the upstream/initial
conditions® are fixed and the Reynolds number is increased by simply moving the
probe downstream, then the velocity data in outer variables will collapse with Uy,
only.

Examples of such surveys are the experiments by Wieghardt (1943) and the on-
going work of Johansson & Castillo (2000), and their velocity data in outer variables
are shown in figures 8 and 9, respectively.

Examples of surveys where the upstream/initial conditions were changed by leav-
ing the probe at a fixed location and increasing the free stream velocity are the

experiments by Smith & Walker (1959) and Osterlund (1999) and their velocity data

3Initial or upstream conditions can be e.g. the wind tunnel speed (free stream velocity), the size
and location of the trip wire or any recent flow history, i.e. how the flow got to the test section.
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Figure 8: Mean velocity deficit profiles of Wieghardt (1943) normalized by U, and
099 for fixed upstream conditions.
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Figure 9: Mean velocity deficit profiles of Johansson & Castillo (2000) normalized by
Uy and dgg for fixed upstream conditions.
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Figure 10: Mean velocity deficit profiles of Smith & Walker (1959) normalized by U,
and dg9 for varying upstream conditions.

are shown in figures 10 and 6, respectively.

Since all data in figures 8, 9, 10 and 6 collapse equally well with the Zagarola/Smits
scaling, the conclusion is that for fixed upstream/initial conditions d,/d must be
independent of Reynolds number. Evidence of this is shown in figures 11 and 12,
respectively. The data in figure 11 (LDA) is believed to be more accurate than the
data in figure 12 (pitot tube), due to the well-known pitot tube errors in turbulent
flow (c.f. Blake, 1983). As the turbulence intensity increases, the value of §, computed
from velocities measured with pitot tubes would decrease compared to its true value.
The value of this constant ratio d,/d is determined by the upstream /initial conditions.

Since the displacement thickness scaling collapses the data only in the outer part
of the boundary layer, it would be more appropriate to use a modified displacement

thickness 5~*, where the integration is performed only over the outer layer

% = 7(1 - %) dy (3.15)
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Figure 11: Variation of displacement thickness d,, modified displacement thickness
0, and momentum thickness # with Reynolds number for fixed upstream conditions.
Data of Johansson & Castillo (2000).
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Figure 12: Variation of displacement thickness d., modified displacement thickness
0, and momentum thickness # with Reynolds number for fixed upstream conditions.
Data of Smith (1994).
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This modified displacement thickness, d,, is also plotted in figures 11 and 12, and
is seen to be independent of Reynolds number. This new integral thickness, d,, is
very close in value to the momentum thickness, since for the momentum thickness
the multiplier U/U,, acts like a filter — filtering out the inner and overlap layer

contribution to the integral.

3.2.5 Summary

The Zagarola/Smits scaling is seen to be consistent with the George/Castillo theory.
The collapse of the profiles using Us = Uy, /6 and the success of George and Castillo
in fitting the same profiles indicates that the separability hypothesis put forth here is
an adequate (even excellent) description of the data, even though analytical separation
of the George/Castillo profiles is not possible, at least not in their present form. This
lack of separability of the George/Castillo profiles is exclusively a consequence of
treating the outer flow with a wake function which is the difference between the mean
velocity and the overlap solution, which strictly speaking applies only for 7 < 0.1.
While the wake function proposed by George and Castillo is in excellent agreement
with the data, there is no theoretical justification for its use, historical precedent
notwithstanding.

The fact that velocity profiles for fixed upstream /initial conditions collapse with
Uy alone (but also with the new scale Uyd,/0) lead to the conclusion that d,/6 is
uniquely determined by the upstream conditions and not a function of local Reynolds
number, 6.

In summary, if it is assumed that f, is separable, f,(y/d,07) = G(6T, ) fooo(y/9),
then the Zagarola/Smits result follows directly from the definition of the displacement
thickness, since for 67 > 1 G(6%1,*) = d,/. Hence both proposals are in essential
agreement on two points: (1) the need for including the Reynolds number dependence

in the velocity deficit and (2) what this Reynolds number dependence is.
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3.3 Higher Order Solution for the Reynolds Num-
ber Dependence

Even in view of the Zagarola/Smits scaling discussed in the previous section, the over-
lap analysis of George & Castillo (1997) remains unchanged. As shown in section A.7,

the solution parameters v, C,, and C; are constrained by

dry dIn[C,/C]
+ _
e

(3.16)

where ~ is the power-law exponent and C, and C; are multiplicative coefficients in
the outer and inner overlap solutions, respectively. Both v and C,/C; are functions
of Ind*. This constraint equation must be invariant to scale transformations of the
form 0t — D67 since the physical choice of §* must be arbitrary (e.g., dgg, dos, €tc.).
Therefore the Reynolds number dependence of v and C,/C; must also be independent
of the choice of §; transforming from one ¢ to another would be reflected in D. This
will be important in relating the boundary layer parameters to other wall-bounded
flows (chapters 4, 5 and 6).

A solution to equation 3.16 can be written in the form

% = exp[(Y = Yoo) In 7 + A] (3.17)

where the function h = h(6") remains to be determined, but must satisfy

dh dh
_ — _ 5t —
V"V = 0 g = T gt (3.18)

The advantage of this form of the solution can be seen by substituting equation 3.17

back into equation A.73 to obtain

g—* = exp[—Yeo In 6" + A (3.19)
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Now the friction law, u, /Uy, is entirely determined by the asymptotic value of the

power exponent, 7, and the function A(0%).

3.3.1 GC Solution for the Constraint Equation

George & Castillo (1997) found on empirical grounds that the variation of v — 7,
and C,/C; with 6T was described to a very good approximation by (for the data sets

investigated)
A
~ 77 (Ingt)e

(3.20)

where o = 0.46, A = 2.90 and D = 1 for § chosen to be dg9. Equation 3.20 can be

shown to satisfy the constraints above. From equations 3.18 and 3.17 it then follows

that
aA
— Yoo = ————— 3.21
T e T gh)Te 321
Co C’ooo o
o) exp[(1 + a)A/(Iné%)?] (3.22)
and
g %[ﬁ]% exp[A/(In 57)°] (3.23)

The variation of C, is described by an empirical expression with two constants found

from experimental data,

Co
7= 1+ 0.283 exp(—0.005986™) (3.24)

The data of Purtell et al. (1981) and Smith and Walker (1959), were found to be
consistent with Cpo, = 0.897, Ciso = 55 and v, = 0.0362. As can be seen from
figure 8 in George & Castillo (1997), the empirical fit for C, of equation 3.24 reached

its asymptotic value too rapidly.
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3.3.2 Higher Order Solution for the Constraint Equation

A higher order solution will be derived here, which allows a more gradual approach
to Coeo as 67 — 0o. Again, we can write a solution to equation 3.16 in the form of

equation 3.17, where h = h(6") has a general form of

A Ay Ay
h_hw:ml1+(1n5+)+(ln5+)2+”'] (3.25)

It follows immediately from equations 3.18 and 3.17 that

B L dh
L T
aA o+ 1 A1 o+ 2 A2
= .2
(ln 5+)1+a l a (ln 5+) + o (ln 5+)2 + ] (3 6)

Substituting equation 3.26 into the constraint equation 3.16, integrating with respect

to Ind™, and taking the exponential of both sides gives

Co  Cox (1+a)A (24 a)A; 3+ a)A,
G~ O eXp{ (moh)° [ (A+a)nst ~ (I+a)nsty ]} (3:27)

This equation can conveniently be split up into two parts the following way

=t T N

Sl

Rewriting the old form of the solution for C,/C;, equation 3.22 with the simplification

that Co,old ~ CVooo,old
1

C: G

exp[(1+ a)A/(In6T)°] (3.29)

shows that the term in square brackets on the right-hand side of equation 3.28 is

exactly the old form of C;, which seemed to describe the data reasonably well and
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will be kept as new C;.
Ci = Cioexp [~(1+ ) A/(In 5%)? (3.30)

The remainder of the right-hand side of equation 3.28 can therefore be used as a

higher order description for C,

Cy = Cye exp { (2+a)d4;, 3+ a)AAZ} _

31
not)art | (mor)er (3:31)

Equations 3.26 and 3.27 can be substitued into the friction law of equation A.73 to

obtain a higher order friction law as

g* = %exp{—fyln(5+}

= gjoo (5+)—7°° exp {(ln(s%)a [1 + (1:51+) + (lnf<152+)2 + .. ]} (3.32)

The higher order form of C, allows for a much more gradual approach to C,, as
0t — oo. Another advantage of the higher order solution is that, while parameters
A; and Aj need to be determined, there no longer is a need for the empirical equation
(3.24), thus eliminating the two empirical constants it contains. Therefore, the num-
ber of empirically determined constants is actually reduced by one, if only one extra
term (A;) is carried. If higher order terms up to third order are kept (A4; and A,),

the number of empirical parameters to be determined from data remains the same.

3.3.3 Experimental Friction Data

The friction law of George & Castillo (1997) and equation 3.32 depend only on the
ratio of the asymptotic values, C,o/Cino and do therefore not need the higher order
terms. Equation 3.32, using only the first term in square brackets (which reduces it

to equation 3.23, the old George/Castillo friction law), will be seen to work very well
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with the new friction data of Osterlund (1999).

There are only a handful of ways to measure wall shear stress directly without
reference to a theory being tested,* one of them is measurement by oil-film interfer-
ometry, as performed by Osterlund (1999). In these measurements, the investigators
(Osterlund, Johansson, Nagib & Hites, 2000, equation 5) also claim to find support
for the classical logarithmic friction law with constant coefficients, where x = 0.38,
B =4.1 and B; = 3.6.

An optimization was performed on just the friction data of Osterlund (1999)
for the parameters derived here (equation 3.32), and the data are consistent with
a =047, A=290 and D =1 for § = dg9. Furthermore, C,oc = 0.897, C;, = 56.7
and 7, = 0.0332. Multiplication of §* by dg9/dg5 is also needed, when comparing the
derived friction law, equation 3.32 (the theory was derived based on dg), with the
Osterlund data (which was given with dg; as variable), c.f. discussion on page 31.

In figure 13, power friction law (eqn. 3.32, 3.23) and logarithmic friction law are
compared with the oil-film wall shear stress data. Figure 13 uses the same values,
but extends the comparison of both theories to higher Reynolds number. It can be
seen that — for the given values of the parameters — the logarithmic friction law
and the power friction law are almost identical for higher Reynolds number, but the
power law describes the data better at low Reynolds number.

Figures 15 and 16 show the same data and power law, but now the constants® in
the logarithmic friction law have been slightly modified to x = 0.384,5 B = 4.06 and
B, = 3.6. Now the log law describes the data better than before at low Reynolds
number, but diverges at high Reynolds number. These figures lead to the conclusion

that a logarithmic friction law with constant coefficients does not have the right shape

4e.g., using the “Clauser-method”, which assumes the existence of a logarithmic overlap region,
to determine the wall shear stress, and then using the same shear stress values in normalizing the
data to “prove” the existence of a logarithmic overlap region is clearly wrong.

5Note that these values would round to the ones previously used.

6k = 0.384 was also given in Osterlund et al. (2000), obtained from fitting a friction curve
(k = 0.38 was obtained from velocity profile fits).
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Figure 13: Comparison of friction laws. Shown are the logarithmic law with constant
coefficients (k = 0.38, B = 4.1 and B; = 3.6, c.f. Osterlund et al. (2000), eqn.5),
and the theory proposed here (Con/Cico = 0.158), and data obtained with oil-film
interferometry (Osterlund, 1999).
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Figure 14: Comparison of friction laws, extended to high Reynolds number. Values
for logarithmic friction law are the same as in Figure 13.
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Figure 15: Comparison of friction laws. Shown are the logarithmic law with (slightly
different) constant coefficients (k = 0.384, B = 4.06 and B; = 3.6, c.f. Osterlund

et al. (2000), eqn.5), and the theory proposed here (Cono/Cice = 0.0158), and data
obtained with oil-film interferometry (Osterlund, 1999).

to agree with friction data over just one decade in dg5. The power law (re-derived in
appendix A), on the other hand, is able to predict the data well for its entire range.

The logarithmic friction law still describes the data fairly well, but the small
deviation observed can be very important for certain applications. For example, in
the design phase of commercial passenger airplanes, a small difference (on the order
of a percent) in full-scale drag prediction results in a difference of several thousand
pounds in gross take-off weight (c.f. Kulfan, 2000). Usually, models that predict the
drag for an entire airplane are “tuned” to correctly calculate the base case, the zero
pressure gradient boundary layer.”

Interestingly, the friction law of George & Castillo (1997) (eqn. 3.23) together with
the original parameters given in section 3.3.1 (A.8.1) needs little change to describe
the friction data of Osterlund (1999) as well as the power law plotted in figures 13-16.

It needs to be modified to account for dgs being used as a variable in the experiment

"From the plots shown here it is understandable that even correctly calculating the zero pressure
gradient boundary layer poses a problem for models calibrated using classical boundary layer theory.
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Figure 16: Comparison of friction laws, extended to high Reynolds number. Values
for logarithmic friction law are the same as in Figure 15.

(using D = 1.4, c.f. section 3.3) and an improved value for Cj.,, taken to be 56.7.
This value for C;,, was obtained from a combined optimization for friction data and
velocity profiles of the high accuracy LDA® data of Eriksson et al. (1998) taken in a
plane wall jet.® This curve!® and the power law plotted in figures 13-16 are virtually
indistinguishable for g5 < 10, 000.

Accurate determination of the power law profile coefficients C; and C, (equa-
tions 3.30 and 3.31, respectively) will be possible once accurate near-wall measure-
ments (LDA) become available, in addition to the existing pitot tube (e.g. Smith,
1994) and CTA (e.g. Osterlund, 1999) data. Among the ongoing efforts is the exper-
iment by Johansson & Castillo (2000) at Chalmers University of Technology.

8Due to well-known errors of pitot tube and hot wire velocity measurements in turbulent flows,
the LDA data are believed to be more accurate.

9¢c.f. chapter 5 for discussion on the universality of the inner layer for developing wall-bounded
flows.

0 George/Castillo friction law with original parameter values not shown in plots.
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3.4 Distinguishing Between Logarithmic and Power

Law Profiles

To investigate whether a power law overlap region exists, data are often plotted using
a “power law diagnostic function” I' (c.f. Osterlund, Johansson, Nagib & Hites, 2000,
figure 6), which in inner variables is defined as

yt dU+

where y* = y/n = yu,/vand UT = U/u,. Suppose the zero pressure gradient velocity

profiles were described by a power law of the form
Ut=C (y")P (3.34)

then equation 3.33 above would simply reduce to I' = p. As long as power p is
not a function of Reynolds number, all profiles should exhibit a horizontal tangent
with value p = const. over some overlap region when plotted this way. This is what
Osterlund et al. (2000) are testing in their figure 4, where the overlap regions for
different Reynolds numbers are averaged together.

George & Castillo (1997) derived an overlap profile (a first-order solution to the

governing equations) in inner variables as
U+ = G601 (y* +a*)"®" (3.35)

Using I' in the form of equation 3.33 is, however, not the correct way to test whether
experimental data support the power law overlap profiles of George & Castillo (1997),

for the following reasons:

e The power v is a function of Reynolds number, 6T, therefore different profiles

must not be averaged together.
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Figure 17: Comparison of experimental data, logarithmic and power law profiles
plotted in the form of I' (equation 3.33).

e Equation 3.35 contains an offset a™ (c.f. appendix A), therefore I' becomes!!

ytdut oyt
Ut dyt _y++a+7

# const. (3.36)

Figure 17 shows data and theory in the from of I' (equation 3.33).
However, a modified form of this “diagnostic function”, I'*, becomes useful for

individual George/Castillo profiles if defined as follows

. YyT4atdUT
M= 3.37
U+ dy* (3:37)
so that I'* for a George/Castillo profile becomes
™ =~(") (3.38)

HUT (equation 3.33) can still be applied to individual profiles of power laws with Reynolds number
dependent power exponent without offset, such as the type proposed by Barenblatt (1993).

40



0.20

200 0.15 3,
30 S °
0.15 - 015, ¢ 1
L . 4
o __ — [ ) ° [
L _;._._i ——
~ . /e®® T T T =
o o T
L ’ 4
0.10 -¢® —— power law, y=0.13, a'=-16, George & Castillo (1997) -

LI ——~loglaw, U" = 1/0.38 In(y") + 4.1
@ data of Oesterlund (1999), Re,=9,112

e

0.05

0 200 400 600 800 1000

Figure 18: Comparison of experimental data, logarithmic and power law profiles
plotted in the form of I'* (equation 3.37).

Figure 18 shows data and theory in the from of I'* (equation 3.37).

Clearly, from the experimental data one could argue for either a logarithmic law
with constant coefficients or a power law in (y + a) (The narrow regions of applica-
bility of each theory are also shown in the figures). Data alone cannot distinguish
between the two proposals, even when derivative plots are made. The “power law
diagnostic function”, even in its modified form I'* which is more appropriate for the
George/Castillo profiles, is therefore not as useful a tool to sort theories as previously
believed.'?

The closeness of the theoretical profiles can be understood if one expands the
power law in terms of a logarithm (or vice versa), as done in section A.16. From
equation A.140, it can be argued that the asymptotic power law boundary layer
profiles would appear logarithmic to leading order, even for finite values of +, since the

classical Millikan/Clauser (or Osterlund et al.) logarithmic profile result is recovered

12gee also section 4.10 for discussion on derivative plots of pipe/channel flow data.
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as the first term in the expansion. It is, however, not a useful approximation since
the higher order terms decay very slowly and are still significant at the Reynolds
numbers usually encountered in experiments. In summary: It is very difficult, if not
impossible, to tell a logarithm from a weak power using experimental data alone since
the small difference — one can always be expanded in terms of the other — is on the

order of the scatter in the data.
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Chapter 4

Pipe and Channel Flow

The one who relies on authority during a discussion does not use his mind
but his memory.

— Leonardo da Vinci (1452-1519), Italian artist, scientist

4.1 Introduction

Pipe and channel flows! have recently become the subject of intense scrutiny, thanks
in part to new experimental data which has become available from the superpipe
experiment at Princeton (Zagarola, 1996; Zagarola & Smits, 1998a). In spite of the
facts that the scaling laws for pipe and channel flows were established more than 80
years ago (Stanton & Pannell, 1914; Prandtl, 1932) and that the now classical theory
of Millikan was offered in 1938 for the friction law and velocity profiles, the subject
has remained of considerable interest. Examples from the last 30 years alone include
the analyses of Tennekes (1968), Bush & Fendell (1974), Long & Chen (1981), Panton
(1990). All of these were essentially refinements on the original Millikan theory in

which the functional form of the friction and velocity laws was logarithmic, and

!This chapter is largely based on the forthcoming paper by Wosnik et al. (2000). (Wosnik,
M., Castillo, L. & George, W. K. (2000) A theory for turbulent pipe and channel flows. J.Fluid
Mechanics, accepted for publication).

43



only the infinite Reynolds number state was considered. The difficulties presented
by the experimental data have recently been extensively reviewed by Gad-el-Hak &
Bandyopadhyay (1994).

Barenblatt (Barenblatt, 1993, 1996; Barenblatt & Prostokishin, 1993; Barenblatt,
Chorin & Prostokishin, 1997) has suggested that the velocity profiles of pipe, channel
and boundary layer flows are power laws. By contrast, George and his coworkers
(George, 1988, 1990, 1995; George & Castillo, 1993, 1997; George et al., 1992, 1996,
1997; Wosnik et al., 2000; George et al., 2000) have argued that the overlap velocity
profiles and friction law for boundary layers are power laws, but that the correspond-
ing relations for pipes and channels are logarithmic. The analysis for boundary layers
leading to power-law profiles in the overlap region was presented in the previous
chapter.

The purpose of this chapter is to apply the same methodology to pipe and channel
flows, and to compare the resulting theory with the new experimental data. The
important difference from previous efforts mentioned above is that the effects of finite

Reynolds number are explicitly included and the mesolayer is accounted for.

4.2 Scaling Laws for Turbulent Pipe and Channel
Flow

The stream-wise momentum equation for a fully developed two-dimensional channel

flow (c.f. Figure 1) at high Reynolds number reduces to

1dP 9
0= —=—+ =—

pdr Oy Jy

< —uv > +1/8—U] (4.1)

The convection terms are identically equal to zero due to kinematic simplification.
Like the boundary layer, the viscous term is negligible everywhere except very near

the wall, so that the core (or outer) flow in the limit of infinite Reynolds number is
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Figure 1: Definition sketch for turbulent channel flow (flow between infinite parallel
plates)

exactly governed by

O=—"r+—<—-uv > (4.2)

In the limit of infinite Reynolds number, the inner layer is exactly governed by

0=—

< —uv > +1/8—U] (4.3)

This can be integrated from the wall to obtain the total stress

Tw_ 2=,
p Ay

=< —uv > +v—— (4.4)

y=0

where u, is the friction velocity defined as u? = 7,/p. The viscous stress vanishes
with increasing distance from the wall, and < —uv >— u2, but only in the infinite
Reynolds number limit. At finite Reynolds numbers the pressure gradient causes the
total stress to drop linearly until it reaches zero at the center of the channel (or pipe).
Hence the Reynolds stress never really reaches the value of 42, but instead reaches a
maximum value away from the wall before dropping slowly as distance from the wall
is increased.

It is obvious that the inner profiles must scale with u, and v since these are the
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Figure 2: Definition sketch for turbulent pipe flow

only parameters in the inner equations and boundary conditions. Hence, there must
be a law of the wall (at least for a limited region very close to the wall). This should
not be taken to imply, however, that u? is an independent parameter; it is not. It
is uniquely determined by the pressure drop imposed on the pipe, the pipe diameter
and the kinematic viscosity.

Because there is no imposed condition on the velocity, except for the no-slip
condition at the wall, an outer scaling velocity must be sought from the parameters
in the outer equation itself. Since there are only two, —(1/p)dP/dx, the externally

imposed pressure gradient, and R, the channel half-width, only a single velocity can

RdP\"?
Uo - <—;E> (45)

be formed; namely,

Unlike the developing boundary layer, the fully-developed pipe or channel flow is
homogeneous in the stream-wise direction, so the straightforward similarity analysis
of George & Castillo (1997) (c.f. appendix A) using the z-dependence to establish the
scaling parameters is not possible. However, because of this stream-wise homogeneity,
there is an exact balance between the wall shear stress acting on the walls, and the
net, pressure force acting across the flow. For fully-developed channel flow, this force
equilibrium requires that

9 RdP
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which is just the square of equation 4.5 above; thus, U, = u,. Therefore, the outer
scale velocity is also u,, and the outer and inner velocity scales are the same. Note
that in a pipe flow (c.f. Figure 2) there will appear a factor of 2 in the force balance.
This factor can be ignored in choosing the scale velocity, so the same argument and
result apply to it as well.

Thus channel and pipe flows differ from boundary layer flows where asymptotic
Reynolds number independence and stream-wise inhomogeneity demand that the in-
ner and outer scales for the mean velocity be different (George & Castillo, 1997).
This consequence of the streamwise homogeneity on the governing equations them-
selves is fundamental to understanding the unique nature of pipe and channel flows.
Homogeneity causes the inner and outer velocity scale to be the same, and this in
turn is the reason these flows show a logarithmic dependence for the velocity in the
overlap region and for the friction law (c.f. section 4.4). This can be contrasted
with wall-bounded flows developing in the streamwise direction, where the inner and
outer velocity scales are different because of their inhomogeneity in x, and hence are
characterized by power laws (c.f. chapters 3, 5, 6, appendix A).

The analysis presented below will be based on using u, as the outer velocity scale;
however, it should be noted before leaving this section that there are at least two
other possibilities which might be considered for an outer velocity scale. Both are

formed from the mass averaged (or bulk) velocity defined for the pipe by:

U, = 7rR2/ Urdr (4.7)

The first possibility is to use U, directly, the second is to use its difference from the
centerline velocity, U, — U,,,. The former has an advantage in that it is often easier to
specify the mass flow in experiments and simulations than the pressure drop (or shear
stress), but it has the disadvantage that it does not lend itself easily to the overlap
analysis described below. The latter has been utilized with great success by Zagarola

& Smits (1998b) in removing the Reynolds number dependence of the velocity profiles
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in both boundary layers and pipe flows. For the purpose of developing this theory it
is sufficient to note that in the limit as R = u,R/v — oo, U, — Uy, — const - u,.
Hence the fundamental limiting and overlap arguments of the succeeding sections will
be the same for both u, and U, — U,,, only the Reynolds number dependence of the

coefficients will differ.

4.3 Finite versus Infinite Reynolds Number

From the dimensional /physical analysis above, it follows that appropriate inner and
outer scaled versions of the velocity profile can be defined as two families of curves

with parameter RT; i.e.,

g = fz-(y+, R+) (48)

*

and
U-U,

U

= fo(7, R") (4.9)

where the outer velocity has been referenced to the velocity at the centerline, U,
to avoid the necessity of accounting for viscous effects over the inner layer when the
limits are taken later. The outer length scale is some measure of the diameter of the
pipe (say the pipe radius) or the width of the channel (say half-width). Both of these
will be denoted as R in the remainder of the chapter.

Since the length scales for inner and outer profiles are different, no single scaling
law should be able to collapse data for the entire flow. The ratio of length scales is
a Reynolds number, Rt = Ru,/v, therefore the region between the two similarity
regimes cannot be Reynolds number independent, except possibly in the limit of
infinite Reynolds number. Moreover, since the neglected terms in both inner and
outer equations depend on the ratio of length scales (v. Tennekes & Lumley, 1972),
then neither set of scaling parameters will be able to perfectly collapse the data in

either region at finite values of R™.
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Figure 3: Velocity profiles in inner variables

As explained in section 2.4 both families of curves described by equations 4.8

and 4.9, f;(y*, RT) and f,(y, R"), represent the entire velocity profile as long as R*

is finite. Properly scaled profiles must, by the Asymptotic Invariance Principle (AIP,

section 2.3, George, 1995), become asymptotically independent of RT in the limit of

infinite Reynolds number; i.e.,

lim f;(y", RY) = fio(y™)

im f,(7, RY) = fooo(T)

as R — oo. Otherwise an inner and outer scaling makes no sense. In fact, these

limiting profiles should be solutions to the inner and outer equations respectively

(i.e., equations 4.3 and 4.2), which are themselves valid only in the infinite Reynolds

number limit.

Figures 3 and 4 show the mean velocity profile data from the Princeton super-
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Figure 4: Velocity profiles in outer variables

pipe experiment (Zagarola, 1996; Zagarola & Smits, 1998a) in both inner and outer
variables. Note the excellent collapse very close to the wall for y* < 100 in inner
variables, and over the core region for 7 > 0.3. Note also that the region of approx-
imate collapse in inner variables (Figure 3) increases from the wall with increasing
Reynolds number, as does the inward extent of the outer variable collapse (Figure 4).
In fact, the parameter RT uniquely labels the fanning out of the inner scaled profiles
in the outer region and the outer scaled profiles near the wall in Figures 3 and 4.

Finally note that the inner scaling does not collapse the data at all where the outer
scaling collapses it best, and vice versa. Both the region of approximate collapse and
the region of no collapse are manifestations of the dependence of the scaled profiles
on R* as argued above.

Unlike boundary layer experiments, the wall shear stress for the fully-developed
pipe flow can be determined from the pressure drop in the pipe alone, entirely inde-

pendent from the velocity profile measurements (c.f. section 4.2). The direct deter-
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mination of the shear stress from the pressure drop without choosing it to collapse a
“log layer” which can only be assumed to collapse (the so-called “Clauser method”)
is especially important since, as noted above, there is evidence of a lack of complete
collapse of the data in Figure 3 outside of y™ = 100, especially for the lowest Reynolds
numbers. The lack of collapse is even more apparent for the outer scaling in Figure 4

inside of 7 ~ 0.3 which includes all of the overlap region discussed below.

4.4 The Overlap Layer: An Application of Near-
Asymptotics

As discussed in the preceding section, f; and f, are quite unlike their limiting forms,
fico and f,oo, which are only infinite Reynolds number solutions for the inner and
outer equations respectively. If f; and f, are considered instead of f;o, and f,o (as is
usually done), the problem of determining whether an overlap region exists is quite
different from the usual asymptotic matching where infinite Reynolds number inner
and outer solutions are extended and matched in an overlap region if one exists. The
objective here is not to see if f; and f, overlap and match them if they do. Rather, it
is to determine whether the fact that these scaled finite Reynolds number solutions (to
the whole flow) degenerate at infinite Reynolds number in different ways can be used
to determine their functional forms in the common region they retain in the limit. The
methodology, termed Near-Asymptotics, was first utilized by George (1995) (see also
George & Castillo, 1997), and is necessary because the traditional approach cannot
account for the possibility of the matching parameter tending to zero, as might be
the case. It also makes the results easier to compare to experiments since most are
carried out far from asymptotic conditions.

The fact that analytical forms for f; and f, are not available, and they are only
known in principle turns out not to be a significant handicap. There are several

pieces of information about the two profiles which can be utilized without further
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assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the
flow everywhere as long as the ratio of length scales, Rt = R/n, is finite, it

follows from equations 4.8 and 4.9 that

1 27 — f.
S e B = R R (410
where g(R™) is defined by
g(R") = u,/U, (4.11)

e Second, for finite values of R™, the velocity derivatives from both inner and

outer forms of the velocity must also be the same everywhere. This implies that

_Ofo _ L Of;

for all values of Rt and .

e Third, as noted above, in the limit both f, and f; must become asymptotically
independent of RT; ie., fo(y,RT) = foro(¥) and fi(y", RT) — fin(y") as

RT — .

Now the problem is that in the limit as R — oo, the outer form fails to account
for the behavior close to the wall while the inner fails to describe the behavior away
from it. The question is: In this limit (as well as for all finite values approaching it)
does there exist an “overlap” region where equation 4.10 is still valid? (Note that
boundary layer flows are quite different from pipe and channel flows since the overlap
layer in the latter remains at fixed distance from the wall for all x because of the
stream-wise homogeneity, as long as the external parameters — like geometry and
Reynolds number — are fixed, while in the former it moves away from the wall with

increasing x.)
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The question of whether there is a common region of validity can be investigated
by examining how rapidly f, and f; are changing with R™, or more conveniently with
In R*. The relative variation of f; and f, with Reynolds number can be related to
their Taylor series expansion about a fixed value of R™; i.e.,

fily"s R + AR") — fily™; RY) 1 ofi(y™; RT)
Aln R+ f;(y+, R*) ~ fi(y*,R*) O8lnR*

= S;(RY,y") (4.13)

y+

and

S,(RT,7) (4.14)

fo@; R+ ARY) — fo(; RY) 1 0f,(y;RY)
Aln Rt f,(7, R") "~ fo(@,RT) OlnR*

Thus S; and S, are measures of the Reynolds number dependence of f; and f,, re-
spectively. Both vanish identically in the limit as In RT™ — oco. If y;} . denotes a
location where outer flow effects begin to be strongly felt on the inner scaled profile,
then for y™ <yt ., S; should be much less than unity (or else the inner scaling is
not very useful). Similarly, if 7,,;, measures the location where viscous effects begin
to be strongly felt (e.g., as the linear velocity region near the wall is approached),
then S, should be small for ¥ > ¥,,,,- Obviously either S; or S, should increase as
these limits are approached. Outside these limits, one or the other should increase
dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an
“overlap” region where both scaling laws are valid. Since S; will increase drastically
for large values of y for given In R*, and S, will increase for small values of y, an
“overlap” region exists only if there is a region for which both S; and S, remain small
simultaneously. In the following paragraphs, this condition will be used in conjunction
with equation 4.10 to derive the functional form of the velocity in the overlap region
at finite Reynolds number, hence the term ‘Near-Asymptotics’.

Because the overlap region moves toward the wall with increasing R, it is conve-

nient and necessary to introduce an intermediate variable § which can be fixed in the
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overlap region all the way to the limit, regardless of what is happening in physical
space (v. Cole & Kevorkian, 1981). A definition of § which accomplishes this is given
by

g=ytot " (4.15)
or

yt=g6t" (4.16)
Since R = y* /7y, it follows that

g=g5t""" (4.17)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as R — oo
while 7 — 0 and y* — oo. Substituting these into equation 4.10 yields the matching

condition on the velocity in terms of the intermediate variable as

1
g(R*)

+ f,(RT" 5, RT) = fy(RT"§, R") (4.18)

Now equation 4.18 can be differentiated with respect to R* for fized § to yield

equations which explicitly include S; and S,. The result after some manipulation is

— l - [Si(y+,R+)fi(y+aR+) — S,(7, R+)f0(y, R+)] (4.19)

r+ B

_0f,
Tou

where
1 _ Rfdg _ d(/g)
k(Rt) —  ¢2>dRt dInRt

(4.20)

The first term on the right hand side of equation 4.19 is at most a function of R*
alone, while the second term contains all of the residual y-dependence.
Now it is clear that if both
|So| fo << 1/K (4.21)
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and

‘Sz‘fz << 1/l€ (4.22)

then the first term on the r.h.s. of equation 4.19 dominates. If 1/x — 0, the inequal-
ities are still satisfied as long as the l.h.s. of equations 4.21 and 4.22 does so more
rapidly than 1/k. Note that a much weaker condition can be applied which yields
the same result; namely that both inner and outer scaled profiles have the same de-
pendence on R™; i.e., S;fi = S,f, in the overlap range so only 1/k remains. If these
inequalities are satisfied over some range in y, then to leading order, equation 4.19

can be written as

_of,
Yoy

1
_1 (4.23)
r+ P

The solution to equation 4.23 could be denoted as f{!) since it represents a first
order approximation to f,. Because 1/x depends on R* it is not simply the same
as foco, but reduces to it in the limit. Thus, by regrouping all of the y-independent
contributions into the leading term, the method applied here has yielded a more
general result than the customary expansion about infinite Reynolds number. (It is
also easy to see why the usual matching of infinite Reynolds number inner and outer
solutions will not work if the limiting value of 1/k is zero, which can not yet be ruled
out.)

From equations 4.12 and 4.23, it follows that

4+ Of; 1

= == 4.24
e Wi (4.24)

Equations 4.23 and 4.24 must be independent of the origin for y; hence they must
be invariant to transformations of the forms 7 — y+a and y™ — y™+a™, respectively,

where a is at most a function of the Reynolds number. Therefore the most general
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forms of equations 4.23 and 4.26 are:

9fo

(y+5)m . = (4.25)
and
" + a+)% = % (4.26)
The solutions to these overlap equations are given by:
= 5 R) = o W+ a(RO)] + B(R) (1.27)
and
% = K" RY) = ey nly” + ¥ (B9 + B(RY) (4.28)

The superscript “(1)” has been dropped; however it is these first order solutions that
are being referred to unless otherwise stated. Thus the velocity profiles in the overlap
region are logarithmic, but with parameters which are in general Reynolds number
dependent.

Note that the particular form of the solution In(y + a) has also been identified by
Oberlack (1997) from a Lie group analysis of the equations governing homogeneous
shear flows. It will be argued in Section 4.8 that a™ is closely related to the mesolayer,
just as it is for the boundary layer (George & Castillo, 1997). The data will be found
to be consistent with a™ ~ —8. Interestingly, the need for the offset parameter
a appears to have first been noticed by Squire (1948) (see also Duncan, Thom &
Young, 1970) using a simple eddy viscosity model. (Even his value of a™ = 5.9 does
not differ much from the one used here.) George et al. (1996) arrived at a similar
form from a simple one-equation turbulence model for the mesolayer, as discussed in
Section 4.8 below.

A particularly interesting feature of these first order solutions is that the inequal-

ities given by equations 4.21 and 4.22 determine the limits of validity of both equa-
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tions 4.25 and 4.26 since either S, or S; will be large outside the overlap region.
Clearly, the extent of this region will increase as the Reynolds number (or R*) in-
creases.

The parameters 1/k, B; and B, must be asymptotically constant since they occur
in solutions to equations which are themselves Reynolds number independent in the
limit (AIP). Moreover, the limiting values, Ky, Bix, and B,y cannot all be zero, or
else the solutions themselves are trivial. In the limit of infinite Reynolds number the
energy balance in the overlap region reduces to production equals dissipation; i.e.,
€™ = P*. In section 4.8 this will be shown to imply that

du™ 1

= 4.2
< dyt  k(yt+at) (429)

Since the local energy dissipation rate must be finite and non-zero (Frisch (1995)),
it follows that 1/k. must be finite and non-zero. It will be shown below that these
conditions severely restrict the possible Reynolds number dependencies for the pa-
rameters k, B; and B,. (Note that the same physical constraint on the boundary layer
results required the power exponent for the boundary layer, v, to be asymptotically
finite and non-zero.)

The relation between u, and U, follows immediately from equation 4.10; i.e.,

Ue_ 1 _ 1 ot ipipiy_p(pt
= R B - BR) (430

Thus the friction law is entirely determined by the velocity parameters for the
overlap region. However, equation 4.20 must also be satisfied. Substituting equa-

tion 4.30 into equation 4.20 implies that x, B;, and B, are constrained by

n g+ 2/%) _d(Bi = By) (4.31)

dln R+ dln R+

This is exactly the criterion for the neglected terms in equation 4.19 to vanish iden-
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tically (i.e., S;fi — Sofo = 0). Therefore the solution represented by equations 4.27
to 4.31 is, indeed, the first order solution for the velocity profile in the overlap layer
at finite, but large, Reynolds number. Clearly when y* is too big or 7 is too small
for a given value of R*, the inequalities of equation 4.21 and 4.22 cannot be satisfied.
Since all the derivatives with respect to Rt must vanish as R* — oo (AIP), the outer
range of the inner overlap solution is unbounded in the limit, while the inner range
of the outer is bounded only by 7 = —a.

Equation 4.31 is invariant to transformations of the form RT™ — D,R"™ where
D, is a scale factor which ensures that the functional dependence is independent of
the particular choice of the outer length scale (e.g., diameter versus radius). Thus
the velocity profile in the overlap layer is logarithmic, but with parameters which
depend on the Reynolds number, D;R*. The functions x(DsR"), B;(D;R*") and
B,(D;R*) must be determined either empirically or from a closure model for the
turbulence. Regardless of how they are determined, the results must be consistent

with equation 4.31.

4.5 A Solution for the Reynolds Number Depen-
dence

From equation 4.31 it is clear that if either B; — B, or 1/k are given, then the other
is determined (to within an additive constant). Since there is only one unknown

function, it is convenient to transform equation 4.31 using the function

H(D,RY) = (£ — 2y m DR + (B - B,) (4.32)

K Koo
where H = H(Ds;R™) remains to be determined. If H(Ds;R™) satisfies

1 1 dH

S 4.
K Koo dlInD Rt (4.33)
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then equation 4.31 is satisfied. It follows immediately that
1 . 1
Ye _ Ly p,R* + H(D,RY) (4.34)
U

Koo

Thus the Reynolds number dependence of the single function H(D;R") determines
that of k, B; — B, and g¢.
The conditions that both B;,, and B, be finite and non-zero require that:

Either
e B;, B, and k remain constant always;

or
e (i) 1/k — 1/Kk faster than 1/In DsRT — 0, and
e (ii) H(DsR') — Hy = constant.

Obviously from equation 4.32,
Hy = Biso — Boo (435)

It is also clear from the constraint equation that the natural variable is In DyR™.
Since this blows up in the limit as R™ — oo, H can at most depend on inverse powers

of In D,R*. Thus the expansion of H for large values of In D;R* must be of the form:

A 14 Ay n As
[ln DR+ InD;R+* = (In DyR*)?

H(D,R") — Hy = +-- (4.36)

Note that conditions (i) and (ii) above imply that a > 0. Although only the leading
term will be found to be necessary to describe the data, the rest will be carried in

developing the theoretical relations below.
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Substituting equation 4.36 in equation 4.34 yields:

Uc 1 A A1 A2
Ze . C ImD.Rt+IB.. — B — |1
Uy Koo " SR * [ e OOO] * [ln D3R+]a * In DSR+ * (ln D5R+)

L

(4.37)
As RT — oo this reduces to the classical solution of Millikan (1938). This is reassuring
since Millikan’s analysis is an infinite Reynolds number analysis of inner and outer
profiles scaled in the same way. (Note that this was not true for the boundary
layer: The Clauser/Millikan analysis assumed the same scaling laws applied as for
the channel /pipe. George and Castillo argued from the Reynolds-averaged equations
that they had to be different, hence the different conclusions.)

The Reynolds number variation of 1/« and B; — B, can be obtained immediately
from equations 4.32, 4.33 and 4.36 as

K Ke  (InD RT)lte a /InD,R* a / (InD,R+)?
(4.38)

and

(Bi - Bo) - (Bz'oo — Booo) =

_ (I+a)A (2+a) Ay (3+a) A,
~ (InD,R*)e ! 1+ a/ In D;R* 1+ a/ (InDsR*)? oo (439)

Figure 5 shows the friction data of the superpipe experiment of Zagarola & Smits
(1998a). As the investigators themselves have pointed out, careful scrutiny reveals
that the data do not fall on a straight line on a semi-log plot, so a simple logarithmic
friction law with constant coefficients does not describe all the data to within the
accuracy of the data itself. In particular, a log which attempts to fit all of the data
dips away from it in the middle range. On the other hand, a log which fits the high
Reynolds number range does not fit the low, or vice versa. Figure 5 shows two curves:
The first represents a regression fit of equation 4.37 with only the leading term (i.e.,

Ay = As; = 0), while the second shows only the asymptotic log form of equation
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4.37. The former provides an excellent fit to the data for all Reynolds numbers
and asymptotes exactly to the latter, but only at much higher Reynolds numbers.
The differences, although slight, are very important since they entirely determine
(or reflect) the Reynolds number dependence of the parameters 1/, B; and B,.
The latter will be seen later to be especially sensitive to this dependence. Clearly
the simplest of the proposed forms of H captures the residual Reynolds number
dependence, while simply using constant coefficients does not.

The values obtained for the asymptotic friction law parameters using optimization
techniques are ko, = 0.447, Bj,, — By, = 8.45, while those describing the Reynolds
number dependence are A = —0.668 and o = 0.441. The higher order terms in
equation 4.36 were ignored, and will be throughout the remainder of this chapter. The
same optimization techniques showed no advantage to using values of the parameter
D, different from unity, hence D, = 1 to within experimental error. Note that the
values of B;,, and B, cannot be determined individually from the friction data, only
their difference. Nominal values for k and B; — B, are approximately 0.445 and 8.20
respectively, the former varying by less than 0.5% and the latter by only one percent
over the entire range of the data. These values differ only slightly from the values
determined by Zagarola (1996) (0.44 and 7.8, respectively) and Zagarola & Smits
(19984a) (0.436 and 7.66, respectively) using the velocity profiles alone and assuming
that the asymptotic state had been reached. In fact it will be shown later from the
velocity profiles that B; is independent of Reynolds number and approximately equal
to 6.5. Thus only B, significantly changes with Reynolds number and then only
by about 5% over the range of the data, but even this variation will be seen to be
quite important for the outer profile. Note that the friction law is independent of the
parameter a.

All the parameters are remarkably independent of the particular range of data
utilized. For example, after optimizing the parameters in equation 4.37 for the friction

data of all 26 different Reynolds numbers available, the highest 15 Reynolds numbers
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could be dropped before a new optimization would even change the second digit of
the values of the parameters cited above. This suggests strongly, contrary to the
suggestion of Barenblatt et al. (1997) (see also Barenblatt & Chorin, 1998; Smits &
Zagarola, 1998, for response), that the superpipe data are in fact a smooth curve,
uncontaminated by roughness. If the analysis developed herein is correct, then the
reason these authors had a problem with the superpipe data is obvious: the data vary
logarithmically as derived here, and not according to their conjectured power law.
For the boundary layer the friction data are not as reliable as those reported here,
so the functional form of h(6) had to be inferred by GC after a variety of attempts to
describe the variation of the exponent in a power law description of the velocity profile
in the overlap region. Interestingly, the value for « obtained here is almost exactly the
value obtained for the boundary layer data (0.46 versus 0.44). Even more intriguing
is that both of these are nearly equal to the values found for K, and 1/(70cCico)- It
is not yet clear whether this is of physical significance to this, or whether it is just

coincidence.

4.6 Single-point Second-order Turbulence Quanti-
ties.

Unlike the boundary layer where the continued downstream evolution imposes certain
similarity constraints, for pipe and channel flows there is only a single velocity scale
so all quantities must scale with it. An immediate consequence of this is that all
quantities scaling with the velocity only will have logarithmic profiles in the overlap
region. (It is straightforward to show this by the same procedures applied above to
the mean velocity.)

For example, in inner variables, the Reynolds stress profiles are given by

< —UplUnp >
< —upu, >t= # = Aimn(R) In(yt + a*) + Biyun(RT) (4.40)
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As for the velocity, the parameters A; ., and B, ,, are functions of the Reynolds
number and asymptotically constant. Note that the offset ™ has been assumed to
be the same as for the velocity, although this needs to be subjected to experimental
verification.

The Reynolds shear stress is particularly interesting since for it more information
can be obtained from the mean momentum equation. In the overlap region in the

limit as R™ — oo, both equations 4.2 and 4.3 reduce to

oy
or in inner variables,
0< —uv>T
0==— - 4.42
o (442
It follows from substituting the 1, 2-component of equation 4.40 that
Az
=" 4.43
y+ + a+ ( )

It is immediately clear that equation 4.42 can be satisfied only if A;1» — 0 as R — oo.
A similar argument for the outer profile implies 4,15 — 0. Thus to leading order,
the Reynolds shear stress profile in the overlap region is independent of y; however,
the remaining parameters B;;» and B,;s are only asymptotically constant. From
equation 4.4 it is clear that B;;, — 1, but only in the limit. Since < —uv >— u? is
also the inner boundary condition on equation 4.2, B, — 1 in the limit also.
Another quantity of particular interest is the rate of dissipation of turbulence
energy per unit mass, €. For the inner part of the flow, the appropriate dissipation
scale must be u?/v on dimensional grounds, since there are no other possibilities. In
the outer layer in the limit of infinite Reynolds number, the dissipation is effectively
inviscid (as discussed in Section 4.7 below), so it must scale as u2/R. (Note that

this only means that profiles scaled as ev/u? vs. y* and eR/u2 vs. § will collapse in
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the limit of infinite Reynolds number in the inner and outer regions, respectively.) It
is easy to show by the methodology applied to mean velocity and Reynolds stresses
above that the dissipation profile in the overlap region is given by a power law with

an exponent of —1. Thus
. e Ej(RY)
et =

— 7 v ) 4.44
ut oyt +at (444)
and
E (Rt
€= % = _O(R_) (4.45)
ug U+ a

where both E, and E; are asymptotically constant. It has again been assumed that
the origin shift a is the same as for the mean velocity. For the dissipation, this can

be justified using the production equals dissipation limit as shown in the Section 4.8.

4.7 The Effect of Reynolds Number on the Over-
lap Region

The asymptotic values of the parameters established for the friction law will be used
below to calculate the values of x, B; and B, for each Reynolds number of the super-
pipe data. Only either of the B’s need be established from the experiments since their
difference is known from equation 4.32. Before carrying out a detailed comparison
with the velocity data, however, it is useful to first consider exactly which region of
the flow is being described by the overlap profiles. Also of interest is the question of
how large the Reynolds number must be before the flow begins to show characteristics
of the asymptotic state.

The overlap layer identified in the preceding sections can be related directly to
the averaged equations for the mean flow and the Reynolds stresses. From about
y™ > 30 out to about the center of the flow, the averaged momentum equation is
given approximately by

1dP  0< —uv >

=t 4.46
0 p dx + oy (4.46)
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It has no explicit Reynolds number dependence; and the Reynolds shear stress drops
linearly all the way to the center of the flow (v. Perry & Abell, 1975). Inside about
7 = 0.1 and outside of y™ = 30, however, the Reynolds shear stress is very nearly
constant. In fact, at infinite Reynolds number the pressure gradient term vanishes
identically in the constant Reynolds shear stress region and the mean momentum

equation reduces to
_0< —uv >

0
y

(4.47)

At finite (but large) Reynolds numbers this region is similar to the developing bound-
ary layer where the Reynolds stress is effectively constant. Obviously the overlap
region corresponds to this constant Reynolds shear stress layer since the Reynolds
shear stress gradient is the common term to both inner and outer momentum equa-
tions. Note that many low Reynolds number experiments do not have a region where
the Reynolds stress is even approximately constant because the pressure gradient
term is not truly negligible. Hence it is unreasonable to expect such experimental
profiles to display any of the characteristics of the overlap described above, except
possibly in combination with the characteristics of the other regions (e.g., through a
composite solution).

Even when there is a region of reasonably constant Reynolds stress, however, there
remains the Reynolds number dependence of < —uwv > itself. And it is this weak
Reynolds number dependence which is the reason that x, B;, and B, are only asymp-
totically constant. The origin of this weak Reynolds number dependence (which is
well-known to turbulence modelers) can be seen by considering the Reynolds transport
equations. For the same region, y* > 30, the viscous diffusion terms are negligible
(as in the mean momentum equation), so the Reynolds shear stress equations reduce

approximately to (Tennekes & Lumley, 1972),

ou; ou
0=—(<p(9361C >+<pa;

oU, oU; 0< U;UpUg >
>)—|< uug > —+ < ugug > - —€ik

855‘2 8:52 6:52
(4.48)
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where U; = Ud;;. Thus viscosity does not appear directly in any of the single point
equations governing the overlap region, nor in those governing the outer layer.

Viscosity, however, can be shown to play a crucial role in at least a portion of the
constant stress layer, even at infinite Reynolds number. The reason is that the length
scales at which the dissipation, €;;, actually takes place depend on the local turbulence
Reynolds number, R; = ¢*/ve. For R; > 5000 approximately, the energy dissipation is
mostly determined by the large energetic scales of motion. These scales are effectively
inviscid, but control the energy transfer through non-linear interactions (the energy
cascade) to much smaller viscous scales where the actual dissipation occurs (Tennekes
& Lumley, 1972). When this is the case, the dissipation is nearly isotropic so €;; ~
2¢d;,.. Moreover, € can be approximated by the infinite Reynolds number relation: € ~
q®/L where L is a scale characteristic of the energy-containing eddies. The coefficient
has a weak Reynolds number dependence, but is asymptotically constant. Thus, the
Reynolds stress equations themselves are effectively inviscid, but only exactly so in
the limit. Note that in this limit the Reynolds shear stress has no dissipation at all,
i.e., €19 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing ranges nearly overlap, and so the latter (which also produce the Reynolds
shear stress) feel directly the influence of viscosity. In this limit, the energy and
dissipative scales are about the same, so the dissipation is more reasonably estimated
by € ~ vq®/L?, where the constant of proportionality is of order 10. The dissipation
tensor, €; is anisotropic and €12, in particular, is non-zero. (Hanjalic & Launder
(1974), for example, take €19 = (— < ujug > €/¢?).)

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from € ~ v¢?/L? to
€ ~ q3/L as R; increases. This is felt by the Reynolds stresses themselves, which will
show a strong Reynolds number dependence. Obviously, in order to establish when

(if at all) parts of the flow become Reynolds number independent, it is necessary to
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determine how the local turbulence Reynolds number varies across the flow.

Over the outer part of the pipe (which is most of it), L ~ R/2 and ¢ ~ 3u,. So
when RT > 3,000, the dissipation in the outer flow is effectively inviscid. Above this
value the mean and turbulence quantities in the core region of the flow should show
little Reynolds number dependence. This is indeed the case as illustrated by Figure 4.
The outer region can, of course, not be entirely Reynolds number independent, except
in the limit, and this residual dependence manifests itself in the overlap layer in the
slow variations of k and B,, for example.

The near wall region is considerably more interesting since in it the scales govern-
ing the energy-containing eddies are constrained by the proximity of the wall. Hence,
the turbulence Reynolds number, R;, depends on the distance from the wall, y. In
fact, R; ~ y* with a coefficient of about 18 (Gibson, 1997); so, in effect, y* is the

turbulence Reynolds number. Two things are then immediately obvious:

e First, as the Reynolds number increases more of the pipe (in outer variables) will
become effectively inviscid and will be governed by the inviscid dissipation rela-
tion. Correspondingly, the properly scaled mean and turbulence quantities in at
least the outer part of the overlap layer (say, an inertial sublayer) will become
Reynolds number independent, although very slowly. This cannot be reached
until the layer is governed by the infinite Reynolds number dissipation relation
and its coefficient has reached the limiting value. Obviously this can happen
only when there is a substantial inertial sublayer satisfying y* > 300 (approx-
imately) and for which the mean pressure-gradient term is negligible, typically
7 < 0.1. Thus the asymptotic limits are realized only when 300v/u, << 0.1R
or Rt >> 3000. Therefore below R™ = 30, 000 approximately, even this inertial
sublayer should display a Reynolds number dependence, not only in s, B,, and
B;, but correspondingly in the behavior of < u? >, < uv >, etc. The lower
limit of this inertial sublayer also corresponds (for the same reasons) to the

place where a k~%/3-region should begin to be observed in the energy spectra.
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e Second, at the bottom of the overlap region (or the constant Reynolds shear
stress layer) there will always be a mesolayer’ below y™ a2 300 in which the
dissipation can never assume the character of a high Reynolds number flow, no
matter how high the Reynolds number becomes. This is because the dissipation
(and Reynolds stress as well) can never become independent of viscosity in this
region. Even though the single-point Reynolds-averaged equations are inviscid
above y* & 30, the multi-point equations are not! This fact is well-known to
turbulence modelers (v. Hanjalic & Launder, 1974), but the consequences for
similarity theory and asymptotic analyses do not seem to have been noticed
previously. It is particularly important for experimentalists who have routinely
tried to apply asymptotic formulae to data in this region, wrongly believing the

mesolayer to be the inertial sublayer.

Thus, as illustrated in Figure 6, the constant stress layer has two separate re-
gions, each having their own unique character: the constant Reynolds shear stress (or
overlap) region and the viscous sublayer where the viscous stress is also important.
Each of these has two subregions. The overlap region consists of an inertial sublayer
(y™ > 300, ¥ < 0.1) which is nearly inviscid, and a mesolayer (30 < y* < 300) in
which the viscous stresses are negligible, but in which viscosity acts directly on the
turbulence scales producing the Reynolds stresses. The viscous sublayer is comprised
of a buffer layer (3 < y* < 30) where the Reynolds stress and viscous stress both
act directly on the mean flow; and the linear sublayer near the wall (y™ < 3) where
the viscous stresses dominate. Of these four regions, the inertial sublayer will be the
last to appear as the Reynolds number is increased. Thus, the overlap layer itself
will be most difficult to identify at the modest Reynolds numbers of most laboratory
experiments, unless the properties of the mesolayer are known. In the next section it

will be argued that, in fact, it is the offset parameter a™ which accounts for it. Thus

2This appropriates a term from Long (1976) (see also Long & Chen, 1981) who argued strongly
for its existence, but from entirely different physical and scaling arguments which we find untenable.
Despite the skepticism which greeted his ideas, Long’s instincts were correct.
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Figure 6: Schematic showing various regions and layers of pipe and channel flows
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the inertial sublayer can readily be identified as the region for which y* >> |a™| and
the velocity profile in it is primarily a log profile in y alone, the contribution of the
offset being negligible; i.e., In(y+a) ~ Iny. Attempts to identify logarithmic behavior
inside y™ = 300 from straight lines on semi-log plots of u™ versus y* are of little use
if the theory presented herein is correct because of the presence of a. They will, of
course, always succeed as a local approximation, but coefficients so determined will
be incapable of extension to higher values of y* as the Reynolds number is increased.
And this is indeed the history of attempts to identify the log layer and its parameters

from such data.

4.8 A Mesolayer Interpretation of a™

As noted in Section 4.4 above, Squire (1948) was apparently the first to notice the
need for the offset coordinate y* +a*. The basis of his argument was that the mixing
length could not be taken as proportional to y alone, since the physics incorporated
in it could not account for the thickness of the viscous sublayer. Although the overlap
analysis presented here depends on different closure assumptions, the invariance to
coordinate origin argument presented earlier is not much different, in principle at
least. The preceding section argues for the existence of a mesolayer below the usual
inertial layer in which the well-known scale separation of the energy and dissipative
eddies cannot exist. The purpose of this section is to show how these last two ideas
are related.

The overlap solution of equation 4.28 can be expanded for values of y* >> |a™|

U 1 ot 1at® 14t
Y o ft pty— 2 + 1,2 e 14
U*—fl(y ,R)—H{[lny +I€BZ]+y+ 2y+2+3y+3+'” (4.49)
For y* >> 2|a™|, this can be approximated by the first three terms as
v 1 +
— o~ Iyt 4+ B+ —— (4.50)
U K KY
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An equivalent expansion in outer variables is given by

~U, 1 =
U=l o ligip 4+ 2 (4.51)
K KT

U

Equations 4.50 and 4.51 are useful for three reasons: First, they are an excellent
approximation to the overlap solutions for values of y* > 2|a™| (or 7 > 2|a|). Second,
they are easier to incorporate into a composite solution which includes the viscous
sublayer than is the overlap solution itself since they do not have the singularity at
yT = —a™ (cf. George & Castillo, 1997). Third, the inner variable version can be
shown to offer useful insight into the role of the parameter a™ as accounting for the
mesolayer.

In the overlap region the turbulence energy balance reduces to production equals
dissipation; i.e., in inner variables, P* ~ €. This is exactly true in the limit of
infinite Reynolds number, and approximately true at finite Reynolds numbers for
30 < y* < 0.1R*. It follows immediately by substitution of the overlap solutions for
velocity, Reynolds stress and dissipation for Pt and €™ that

pt— Biis ot — E;

SRy e e e

It is clear that the offset a™ must be the same for both velocity and dissipation, as
assumed earlier. Hence E; = B;1o/k — 1/k, at least in the limit as RT™ — oo since
Bi1o — 1.

Therefore, in this limit the dissipation and velocity derivative profiles are identical

(as noted earlier) and equal to the derivative of equation 4.28 with respect to y; i.e.,

1
e = W +a) es fr(y™) (4.53)

where

+
o

€ (4.54)
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and

fre[l+—] ~1-— (4.55)

where the higher terms in the expansion in a™ have been neglected. This is identical
to the form used by many turbulence modelers for wall-bounded flows (cf. Reynolds,
1976; Hanjalic & Launder, 1974) to account empirically for the change in the char-
acter of the dissipation near the wall since R; ~ 18y™ as noted earlier. Thus the
interpretation of a’ as a mesolayer parameter is obvious since it, in effect, modifies
the dissipation (and hence the velocity profile) near the wall. The suggested value of
a™ = —8 accomplishes this.

A similar form of fr is obtained if the power law profile of George & Castillo
(1997) for the boundary layer is expanded, even though the form of ¢, is different.
Interestingly, if the order of argument is reversed and any of the simple dissipation
models (eg., Reynolds, 1976) are used to deduce the mesolayer contribution to the
velocity profile for the boundary layer, they produce a y+_1 additive instead of the
y*ﬁi_1 required. Obviously these simple turbulence models, as currently posed, are
consistent with the theory developed herein only for homogeneous flows, although the
difference is slight.

Note that the common practice of choosing the model constants in equation 4.55
to produce a log profile at y* = 30 is clearly wrong if the proposed theory is correct,
since this is the location where the mesolayer only begins. As noted in Section 4.7,
the mesolayer ends at y™ = 300, and the inertial sublayer begins. It follows that a*
should be chosen to “turn off” the low Reynolds number contribution at about this

point (for increasing y*) and “turn on” the Iny solution.

4.9 The Superpipe Velocity Data

Now that the approximate region of validity of the overlap solution has been es-

tablished as 30 < y™ < 0.1R™ it is possible to test the theoretical profiles and the
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Figure 7: Variation of 1/k — 1/ky with RY, ko, = 0.447

proposed layer model for the Reynolds number dependence. If they are correct, only
an independent determination of either B; or B, is necessary to completely specify
the profile, the rest of the parameters having been determined from the friction data.
Since the superpipe experiments have a substantial range satisfying the conditions
for the existence of the inertial sublayer (300 < y* < 0.1R*), it should be possible to
establish the value of B; (or B,) independent from the mesolayer. Also it should be
possible to determine whether the parameter a® accounts for the mesolayer behavior,
at least for those data sets where data are available below y™ = 300.

For all of the data sets it appears B; = 6.5 is nearly optimal (at least for values
of RT > 850, the lowest available in this experiment), so that for the remainder of
this chapter it will be assumed that B; = B,,. This value is close to the value of
6.15 determined by Zagarola & Smits (1998a), who assumed « fixed at 0.436. Since
the difference, B;oo — By, = 8.45, was established from the friction data, it follows
that Byo, = —1.95. (Note, however, that the DNS channel data below suggest that
B, = —2.1 and B;,, = 6.35 might be more appropriate, but the evidence is not

conclusive yet.)
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The constancy of B; implies that it is B, which shows all the Reynolds number
dependence of the difference given by equation 4.39. Figures 7 and 8 show the the-
oretical variation of 1/k and B, with Reynolds number (equations 4.32 and 4.33).
Clearly both converge very slowly to their asymptotic values. This has far more rela-
tive effect on B, than it does on 1/k, however, since B, has achieved only 85% of its
asymptotic value at RT = 10°. The observed variation of 1/« and B, and the con-
stancy of B; can be contrasted with the boundary layer results of George et al. (1996)
and George & Castillo (1997) in which C,, the outer coefficient was nearly constant
while the power exponent v and the inner coefficient C; varied over the entire range
of Reynolds numbers available.

Therefore the outer profile scaling will show more variation with Reynolds number
in the overlap region than the inner where only x varies. This explains a great deal of
the problems historically in establishing what B, is and in determining whether the
outer scaling is correct. And it might also explain the conclusion of Zagarola & Smits
(1998a) that a different scale for the outer flow is required, especially if attention is

focused on the overlap region instead of the core region of the flow.
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Figures 9, 10,11 and 12 show representative velocity profiles of the superpipe
data at high and low Reynolds numbers, respectively. The profiles scaled in inner
variables are shown in the upper plots, and the same data scaled in outer variables
is shown in the lower plots. Also shown for each profile are the overlap solutions of
equations 4.27 and 4.28 together with equations 4.38 and 4.39. The vertical lines on
each profile show the suggested bounds for the two sublayers of the overlap region; in
particular, the mesolayer (30 < y* < 300 or 30/R™ < ¥ < 300/R™) and the inertial
sublayer (300 < y* < 0.1R* or 300/R" < § < 0.1). The limits vary with R* for
each profile. Note that for the highest Reynolds number plots the data were not
measured close enough to the wall to see any of the mesolayer; however, they do show
clearly the inertial sublayer. For the lowest Reynolds numbers, enough of the near
wall region was resolved to clearly see the mesolayer, but the extent of the inertial
sublayer was limited or non-existent. The theoretical profiles were computed using
the measured value of R and assuming a* =0, —8, and —16 (or a = 0, —8/R™, and
—16/R™). (As noted above, the value of B,,, = —1.95 is determined since Bjy, has
been chosen as 6.5 and B;y, — Byoo = 8.45 from the friction data.) Therefore there are
no adjustable parameters in the outer scaled plot if a™ is determined from the inner.
Thus these outer profiles provide an completely independent test of the theory (and
the data as well).

The value of a™ = 0 corresponds to the inertial sublayer solution only, and as
expected describes the data well only in the range of 300 < y* < 0.1R*. The
boundary layer value of a™ = —16 (from the power law) is clearly too large, but
then there is no reason to expect it to be the same since the homogeneous pipe and
inhomogeneous boundary layer flows are fundamentally different, at least in the outer
and overlap regions. The best fit to the DNS channel flow data (see below) above
yt & 30 is also a™ = —8. It is possible to fit the data to substantially lower values of
y* by using different values of a™, but there appears to be no theoretical justification

for doing so. Note that the Pitot tube used to make the pipe velocity measurements
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Figure 13: Comparison of data and theories for y*du™/dy™ versus y*.

could be as much as much as two percent too high at y™ = 30 because of the local
turbulence intensity there (since Upeas/U ~ 1+ [< v2 > + < 02 > + < w? >
]/2U?). Additional positive errors probably arise when the probes are closest to the
wall because of the asymmetry in the streamline pattern around them. In spite of
this, the agreement between experiment and theory over the entire overlap region is
particularly gratifying since the velocity data were only used to establish B; and a™*,

the remaining parameters having been entirely determined by the friction data.

4.10 Comparison with Other Data and Theories

Figure 13 shows the profiles of yTdU™/dy* computed from a number of sources,
including the LDA experiment of Durst, Jovanovic & Sender (1995) and the DNS
data discussed below. Also shown are a comparison of the present theoretical results
with the classical theory and the recent contributions of Zagarola & Smits (1998a)
and Barenblatt (1993). Ounly a single x = 0.447 is used for the present theory since
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in inner variables the parameters are nearly constant, but the same three values of
a®t (—16,—8, and 0) are shown. The present theory reduces to a constant in these
variables only when a™ = 0. On the other hand for large values of y* , yTdU ™ /dy™ —
1/k for all values of a™.

The data themselves are not very helpful, especially in the important region from
y* = 30 to 100. The most that can be said from all the data taken together is that
the value of a™ is bounded by these values. A case could be made that —16 is the
best choice if the Durst et al. data are used. On the other hand, the DNS channel
data discussed below would tend to indicate that zero might better.

There are two reasons for why the data are problematical: First the only reliable
data in this region are from experiments or simulations in which the Reynolds is
so low that it is impossible to distinguish an overlap region which is reasonably
independent of the inner and outer layers. George & Castillo (1997) dealt with this
problem for boundary layers by using semi-empirical inner and outer profiles, then
building a composite solution so all the effects could be considered. Obtaining such
a composite solution certainly should be a focus of future work. Second, as noted
above, this is probably the most difficult region in which to measure accurately.
The errors in measurement with virtually every probe are larger than the differences
between the theories which are being compared, especially for the higher Reynolds
numbers. Clearly better experiments and/or simulations at higher Reynolds numbers
are necessary.

Figure 14 compares velocity profiles in the overlap region of the present theoretical
result with the classical theory and the recent contributions of Zagarola & Smits
(1998a) and Barenblatt (1993). As noted above there is little difference between the
present results and that of Zagarola and Smits except below 3 < 300 — 500 for which
the latter suggest a power law region exists. Although it can certainly be argued that
a power law fits their low Reynolds number data in this region, there is reason to doubt

both the data and the matching procedure used to obtain the power law result. As
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Figure 14: Comparison of Velocity Profiles from Various Theories

noted above, measurements with Pitot tubes close to (or even on) the wall might be
expected to be in error by the small amounts of interest here. Also, the matching
procedure they employ depends on the existence of an outer scale velocity different
from that used to obtain the log region. The outer scale they suggest, U, — U,,, is
proportional to u, in the limit in which the matching is carried out, hence only a log
profile can result (cf. Appendix I of George & Castillo, 1997).

The family of curves due to Barenblatt can at most be argued to fit a region which
moves to the right as the Reynolds number is increased. This is exactly what would
be expected if the power law form being fitted were not the right choice for an overlap
region, a conclusion consistent with the difficulties in this “theory” in accounting for

the superpipe friction data as noted earlier.
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4.11 Channel versus Pipe Flow

Although both fully-developed channel and pipe flows are homogeneous in the stream-
wise direction and both scale with u,, there is no reason, in principle, to expect the
outer flow or overlap profiles of channel flow to be the same as for pipe flow. The
former is planar and homogeneous in planes parallel to the surface, while the latter
is axially symmetric. The geometries are different, but the averaged equations are
nearly the same, differing only in the turbulence and viscous transport terms.

The inner regions of both flows have long been known to be quite close (v. Monin
& Yaglom, 1971). In fact, they must be exactly the same in the limit as the ratio of
the extent of the viscous sublayer to the pipe radius (or channel half-width) goes to
zero. Therefore it is reasonable to hypothesize that the inner regions of both flows be
the same. Then the only differences between channel and pipe flows must appear in
the outer flow. If this is true, then all of the parameters governing the inner region
(including the overlap region in inner variables) must be the same for both pipe and
channel flows. In particular, the parameters x and B; must be the same, as well as
their dependence on Reynolds number. Hence even the empirical constants A and «
must be identical. Only the parameter B, and the scale constant D can be different.
Moreover, since equation 4.31 must be satisfied, the channel flow value of B, can at
most differ by an additive constant from the pipe flow value, since any other difference
would affect the Reynolds number-dependent relation between x and B; — B,.

Figures 15 and 16 show the mean velocity profile data from the channel flow
simulations of Kim, Moin & Moser (1987) and Kim (1989) at values of R* = 180 and
395, where R in this case is taken to mean the channel half-width. Also shown is the
profile of Kim (1997) at R™ = 595.> As before the profiles scaled in inner variables
are presented in the upper figure, and the same data in outer variables in the lower.

By the criteria established earlier, there should be no region which is described by

3The authors are very grateful to Professor Kim for making this data available to us. It has since
been published as Moser, Kim & Mansour (1999)
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inner variables.
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Figure 16: Channel flow DNS data of Kim et al. (1987), Kim (1989) and Kim (1997),
outer variables.
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a simple logarithmic profile alone without the mesolayer contribution, even at the
highest Reynolds number. In fact, as is clear from the vertical lines on the plots,
there should not even be a mesolayer region in the lowest Reynolds number profile
(since 0.1R* < 30).

Nonetheless, the theoretical overlap solution, equation 4.28, with exactly the pa-
rameter values used above for the superpipe data fits all three sets of data in inner
variables nicely over the very limited range 30 < y* < 0.1R". (In fact, the theo-
retical curve appears to work well to values of y* substantially closer to the wall,
even though its use below y™ = 30 cannot be justified theoretically, at least not by
the arguments presented earlier.) It is not even necessary to adjust the scale factor
D, which was chosen as unity, just as for the pipe data. This agreement is all the
more remarkable because all of the constants have been obtained from the superpipe
experiment at much higher Reynolds number.

The theoretical outer velocity profile uses the pipe values for all constants except
for B,y as noted above. Since B,y is quite small for the channel flow, even small
uncertainties about its value have a relatively large effect on the outer profile. There-
fore the approach taken here has been to first determine B;,, — B, from the channel
friction data, then use the value of B;, from the superpipe (since they should be
the same as noted above) to determine B, for the channel. Thus the channel flow
velocity data scaled in outer variables provide a completely independent test of the
theory. Unlike the superpipe data, however, there is much less DNS data available so
a sophisticated optimization is not possible. However, there is only a single parame-
ter which needs to be determined. Note that the experimental channel flow data has
been avoided entirely because of uncertainties about the shear stress (v. Kim, Moin
& Moser, 1987).

The best overall fit to the friction data, U, /u., is achieved by choosing B;s— Boso =
7.0 with the relative errors being 0.18%, 0.57%, and 1.2% for the Reynolds numbers
of 595, 395, and 180 respectively. It follows that B,.,, = —0.5.
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As shown in Figure 16, equation 4.27 provides a reasonable fit to the higher
Reynolds number profiles over the same region as for the inner scaling. The fit is
especially impressive since there has been no effort to optimize the fit to the velocity
profile data. (Recall that all constants but one were determined by the superpipe
and the remaining one was chosen from the friction datal) A near perfect fit (not
shown) to the two higher Reynolds number profiles can be achieved, however, by
using B,,, = —0.65. This will increase the relative error in the friction estimates to
0.089%, 1.3%, and 2.0%, respectively, if B; is maintained at 6.5. On the other hand,
if the value of B;, is reduced to 6.35, then both the better friction prediction and the
better outer profile fits can be maintained simultaneously (since B;in — Booo = 7.0
is maintained), but with little relative change to the inner profile. Note that such
a value for B; would be closer to the value of 6.15 suggested by Zagarola & Smits
(1998a). The authors have resisted the urge to re-analyze the pipe flow data until
higher Reynolds number DNS data confirm the need to do so, but it is clear that the
only other effect would be to change the pipe flow value of B,y from —1.95 to —2.1
which would hardly be noticeable in the plots.

All of the errors between the calculated and DNS values of U./u, are within
the uncertainty of the DNS data itself which is estimated at one to two percent.
The reason for the larger discrepancy between the lower Reynolds number profiles
is probably that the theory is simply being stretched to Reynolds numbers below
where it can reasonably be expected to apply. It is clear that the value of B, is
substantially lower for the channel than for the pipe, but this was expected since, as
noted above, the differences between the two flows should show up only in the outer
flow.

The success of the theory developed herein in accounting for the channel flow data
using the pipe flow constants should give considerable confidence in the entire theoret-
ical approach. Moreover, it provides an independent confirmation of the values of the

constants and the empirical function utilized for the Reynolds number dependence.
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4.12 Summary and Conclusions

The Asymptotic Invariance Principle and the deductions from Near-Asymptotics, to-
gether with the recognition of the existence of a mesolayer, have provided an excellent
description of the mean velocity and skin friction data from fully-developed channel
and pipe flows over more than three and a half decades in Reynolds number. Specif-
ically the theory describes the velocity profile in the region 30 < y* < 0.1R™ (or
30/R* <7 < 0.1) for the superpipe experiment (850 < R* < 530,000) and the low
Reynolds number DNS data as well (RT = 180, 395 and 595). Of the five parameters
needed to describe the flow, four could be determined only from the friction data
alone. Three of these (ko = 0.447, A = —0.67 and « = 0.44) probably apply to any
stream-wise homogeneous wall-bounded flow. The difference parameter which appears
in the friction law, Bjs — Booo, is different for pipes and channels (even though Bj,
is the same). From the superpipe experiment, B;s, — By = 8.45, while from the
DNS channel data it was estimated to be 7.0. Both pipe and channel data sets were
consistent with constant values of B; ~ Bj,, = 6.5 and a™ = —8. It follows that
the outer parameter B,,, = —1.95 for the pipe flow, and —0.5 for the channel flow.
A case can also be made that the limiting values of B,y should be —2.1 and —0.65
corresponding to B;,, = 6.35, but a final decision can probably not be made until
higher Reynolds number DNS data becomes available.

Unlike the boundary layer where both Reynolds number effects and the mesolayer
were of equal importance in understanding the data, for pipe and channel flows the
Reynolds number dependence was found to be slight. In fact, only B, shows significant
variation over the range of the data, and then only about 5%. The variation of the
von Karman parameter, x, was only about 1%; and both B; and a® were constant to
within the accuracy of the data.

On the other hand, the mesolayer concept (and a™ in particular) proved crucial in
understanding where the theory applied and in understanding why previous attempts

to verify the log law were less than totally satisfactory. In particular, the overlap mean
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velocity profile was found to not be a simple logarithm in y, but instead a logarithm
in y + a. The most important consequence of this is that attempts to establish Iny
behavior using velocity profile data inside y™ = 300 are doomed to failure and the
results misleading unless the mesolayer (and a in particular) are explicitly accounted
for. This, of course, explains much of the confusion in the literature about precisely
what the log parameters were and where the theory applied — not only was the wrong
profile being used, but it was being applied to the wrong region.

It should be noted that for their boundary layer data analysis, George et al. (1996)
and George & Castillo (1997) used a procedure which was the reverse of that used
here. There a series of careful attempts was first made to obtain directly the variation
of the parameters from the velocity profiles, then the friction law was inferred and
shown to be in agreement with direct measurements. The fact that the procedure
followed here has been equally successful lends credibility to both analyses, especially
in view of the importance of the subtle difference between the friction law proposed
here and a simple log law with constant coefficients.

There are a number of interesting questions which remain. One of these is whether
the mesolayer parameter at is indeed constant as it appears it might be. This will
require accurate measurements of the velocity profile near y* = 30 at considerably
higher Reynolds numbers than has been possible to-date. Note that the problem
is not with the overall flow Reynolds number (which in the superpipe was certainly
adequate), but with the inability to resolve the flow near the wall at the higher
Reynolds numbers due to probe size limitations. An obvious solution is to increase
Reynolds number by increasing the pipe diameter — and not by decreasing viscosity
or increasing the pressure drop — so less absolute resolution is required at a given
Reynolds number.

Another question arises from the Reynolds number dependence itself which is
nearly negligible for channel and pipe, but crucial for boundary layer flows. Is this

a subtle consequence of the homogeneity of the former and inhomogeneity of the
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latter, or is it simply a reflection of the differing inner and outer velocity scales for
the boundary layer with the consequent Reynolds number dependence? Or are these
the same thing? Or is the boundary layer’s dependence a residual of the dependence
on upstream conditions?

Then there is the fact that the parameter, a, which accounts for the Reynolds
number dependence is nearly the same as for the boundary layer, and tantalizingly
close to Kk and the boundary layer value of 1/(7xCoxo). The possible universality of
these is particularly interesting, especially given the agreement between theory and
experiment for both the homogeneous and inhomogeneous flows. A consequence of
this is that the dissipation profiles for the pipe and the infinite Reynolds number
boundary layer are nearly identical throughout the overlap region, even though they
differ substantially for the finite Reynolds numbers of experiments. And, of course,
this raises the question for the functions H (for the pipe and channel) and A (for the
boundary layer) which contain the essential Reynolds number dependence of the flow:
Can they (or alternatives) be derived directly from the underlying physics of the flow,
perhaps through symmetry considerations of the turbulence dissipative scales or from
the multi-point equations?

In conclusion, unlike the classical boundary layer theory which was shown by
George & Castillo (1997) to be fundamentally flawed, the same approach has been
able to show that the classical theory for pipe and channel flows is really pretty
good. The present analysis has, from purely deductive reasoning using the Reynolds-
averaged Navier-Stokes equations, been able to identify why the classical results were
not totally successful, and was able to account for recent DNS, LDA and superpipe
observations. Thus it would seem that the Navier-Stokes equations indeed apply to

turbulence, hardly a novel idea to most, but reassuring nonetheless.
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Chapter 5

Two-Dimensional Walljets

... crisis simultaneously loosens the stereotypes and provides incremental
data necessary for a fundamental paradigm shift.

— Thomas Kuhn (1928-1996), The Structure of Scientific Revolutions

5.1 Introduction

The flow under consideration is the plane wall jet! with no externally imposed flow
(Figure 1). It is simulated in the laboratory by a jet of fluid from a high aspect ratio
slot at the wall exhausting into a large chamber. The development of a plane wall jet
is shown in figure 2 using the data of Eriksson et al. (1998). In the ideal plane wall
jet the flow is of infinite extent in the transverse (z) direction, and unconstrained in
either the streamwise (x) or cross-stream (y) directions.

Turbulent wall jets have long been a favorite of experimenters and modelers, both
because of their simple boundary conditions and their close resemblance to many flows
of engineering importance. Such flows include applications in film cooling, ventilation,

and separation control over wings, to cite but a few examples. An abundance of papers

1 This chapter is largely based on the forthcoming paper by George et al. (2000). (George, W. K.,
Abrahamsson, H., Eriksson, J., Karlsson, R., Lofdahl, L. & Wosnik, M. (2000) A similarity theory for
the turbulent plane wall jet without external stream. J.Fluid Mechanics, accepted for publication).
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Figure 1: Schematic of the plane wall jet.

have been written about wall jets, and numerous review articles. Noteworthy with
regard to this work are the ones by Launder & Rodi (1981, 1983) which provide
excellent summaries of the state of knowledge to the early 1980’s. Wygnanski, Katz
& Horev (1992) (hereafter referred to as WKH) and Abrahamsson, Johansson &
Lofdahl (1994) (hereafter referred to as AJL) both extend the reviews to the present,
and provide more experimental data of their own.

Recently, Karlsson, Eriksson & Persson (1993a,b) (hereafter referred to as KEP)
and Eriksson, Karlsson & Persson (1997, 1998, 1999) (hereafter referred to as EKP)
have provided velocity measurements which resolve both the high turbulence intensity
outer flow and the wall region down to y™ = 1 using LDA (in a large water tank).
The latter provide, for the first time, direct determination of the wall shear stress
without reference to the theories being tested.

There has long been the suspicion that there should exist a similarity solution
of some type for the plane wall jet; however, attempts to identify the solution have
not been totally successful. Irwin (1973) tried to apply the single length and velocity
scale methods presented in most text books, and had some success in scaling the outer
mean velocity with the velocity maximum, U,,, and the velocity half-width, y;/,. The

scaling was less successful for the Reynolds stress, and no statement at all could be
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made about how the outer flow was coupled to the inner flow or what the friction law
was, other than empirically. WKH were particularly critical of the use of the familiar
law of the wall and log profiles from boundary layer theory for the near wall region.

Here the question of whether the plane wall jet should admit to similarity solutions
at all is reconsidered. A new theory based on the principles discussed in chapter 2 is
proposed and will be tested against wall jet experiments, and compared step-by-step
with the corresponding theory for the zero pressure gradient boundary layer outlined
in chapter 3 and by George & Castillo (1997).

Experiments receiving particular attention will be those of KEP/EKP and AJL.
The KEP/EKP experiments were carried out in a large water tank at Vattenfall
Utveckling AB, Sweden, using two-component burst-mode LDA with statistically
uniform seeding. The AJL experiment used hot-wires in an air facility at Chalmers
University of Technology, Sweden. The KEP/EKP data are believed to be more
accurate than the AJL data because of well-known hot-wires errors close to walls,
and also in the high intensity outer turbulent flow where local instantaneous flow
reversal can occur. However, both sets of data are useful in this context for several
reasons: Both experiments were carefully coordinated and achieved very similar inlet
conditions. The hot-wire data have less scatter than the LDA data, making it easier
to sort out trends, especially in the second moment data. Also, as will be seen later
in section 5.5, the hot-wire errors themselves scale in similarity variables, at least
away from the very near wall, so even if the curves differ (usually slightly) from
the LDA profiles, they can be used to establish whether the profiles collapse with a
given scaling. In the experiments of AJL and KEP/EKP, the aspect ratio (facility
width/slot height) was 200:1 and 151:1, respectively.

Usually, experimenters try to achieve low turbulence (potential flow), “top-hat”
source (inlet) conditions (c.f. figure 3) by means of turbulence-reducing screens,
honey-comb or other flow straighteners and a large contraction. Figure 3 of Eriksson,

Karlsson & Persson (1998) shows that a flat inlet velocity profile was achieved over
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Figure 3: “Top-hat” source conditions for plane wall jet.

approximately 70% of the slot height with a turbulence intensity (u/Up) of less than
1% . Figure 4 of Abrahamsson, Johansson & Lofdahl (1994) shows that a flat inlet
velocity profile was achieved over approximately 90% of the slot height with a tur-
bulence intensity (u/U,) of about 0.4% . The transverse (spanwise) variation of the
mean inlet velocity Uy in the KEP/EKP and AJL experiments was less than 0.25%
and 0.5%, respectively.

Also used in the experimental verification of the analysis were two data sets of
WKH without external stream. While the experimental facilities of KEP/EKP and
AJL were designed with an “infinite” vertical wall above the inlet slot, the WKH
experiment only had a small “lip” above the slot. This does not change the (idealized)
boundary conditions for the analysis, however, due to the finite size of the different
experimental setups it will change the entrainment field somewhat. The two cases
also have to be treated differently in computations. The WKH data was acquired
using hot wire (HW) anemometry in air. For the cases considered, the aspect ratio

(facility width/slot height) was 120:1.
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5.2 Governing Equations and Boundary Conditions

The equation of motion and boundary conditions appropriate to a plane wall jet with

constant properties at high Reynolds number are given by (Irwin, 1973)

oU oU 0
Ua—:c+v(9—y_6_y

<—uv>+ua—y]—{a—x[<u > — < >]} (5.1)

where U — 0 as y — oo and U = 0 at y = 0. This equation has been obtained
by integrating the y-momentum equation across the boundary layer to eliminate the
pressure. It is the same equation that governs both the plane free jet and the turbulent
boundary layer at zero pressure gradient; only the boundary conditions are different.

Equation 5.1 can be integrated across the flow to yield the momentum integral

equation given to second order by
d T T,
%/[U2+ <u?>—<v?>|dy =" =—u? (5.2)
0

where 7, is the wall shear stress and u, is the friction velocity. If the flow indeed

evolves free from other influences, equation 5.2 can be integrated from the source to

yield
/[U2+ <u?>—<v?>|dy = -M, - /T—wd:c' (5.3)
p
0 . , 0

m. added at source m. lost to wall

momentum contained in jet ”
where pM, is the rate at which momentum is added per unit length at the source.
Thus unlike the plane free jet where the momentum integral is constant, for the plane
wall jet there is a slow but continuous loss of momentum to the wall. And unlike the
boundary layer, the supply of momentum driving the flow is finite.

The presence of the no-slip condition precludes the possibility of similarity solu-

tions for the entire flow. The normal stresses in equation 5.1 are negligible to second

order, and can be omitted for now with no loss of generality (in section 5.6 it will be
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shown from the Reynolds stress equations that they also scale in similarity variables).
Therefore solutions are sought which asymptotically (at infinite Reynolds number)
satisfy the following outer and inner equations and boundary conditions:

e Outer Region

oU oU 0
U Ve—_ = — [« — A4
ox Jdy Oy [< —uv>] (5.4)

where U — 0 as y — o0.

e Inner (or near wall) region

0=

dy oy

< —uv > +1/8—U] (5.5)

where U =0 at y = 0.

The neglected terms in both inner and outer equations vanish identically only at
infinite Reynolds number. However, there is nothing in the development of these
equations which precludes their approximate validity from the time the flow undergoes
transition.

Just as for the turbulent boundary layer, equation 5.5 for the inner region can be
integrated to obtain

ou 9
< —uUv > AV = — = u; 5.6
% s (5.6)

where 7, is the wall shear stress and u, is the corresponding friction velocity defined
from it. It is clear that in the limit of infinite Reynolds number (but only in this limit)
the total stress is constant across the inner layer, and hence its name “Constant Stress
Layer”. The appearance of u, in equation 5.6 does not imply that the wall shear stress
is an independent parameter (like v or M,). It enters the problem only because it
measures the forcing of the inner flow by the outer; or alternatively, it can be viewed
as measuring the retarding effect of the inner flow on the outer. Thus u, is a dependent
parameter which must be determined by matching solutions of the inner and outer

equations.
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Figure 4: Schematic showing inner and outer regions together with subregions. (For
plane wall jet: 6% oc y1 /2" = 12U, /v)
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The inner and outer regions of the flow are illustrated schematically in Figure 4,
which also shows the subregions which will be identified later. As noted above, the
inner layer occurs only because of the necessity of including viscosity in the problem
so that the no-slip condition can be met. The outer layer, on the other hand, is
dominated by inertia and the effects of viscosity enter primarily through the matching
to the inner layer. Thus the outer flow is effectively governed by inviscid equations,
but with viscous-dominated inner boundary conditions set by the inner layer.

As outlined in section 2.3, the traditional approach to the equations for the plane
wall jet has been to ignore the presence of the wall and to analyze the outer flow as
a single length and velocity scale flow (Irwin, 1973; Townsend, 1976). This approach
has been proven to be too restrictive even for a free turbulent shear flow like the plane
jet (George (1989)), where the entire flow is treated as “outer” flow.

As explained in section 2.3, here the Asymptotic Invariance Principle will be
applied to the inner and outer single-point equations governing the plane wall jet
separately. Solutions will be sought which reduce to full similarity solutions of the
equations in the limit of infinite Reynolds number, first for the inner equations and
then for the outer. The form of these solutions will determine the appropriate scaling
laws for finite as well as infinite Reynolds number, since alternative scaling laws could
not be independent of Reynolds number in the limit. The AIP will first be applied to

the mean momentum equations, then to the Reynolds stress component equations.

5.3 Full Similarity of the Inner Equations

In keeping with the AIP set forth above, Similarity solutions to the infinite Reynolds

number inner equations and boundary conditions are sought which are of the form

U = Ugx(z)fio(y™) (5.7)
<—uv> = Rg(T)rieo(y™) (5.8)
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where y™ = y/n and the length scale n = n(x) remains to be determined. The sub-
script “200” is used to distinguish these solutions to the limiting inner equation from
the profiles for the entire flow (scaled with the same variables) that are introduced
below.

Substitution into equation 5.6 and clearing terms yields

’U,z Rsz’ 14
] =[] e [ o9

All of the z-dependence is in the bracketed terms, therefore similarity is possible

only if all of these have the same z-dependence; i.e.,

u? R,; v
o~ |2~ 5.10
lng] lez] [HUJ ( )

is defined to mean “has the same x-dependence as”.

7

Here the symbol “~
Since three parameters are to be determined, and equation 5.10 gives only two

independent conditions, one can be chosen arbitrarily. A convenient choice for 7 is

n=v/Us; (5.11)

Then the inner velocity scale must be the friction velocity so that

Usi = us (5.12)

It follows that
n = viu, (5.13)
Ry = u? (5.14)
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Substitution into equation 5.9 yields the limiting inner momentum equation as
1= Tico T+ fiool . (515)

The similarity variables derived above are the usual choices for the inner layer of
a turbulent boundary layer, and have previously been used as scaling parameters for
the wall jet by most investigators. For finite Reynolds number, however, the solutions
for mean velocity and Reynolds stress will retain a Reynolds number dependence, no
matter how they are scaled, since the Reynolds averaged Navier-Stokes equations

themselves do. It will be convenient later to represent this dependence symbolically

by
+

= fily™,0") (5.16)

U
u R
U

% = ri(y*, %) (5.17)
where 0 = §/n = u.0/v is a Reynolds number to be defined later. Note that the
evolution of the profiles with = which is not removed by the scaling parameters is
accounted for by the dependence on §* since § = §(z) only. In the limit of infinite
Reynolds number equations 5.16 and 5.17 reduce to similarity solutions of the inner
equations. For finite Reynolds number they are simply a family of scaled profiles for
the entire flow characterized by the parameter 6% (or yfﬂ), like those shown in the
plots below.

Figure 5 shows the mean velocity profile from the KEP data scaled in inner vari-
ables. These data collapse reasonably for y* less than 100 to 200 approximately,
depending on distance downstream (or the Reynolds number). KEP and EKP have
noted that the linear region next to wall only extends to y* ~ 3. Outside of this,
the Reynolds shear stress begins to be important in the momentum balance until by

y* ~ 30 it dominates the viscous stress completely. This region where the Reynolds

shear stress and viscous stress are both important will be referred to as the buffer
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Figure 5: The mean velocity profile in inner scaling: KEP data at 40, 70 and 100 z /b.

region. Figure 4 shows both the linear and buffer layers to comprise the viscous
sublayer, so named since viscous stresses play a significant role in the single-point
equations. Most importantly, convection effects by the mean velocity are negligible
as long as vy, = ynu./v > 30.

Note that application of the AIP to the Reynolds stress equations near the wall
shows that u, and v are the appropriate quantities for scaling all the single point
quantities. From Figure 6 it is obvious that the inner scaling fails completely for
< u? > outside of y* ~ 7. Interestingly, this is the outer extent to which the
fourth order expansion of u* at the wall (ie. ut = yt + cuyt*) can adequately
describe the mean velocity , c.f. EKP and section 5.13. Both < —uv > and < v? >
show similar tendencies as shown in Figure 7, but the curves do not separate as
dramatically, perhaps because of the kinematic condition on v at the wall. These
results are consistent with the conclusions of GC and Gad-el-Hak & Bandyopadhyay

(1994) for the zero pressure gradient turbulent boundary layer.
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Figure 6: The streamwise normal Reynolds stress in inner scaling: KEP data at 40,
70 and 100 z/b.
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data at 40, 70 and 100 z/b.
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5.4 Full Similarity of the Outer Equations

In accordance with the Asymptotic Invariance Principle, solutions to the outer mo-
mentum equation and boundary conditions are sought which reduce to similarity

solutions of these equations in the limit of infinite Reynolds number.

U = Uspfooo(T) (5.18)
—<uv > = Ryron(T) (5.19)

where 7 = y /6 and Uy, Rs,, and ¢ are functions of z only. It is important to note that,
unlike in the previous analysis of Irwin (1973), no scaling laws are assumed at the
outset, but will be derived from the conditions for similarity of the governing equations
(In particular, it is not assumed that R, = UZ). As before, the subscript “ooco
is used to distinguish these infinite Reynolds number solutions from the Reynolds
number dependent profiles scaled in outer variables which will be used later. The
velocity could have been written as a deficit using some reference velocity in the
outer layer to avoid the necessity of accounting for its variation across the inner layer,
however the results can be shown to be the same.

Substitution into equation 5.4 and clearing terms yields

0 dUs, dé § dU,, ~ ,
lUw dz ]ﬁ""_q%]*[mo dz Dfm/fm §)dé = [U—] (5.20)

The V-component of velocity has been eliminated by integrating the continuity equa-

tion from the wall, thus introducing a contribution from the inner layer which vanishes
identically at infinite Reynolds number. The only difference between this equation
and the one utilized by Irwin (1973) is the factor of [R,,/UZ] on the right-hand side,
but it will be seen to be very important below.

For the type of equilibrium similarity solution suggested by George (1989, 1995)

to be possible, the bracketed terms must all have the same x—dependence. This is
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possible only if

1 dU,, 1do
~ = 21
U,, dx ddx (5.21)
and
do
Yy R 22
Roo ~ U2, (522)

Note that Irwin (1973) assumed at the outset that Ry, = U?2; this assumption

is not justified. The Reynolds stress scale is not U2

507

but an entirely different scale
depending also on the growth rate, dd/dx. Thus the z-dependence of Ry, is the same
as U2 only if the wall jet can be shown to grow linearly. It will be shown below that
linear growth is not possible. It can also be shown (see section 5.8) that the inner

and outer Reynolds shear stress can match (to first order) only if

do
Ryo ~ Ufoa ~ u? (5.23)

The need for such a matching is intuitively obvious, since the only non-zero boundary
condition on the Reynolds stress in the outer flow is that imposed by the inner.
Thus the outer flow is governed by two velocity scales The similarity constraint of

Equation 5.21 is satisfied if Uy, is a power of 9; i.e.,
U,y ~ 6" (5.24)

where the coefficient and the exponent n remain to be determined, but can at most
be a function of the source conditions. This is a specific prediction which is easy to
test from experiment, but it does not seem to have been noticed previously. Note
that equation 5.21 also implies that if the velocity scale varies as a power of distance,
x, then 6 must also vary as a power of x. But, contrary to popular assumption, there
is no reason to believe a priori that either is true, nor will they be found to be except
possibly asymptotically.

It is important to note that there is nothing in the equations to suggest that the
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bracketed terms of equation 5.20 must be the same for all flows. In other words,
while all of the bracketed terms must have the same x-dependence and their ratios
must be constant, in principle at least, the constants may vary from flow to flow.
Thus, contrary to conventional wisdom, the equations themselves cannot rule out the
possibility of an asymptotic dependence on the source (or initial) conditions.

An interesting feature of the mean velocity and Reynolds stress profiles can be
seen by rewriting equation 5.20 using the similarity conditions as

0 (Y _ Ry, '
0 = (40 o [ e 06 = | g 1 (5.29

The bracketed term on the righthand side can be incorporated as a simple scale factor
into the function 7, by defining

RSO
Foco = | =——7— 2
o = || o (5.20

Equation 5.25 then reduces further to

nf (4 ) fon! [ fone(€)dE = 7y, (5.27)
0

The implications of this are striking:

(i) If the value of n is universal, then properly scaled mean velocity and Reynolds
stress profiles from different wall jets must be exactly the same even if the x-
dependence of dé/dx is itself dependent on the initial conditions. Conversely,
collapse of the profiles from different experiments means that n s universal,

even if the other ratios depend on initial conditions.

(ii) In view of (i), the collapse of the properly scaled mean velocity and Reynolds
shear stress profiles from different experiments can not be taken to imply that
the wall jet is asymptotically independent of its initial (or upstream) conditions.

Such independence must be established from the other parameters, if it exists
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at all.

It should be noted that similar statements are not true, in general, for the other
second order and higher moment profiles for which a simple scale change cannot
make the profiles independent of source conditions. Thus the outer wall jet shares
this characteristic with free shear flows (cf. George, 1989). The data considered below
will show that the exponent n appears to be universal; yet the asymptotic wall jet
may still be dependent on its source conditions.

Since the only boundary conditions on U are homogeneous, the scale velocity Us,
can be chosen as the maximum velocity, U, with no loss of generality. Similarly, the
outer length scale 6 can be identified with any convenient location in the outer flow;
hence it can hereafter be assumed with no loss of generality to be the familiar half-
width denoted as 1, /2.2 The extension of the AIP to the Reynolds stress equations
in Section 5.6 shows that some of the turbulence moments scale with U,,, some with
Uy, and some with both. The normal stresses, < u? >, < v? >, and < w? > scale as
U2 ; hence they are quite different from the Reynolds shear stress.

According to the AIP, the similarity scaling derived above is appropriate for fi-
nite Reynolds numbers as well, since only it can be invariant in the limit of infinite

Reynolds number. Thus the velocity and Reynolds stress profiles in outer variables

are
U, - fo(", yil—/Q) (5.28)
and
< —uv > -
e T ro(Y, Y1/2) (5.29)

where 07 = ny/Q is the local Reynolds number. The profiles scaled in this manner,

unlike their infinite Reynolds number limits, are valid for all y until the limit is taken.

2 Alternatively the outer length scale could have been identified with the position of the velocity
maximum, Say ¥m,, since it also occurs in the outer flow, at least if the Reynolds number is high
enough. This choice has the disadvantage that it is difficult to determine the precise location of the
maximum experimentally because of the slow variation of the velocity around it, quite unlike y; /5
where the velocity is changing rapidly.
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Figure 8: The mean velocity profile in outer scaling: AJL data at different inlet
Reynolds numbers and streamwise positions

However, the scaled data can never collapse perfectly except in the limit, nor can they
be made to collapse with any other Reynolds number independent scaling. Obviously
fo and 7, converge to f,oo and 7,4, respectively, in the limit, and lose in the process

their ability to describe the inner flow.

5.5 Experimental Verification of the Outer Flow
Analysis

Figure 8 shows the mean velocity data of AJL normalized by U, and y;/; from
xz/b =170 to 150 for three different source Reynolds numbers.

Figure 9 shows mean velocity profiles from a number of investigators. Except for
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Figure 9: Comparison of mean velocity profiles of various investigators in outer vari-
ables.

the extreme outer edge of the flow (beyond y/y1/2 > 1.3 or so) where external flows,
counter-flows, and measurement errors dominate, all the normalized mean velocity
profiles are virtually identical. This collapse has been observed by many before (e.g.,
AJL or the review by Launder & Rodi (1981)). The virtually identical profiles do
imply that the exponent n in the similarity relation of equation 5.24 is universal. This
will be corroborated below using y1/2 and Uy,. However, as noted above, they do not
imply that the flow is independent of source conditions.

Figures 10, 11 and 12 show the Reynolds stresses of AJL normalized both by
U2, 2 and by uZ, 2. While the normal stresses collapse well in the outer flow
with U2, the Reynolds shear stress does not. On the other hand, the Reynolds
shear stress collapses well with u?, while the normal stresses do not. Thus both
the mean velocity and second moments are in striking agreement with the theory
presented here. The differences are not as obvious for the LDA data of KEP for

which there is not as much variation of u,/U,,, perhaps due to the presence of the
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Figure 10: The streamwise normal Reynolds stress in outer scaling: AJL data at 70,
100 and 150 z/b.
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Figure 11: The cross-stream normal Reynolds stress in outer scaling: AJL data at
70, 100 and 150 z/b.
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Figure 12: The Reynolds shear stress in outer scaling: AJL data at 70, 100 and 150
z/b.

recirculation at the largest /b values as noted by the authors. Both AJL. and EKP
show comparisons with several earlier experiments for all the second-order moments,
and there are significant differences, both in profile shape and magnitude. While the
latter may indeed represent a sensitivity to upstream conditions, the profile variations
suggest that the differences may also be due to the well-known measurement problems
with hot-wires in such high intensity flows and the manner in which the wires were
employed. A definitive statement on this must await more extensive measurements
with the more reliable LDA techniques (as in KEP).

Figure 13 shows a log-log plot of U, /U, versus yl/z/b for the data of KEP, AJL
and WKH where U, is the exit velocity at x = 0 and b is the width of the source.
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Figure 13: Log-log plot of Up,as/Us, and 4;/5/b, KEP, AJL and WKH data.

There is no theoretical justification for this normalization in spite of its widespread
use; it does, however, collapse the data to within about 10%. All the data are in
excellent agreement with the similarity requirement of a power law relation between
Up and yy9; i.e.,

Un

YUm _ M]
o BO[ : (5.30)

The line shown has slope n = —0.528 and By = 1.09, where the former was obtained
from the momentum balance of the KEP data for 40 < z/b < 150 (discussed in detail
in Section 5.15). The best fit slope, n, is nearly the same for all the curves, consistent
with the apparently universal velocity profile noted above. The best fit values of By
(assuming n = —0.528) are 1.10, 1.12, and 1.18 for the AJL data at source Reynolds
numbers of 10,000, 15,000, and 20,000 respectively. Note EKP have argued that
their data should not all be treated equally because for small values of z/b the flow
is still developing, while for z/b > 100 the flow is adversely influenced by the return

flow in their facility. This will be discussed in Sections 5.15 and 5.16, and accounts
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for the slight deviation of the data from the momentum conservation value for large
values of z/b.

Some, but not all, of the dependence on source conditions can be eliminated by
following Narasimha, Yegna Narayan & Parthasarathy (1973) (see also WKH) who
suggested normalization by M, and v where M, is the rate at which momentum per
unit mass per unit length is added at the source, since these would be the only param-
eters available for a line source of momentum. The same reasoning applied here (but
without the additional assumption of a power law in z) yields a nondimensionalized

similarity condition as

vU,,
M,

where Y, is defined as Y79 = y1/0M,/ v? Note that this normalization does not affect
the exponent of the power law relationship between U, and y;/, since it is already
dimensionless. Moreover, unlike power laws in x where the origin is arbitrarily chosen,
there can be no virtual origin for y; /5 since it evolves together with Uy,.

It is important to recognize that while the scaling given by equation 5.31 is cer-
tainly the appropriate scaling for a line source of momentum, it should not be expected
to collapse the data if finite source effects (like the exit profile or exit Reynolds num-
ber) are important. As noted earlier, there is nothing in the equations themselves to
suggest that these finite source conditions are NOT important, and indeed the data
appear to reflect that.

Figure 14 shows a log-log plot of the momentum-viscosity normalized KEP, AJL
and WKH data. The line represents equation 5.31 using B; = 1.85 and n = —0.528,
both determined from the momentum balance of the KEP data alone, again using
only data for 40 < z/b < 150. The best fit values for B; (assuming n = —0.528)
are 1.87, 1.87 and 2.06 for the AJL 10,000, 15,000, and 20,000 data respectively.
The corresponding values are 1.79 and 1.84 for the WKH data at source Reynolds
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Figure 14: Log-log plot of vU,,/M, versus y,2M,/v*, KEP, AJL and WKH data.

numbers of 10,000 and 19,000%. Note that the values inferred from the WKH data
would be a percent or two higher if the momentum had been based on the actual
exit profile instead of the top-hat inferred values. Also all of the hot-wire values of
B; may already be about eight percent too high because of the hot-wire errors in
the determination of Uy, and y1/2 (about 2% and 12% respectively using the EKP
results). Therefore it is impossible to tell whether these curves should indeed collapse,
or whether each contains a unique dependence on its source. If the latter, the effect
is not large, but (as will be seen later) still causes a noticeable variation in the rate
at which the wall jet boundary layer grows.

As expected, the coefficient By in the momentum /viscosity scaling shows a some-
what weaker source dependence than B, using the source parameters b and U,.
Whether or not all of the sets of data are unique, it is obvious that they all individu-

ally satisfy the proper similarity power law relation between Uy, and y,/2. Moreover,

3These were the only WKH runs for which there was no imposed external stream.

112



even though the coefficient B; may show a slight dependence on the particular source
and experiment, the value of n appears to be nearly (if not exactly) the same for all
experiments.

In fact, B; should at least be exactly the same for a family of similar sources
(i.e., same exit profile, Reynolds number, etc.) Combining equations 5.30 and eq:wj-

Umyhalf2, By and B; are seen to be related by (for any source profile)

Upb\" [ My \"=!
BO = Bl ( ) > (]/U ) (532)

For a top-hat source By and B; are related by

(14+2n)
U,b
By = B, < - ) = B, R(!"* (5.33)

since M, = U?b (c.f. figure 3). All the experiments considered had approximately
top-hat sources, which may explain why there is not a greater difference between
figure 13 and 14

All of the estimates for n from the individual data sets are within a few percent of
each other. It will be argued later using the similarity form of the momentum integral,
equation 5.97, that n = —1/2 must represent a limiting value, so for finite Reynolds
numbers at least, —n > 1/2. Since n is close to —1/2 and enters the momentum
balance as (14 2n), the momentum balance is very sensitive to very small errors in n;
hence the value of determining n from the momentum balance. The actual estimates
for the individual downstream locations of the KEP data vary from n = —0.526 to
n = —0.536, depending on how dy;/»/dx is estimated. The latter value is exactly
the value obtained if the M,z /v?-dependence of the power law curve fits of WKH for
vU,, /M, and Moyl/Q/y2 is eliminated to obtain equation 5.31, although the value of
B; so obtained is lower by about 25%. Whether this variation represents a source
Reynolds number dependence, or is just an artifact of the method of analysis will

require further investigation. Regardless of its precise value, the concurrent collapse
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of the normalized velocity profiles from all experiments suggests that the value of n
may be universal, as noted above.

In summary, the collapse of the profiles as suggested by the theory (especially the
Reynolds shear stress), the success of the similarity relation between U, ~ Y1')e, and
even the differences among different experiments provide strong experimental support
for the proposed outer scaling. The latter point is especially important in view of
the increasing number of flows which appear to retain asymptotically a dependence
on initial conditions. Although George & Castillo (1997) suggested the possibility of
such a dependence for the outer part of the zero-pressure gradient boundary layer, the
data were insufficient to make a judgement (although there were clues). There are,
however, numerous examples of homogeneous and free shear flows which do appear
to behave in this manner; e.g., isotropic decay George (1992), homogeneous shear
flow George & Gibson (1992), plane wake Wygnanski, Champagne & Marasli (1986),
time-dependent wake Moser, Rogers & Ewing (1996). But the wall jet appears to be
the first wall-bounded flow for which it can be substantiated that initial conditions
may matter, at least to the outer flow. And if the initial conditions matter, as will

be seen in section 5.15, they can have an effect on the asymptotic spreading rate.

5.6 Scaling of the Other Turbulence Quantities

For the inner layer, there is only one velocity scale, u,, which enters the single point
equations; therefore all single point statistical quantities must scale with it. This is,
of course, the conventional wisdom, but with an important difference: The inner layer
ends about y* ~ 7, not far from where the velocity profile ceases to be linear (y™ ~ 3)!
This is contrary to the usual practice to include the overlap layer as part of the wall
layer. As shown before, the dependent variables in the overlap layer are expected to
be functions of both inner and outer scales, and thus Reynolds number dependent.

(Note that different considerations must be applied to the multi-point equations since
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conditions at a point can depend on those at another, and in particular those at a
distance.)

From the preceding analysis, it is apparent that the outer wall jet at finite Reynolds
numbers is governed by not one, but two velocity scales. In particular, the mean ve-
locity and its gradients scale with U,,, while the Reynolds shear stress scales with
u2. Therefore it is not immediately obvious how the remaining turbulence quantities
should scale. In particular, do they scale with U,, or u,, or both? If the latter, then
quantities scaled in the traditional way with only one of them will exhibit a Reynolds
number dependence and will not collapse, even in the limit of infinite Reynolds num-
ber. It has already been noted in the plots of the previous section that this is indeed
the case.

In view of the plots of the preceding section, it is reasonable to inquire under
what conditions the equations for other turbulence quantities admit to fully similar
solutions. For the outer part of the wall jet at high Reynolds number, the equation

for < u? > can be written (Tennekes & Lumley, 1972) as

2 2
U6<u >+V6<u >:2<

pou_ 0
ox oy pOx

> 4—
dy

{—<u2v>}—2<uv>g—[y]—2€u

(5.34)
where ¢, is the energy dissipation rate for < u? > and the viscous transport term has
been neglected.

An order of magnitude analysis reveals the mean convection and turbulence trans-
port terms to be of second order in the turbulence intensity u'/U, so to first order
the equation reduces to simply a balance between production, dissipation and pres-
sure strain rate. It could then be argued that these second order terms should be
neglected in the subsequent analysis, cf. Townsend (1976). It is precisely these second
order terms, however, that distinguish one boundary layer type flow from another, or
from homogeneous flows (like channels and pipes) for that matter. Therefore, for a

theory which purports to represent growing shear layers like the wall jet, they must
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be retained.

Similarity representations are sought for the new moments of the form

<> = Ku(o)h(7) (5.35)
<%%> = Py(2)pu(7) (5.36)
5 <> = T (w)tu() (5.37)

€, = Dy(z)d,(7) (5.38)

Similarity of the < u? >-equation is possible only if*

(5.39)

2T
2
s
|

(5.40)
Ty ~ U3— (5.41)

D, ~ -m% (5.42)

All of these are somewhat surprising: The first (even though a second moment like
the Reynolds stress) because the factor of dd/dz is absent; the second, third and
fourth because it is present.

Similar equations can be written for the < v?> > and < w? > equations; i.e.,

0 <v?> 0 <v?> p Ov 0
=2< == — <> =2 -2 4
U e +V o <p®>+mﬁ < v’ > <m>} € (5.43)
0 <w?> 0 < w?> p Ow 0 )
U oz +V ay —2<;£>+a—y{—<w’l)>}—2€w (544)

When each of the terms in these equations is expressed in similarity variables, the

4Recall that the symbol ’~’ is used herein to mean ’has the same z-dependence as’, and should
not be confused with ’order of magnitude’.
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resulting similarity conditions are:

UK, db
D, ~ P, ~ — A4
v v 0 dx (5.45)
U,K, do
D,~P,~ 2%~ 5.46
6 dz ( )
U,.K, dd
Tz ~ 22— A4
U,K, do
T2 mow_- 5.48
0 dx ( )

There is an additional equation which must be accounted for; namely that the sum
of the pressure strain-rate terms in the component energy equations be zero (from

continuity). Thus, in similarity variables,
Pu(2)pu(¥) + Po(2)ps () + Pu(z)pu(®) = 0 (5.49)
This can be true for all 7 only if
P,~P,~ P, (5.50)

An immediate consequence is that

2
Unus

Dy ~ Dy~ Dy ~ Dy ~ (5.51)

where D, is the scale for the entire dissipation.
From equations 5.40, 5.45 and 5.46 it follows that the constraint imposed by 5.50
can be satisfied only if

K,~K,~K,~U (5.52)

Thus all of the Reynolds normal stresses scale with UZ, and not with u? like the

Reynolds shear stresses. But this is exactly what was observed in figures 10 and 11.
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The remaining equation for the Reynolds shear stress is given by

0 <uv > d<wv>  p(ou Ov 0 9 ,  OU
U g +V By _<p<3y+3x>>+5y{ < uw >} <w >8y
(5.53)

This does not introduce any new similarity functions, but as in the boundary layer
analysis of GC, it does create an interesting problem. The z-dependence of the
last term (which is the leading order term) is proportional to (UyRs,/d)dd/dz ~
(U3 /6)(dd/dz)?. If both terms are required to have the same z-dependence, a new

constraint is imposed on the ones which already exist; namely,

ds ds\? ds
Ky~ Ry ~ U2 [ 2] ~222 54
R dz U (dx) u*dac (5-54)

Recall that R, is only asymptotically equal to u? (from the matching), so the entire
Reynolds shear stress scale evolves to this limit with increasing Reynolds number. Re-
gardless, there is an apparent contradiction between equation 5.54 and equation 5.52.

There are two possibilities for its resolution:

e Fither, the two conditions together require that in the limit of infinite Reynolds

number,
do 2
i u_; ~ constant (5.55)
& m

e Or, the term which creates the contradiction must go to zero faster than the
other terms so the offending condition does not remain in the analysis. In fact,
as for the boundary layer, the possibility for this occurs since the terms on the
left hand side of equation 5.53 are of order (dd/dz)* ~ (u./U,,)* relative to the
leading term, whereas the highest order terms in the normal stress equations
are of order (dd/dz) ~ (u./Uy)?. Therefore the mean convection terms in the
Reynolds shear stress equation will vanish faster in the limit of infinite Reynolds
number than the remaining terms in any of the Reynolds stress equations if

dé/dz — 0.

118



It will be seen later that dé/dz — 0 is a necessary condition for insuring that the
proper infinite Reynolds number dissipation limits can be satisfied; namely that the
local dissipation rate be finite. Therefore equation 5.55 is not relevant, nor must it be
satisfied.

It is clear from the above that the outer Reynolds stress equations indeed admit to
similarity solutions in the infinite Reynolds number limit (to second order in u,/U,,),
just as the mean momentum equations (and just as for the boundary layer). It is
also clear from the figures shown earlier that the Reynolds stresses show a trend
toward collapse in a manner consistent with the analysis above, even for the modest
Reynolds numbers of the experiments. As noted earlier, nothing in the analysis or
the data suggests that this similarity state should be independent of upstream and

source conditions.

5.7 The Overlap Layer

Since both inner and outer similarity forms are non-dimensional profiles with dif-
ferent scales and the ratio of the scales is Reynolds number dependent, any region
between the two similarity regimes cannot be Reynolds number independent, except
asymptotically. As noted earlier, however, both inner and outer scaled profiles, f;
and f,, describe the entire flow as long as the argument 6* = §/7 is finite. Therefore
at finite Reynolds numbers, both equations 5.16 and 5.28 must describe the region
between the two similarity regimes. Thus the situation here is quite different from the
usual asymptotic matching problem where infinite Reynolds number inner and outer
solutions are extended and matched in an overlap region. Here both solutions are
valid everywhere, at least for finite Reynolds numbers. Hence the objective is not to
see if they overlap and match them if they do; rather, it is to determine whether the
fact that they degenerate at infinite Reynolds number in different ways determines

their functional forms in the common region they describe.
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There are several pieces of information about the two profiles which can be utilized

in this determination without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe
the flow everywhere as long as the ratio of length scales, 6 = §/n, is finite, it

follows from equations 5.16 and 5.28 that
fo(@,0%) = g(07) fuly™,07) (5.56)
where g(67) has been defined as

9(6%) = u, /Uy, (5.57)

e Second, for finite values of 6™, the velocity derivatives from both forms of the

velocity must also be the same everywhere. This requires

D ds_y"
fody  fi dy*

(5.58)

for all values of 6+ and .

e Third, both f, and f; must become asymptotically independent of §*. Thus
fo@,01) = foo(@), and fi(y",0") — fi(y™) as 6t — oo (otherwise the
velocity scales have been incorrectly chosen). This is, in fact, the application of

the Asymptotic Invariance Principle (section 2.3).

Now the problem is that in the limit as 6™ — oo, the outer form fails to account for
the behavior close to the wall while the inner fails to describe the behavior away from
it. The question then is: In this limit (as well as for all finite values approaching it)
does there exist an “overlap” region where equation 5.56 is still valid? This question
can be answered in the affirmative using the Near Asymptotics methodology of George

(1995) and GC. The details are the same as for the zero pressure gradient turbulent
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boundary layer (c.f. chapter 3, and are presented in Appendix B. There it is shown

that, to leading order in 41, an overlap region exits in which

y+ of;

Z_ =~(6T 3.59

o =07 (5:59)
and

Y 0fo

2 = ~(6T 5.60

fooy . 10 00
where v(07) has been defined as

+ |
O dg __dlng (5.61)

g dét  dlnét

Both equations 5.59 and 5.60 must be invariant to transformations of the form
y — y +a where a is arbitrary (since the equation must be valid for any choice of the

origin of y). Therefore, the most general solutions are of the form:

= 80 = G+ (5.62)
U= A = GO e (5.63)

where the parameters C,, C; and ~ are functions of §* and must be determined
in addition to a. It will be argued later that a* is approximately constant. It is
interesting to note that the power law form of equations 5.62 and 5.63 was one of
those derived by Oberlack (1997) from a Lie group analysis of the equations for
parallel shear flows.

It follows immediately from equation 5.56 that the friction law is given by

Uy

Un

=g(6") = %(SFW” (5.64)

However, equation 5.61 must also be satisfied. Substituting equation 5.64 into equa-
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tion 5.61 implies that v, C,, and C; are constrained by

dy d
Inst - ]
" dmoet  dlnot

g] (5.65)

This constraint equation must be invariant to scale transformations of the form 6+ —
D4 since the physical choice of 6T = yf/Q is arbitrary. Thus the Reynolds number
dependence of v and C,/C; is independent of the particular choice of § ~ y;/, made
earlier; any other choice would simply be reflected in the coefficient D. This will be of
considerable importance in relating the wall jet parameters to those for the boundary
layer obtained earlier by GC. From equation 5.65 we see that both v and C,/C; can
be most conveniently expressed as functions of Iné™ = In Dny/Z.

Since by the AIP, equations 5.62 and 5.63 must be asymptotically independent
of Reynolds number, the coefficients and exponent must be asymptotically constant;

ie.,

7(5+) — Yoo
Co(61) — Com

as 7 — oo. Moreover, C,o and Cjs must be non-zero, or else the solutions are
trivial. Also, GC have argued that 7, must also be non-zero to insure a finite local
energy dissipation rate at infinite Reynolds number. Therefore none of these three
important constants can be zero.

Following GC, it is convenient to write the solution to equation 5.65 as

% = exp[(7 — Voo) I + A (5.66)

7
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where h = h(In ™) remains to be determined, but must satisfy

dh dh
_ + _
e = O T T e (5.67)

The conditions that both C,,, and C;, be finite and non-zero require that:

FEither

e C,, C; and 7 remain constant always;
or

e (i) v = 7o faster than 1/Ind* — 0
and

e (ii) A(Iné") — ho = constant.

It follows immediately that
C’OOO

&

= exp|hso] (5.68)

Note that condition (i) together with equation 5.67 requires that dh/dIndt — 0
faster than 1/Ind". Thus, regardless of the exact functional form of h, the leading
term must be h ~ (Ind*)* where a > 0 to satisfy condition (i) .

The behavior of u,/U,, obviously is determined by both 7 and the ratio C,/C;,
which are themselves inter-related by equation 5.65. By substituting equations 5.66,

5.67, and 5.68 into equation 5.64, the friction law can be expressed as

g—* = exp|—Yeo In 5 + A] (5.69)

m

Using equation 5.68 this can be re-written as

v %ﬁ‘%" exp(h — ha) (5.70)
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Figure 15: KEP data (z/b = 40, 70, and 100) and overlap solutions in inner variables.

Figures 15 and 16 show the mean velocity data in inner and outer variables for
three positions of the KEP data (z/b = 40,70, and 100), together with the overlap
solutions of equations 5.62 and 5.63 using the h-function of CG and the parameters
discussed in Section 5.11 below. Also plotted are two curves described in the following
sections used to extend the overlap solution to the wall. The overlap solution provides
an excellent fit to the LDA data from approximately 4™ = 30 toy = 0.1. Note that the
overlap region is not a straight line on a log-log plot because of the offset parameter
a® (or @).

The KEP data for u,/U,, are plotted in Figure 17 as a function of yf’/Q. Also
shown is equation 5.70, again using the h-function of GC and the parameters given

below. The agreement between theory and experiment is excellent.
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Figure 16: KEP data (x/b = 40,70, and 100) and overlap solutions in outer variables.
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Figure 17: u,/U,, versus yf/Q. KEP data.
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5.8 The Reynolds Stress in the Overlap Layer

By following the same procedure as for the velocity (v. appendix B), the outer and
inner Reynolds stress profile functions for the overlap region can be obtained (just as

for the boundary layer by GC). Here, the Reynolds shear stress is given by,

ro(7;61) = Do (61)7P¢") (5.71)

ri(yt;6t) = Di((5+)y+ﬂ(6+) (5.72)

where a solution is possible only if

Ry, . D; 4B
and
dg d D
+ o 7 —o
Ino o5F = 45" In Di] (5.74)

Unlike the velocity, however, more information about the Reynolds stress is avail-
able from the averaged momentum equation for the overlap layer since both equa-
tions 5.4 and 5.5 reduce to

8%/ < —uv>=0 (5.75)

in the limit of infinite Reynolds number. Thus,
BR,,D,7° =0 (5.76)

and

BRD; 10 5.77
Yy

Since both D, and D; must remain finite and be asymptotically constant (if the
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Reynolds stress itself is non-zero), these conditions can be met only if
B—0 (5.78)

From equation 5.75 for large values of y*, the Reynolds stress in inner variables

in the matched layer is given to first order (exact in the limit) by

Since R,; = u?, this can be consistent with equation 5.72 only if D; — 1 as §+ — oo.
It follows immediately that
(5.80)

in the infinite Reynolds number limit, just as suggested in Section 5.4.

5.9 The Effect of Reynolds Number on the Over-
lap Range

This section also parallels closely George & Castillo (1997), but is included here since
it is also important to understanding the wall jet. The overlap layer can be related
directly to the averaged equations for the mean flow and the Reynolds stresses. The
latter will be seen to be of particular interest since it is through them that the local
Reynolds number influences the approach to the asymptotic state. Of particular
interest is the question of how large the Reynolds number must be before the wall jet
begins to show the characteristics of the asymptotic state.

The averaged momentum equation from about y* > 30 out to ¥ < 0.1 is given
approximately by

0
= —< - .81
0 8y< uv > (5.81)

It has no obvious Reynolds number dependence; and the stress is effectively constant
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throughout this region. This is, however, not the entire story because of the Reynolds
transport equations. For this “constant shear stress region” the viscous diffusion and
mean convection terms are negligible (as in the mean momentum equation), so the

equations reduce approximately to (Tennekes & Lumley, 1972),

0 < Ou, >+ < aUk> < >8U1C
= — - U;u —
pa’lik pa.’Ei 2 83:2
BUZ 0 < U U Uy >
< > - —— —2¢ 5.82
+ < UplUg 8:52] 979 €ik ( )

where U; = Ud;;. Thus the viscosity does not appear directly in any of the single
point equations governing this region, nor does it appear in those governing the outer
boundary layer.

In spite of the above, viscosity continues to play a crucial role in at least a portion
of the constant stress layer, even at infinite Reynolds number. The reason for this is
that the scales at which the dissipation, €;;, takes place depend on the [ocal turbulence
Reynolds number, R, = v/L/v. For R; > 10* approximately, the energy dissipation
is completely controlled by the large energetic scales of motion. These are effectively
inviscid, but transfer energy through non-linear interactions (the energy cascade) to
the much smaller viscous scales where the actual dissipation occurs (v. Tennekes &
Lumley, 1972). When this is the case, the dissipation is nearly isotropic so €;, & €d.
Moreover, ¢ can be approximated by the infinite Reynolds number relation: € ~ ¢®/L
where L is a scale characteristic of the energy-containing eddies. Thus the entire
Reynolds stress equations are effectively inviscid. Note that in this limit the Reynolds
shear stress has no dissipation at all, i.e., ;5 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing scales nearly overlap, and so the latter (which also produce the Reynolds
shear stress) feel directly the influence of viscosity. In this limit, the energy and
dissipative ranges nearly overlap, and the dissipation is more reasonably estimated

by € ~ vq?/L?, where the constant of proportionality is of order 10. The dissipation
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tensor, €;, is anisotropic and €9, in particular, is non-zero (Hanjalic & Launder,
1974).

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from € ~ vq¢?/L?
to € ~ ¢3/L as R; increases. Thus the Reynolds stresses themselves will feel directly
this, and will show a strong Reynolds number dependence. Obviously, in order to
establish when (if at all) parts of the flow become Reynolds number independent, it is
necessary to determine how the local turbulence Reynolds number varies downstream
and across the flow.

Over the outer boundary layer (which is most of it) and excluding the overlap
region, L ~ 0.65y1/; and u' =~ 0.2U,. So when Upnyi/2/v > 7000, the dissipation
in the outer flow is effectively inviscid. The data of KEP vary from 14 x 10® at
z/b = 20 to 31 x 10® at /b = 150. Hence the mean and turbulence quantities in
the outer flow should show little Reynolds number dependence, and this is indeed the
case — when they are scaled properly! They can, of course, not be entirely Reynolds
number independent because of the boundary conditions imposed by the inner flow
on the outer. This residual dependence manifests itself in the overlap layer in the
slow variations of C; and +, for example.

The near wall region is considerably more interesting, however, since in it the
scales governing the energy-containing eddies are constrained by the proximity of the
wall. Hence, the turbulence Reynolds number, R;, depends on the distance from the
wall, y. In fact, R; ~ y* with a coefficient of about 18, so in effect y™ is the turbulence

Reynolds number. Because of this, two things are immediately obvious:

e First, since the physical distance from the wall for a fixed value of ¥ does not
increase with downstream distance as rapidly as the jet spreads, then more and
more of the wall jet will become effectively inviscid and will be governed by the
inviscid dissipation relation. And correspondingly, the mean and turbulence

quantities in the overlap layer will become Reynolds number independent, al-
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beit very slowly. This is exactly the physical reason why C,, C;, and v become
asymptotically constant as described above. And clearly these limiting values
cannot be reached until the entire ‘inertial’ layer is governed by the infinite
Reynolds number dissipation relation. Obviously this can happen only when
there is a substantial range satisfying y™ > 300 and for which the mean con-
vection terms are negligible. Thus the asymptotic limits are realized only when
300v /u, << 0.1y1/2 or u.y1/2/v >> 3000, which corresponds approximately to
Unyi12/v >> 50,000. This is well above the range of the data considered here,
or available elsewhere. Therefore the overlap layer, to the extent that it is iden-
tifiable at all, should (and does) display a Reynolds number dependence, not
only in C,, C;, and -, but correspondingly in the behavior of < u? >, < uv >,
etc. This is directly analogous to the observations in the zero pressure gradient

boundary layer (cf. Gad-el-Hak & Bandyopadhyay, 1994, , GC).

Second, there will always be a mesolayer ® a region below about y™ ~ 300 in
which the dissipation can never assume the character of a high Reynolds num-
ber flow. Hence, the dissipation can never become independent of viscosity, no
matter how high the Reynolds number becomes — and even though the mean
momentum equation itself is inviscid above y™ a~ 30! This is well-known to
turbulence modellers, but the consequences for similarity theory and asymp-
totic analyses do not seem to have been noticed previously. It is particularly
important for experimentalists who have routinely (and wrongly) tried to apply

asymptotic formulas to data from to this region.

Thus the constant stress layer is really four separate regions, each having their own

unique character. The ‘inertial’ layer (y* > 300,7 < 0.1) obtained in the preceding

section which can ultimately become inviscid; an ‘in-between layer’ (30 < y™ < 300),

in which the viscous stresses are negligible, but in which viscosity acts directly on

5This appropriates a term from Long & Chen (1981) who argued for its existence, but from
entirely different physical and scaling arguments which we find untenable.
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the turbulence scales producing the Reynolds stresses; a buffer layer (3 < y* < 30
approximately) where the Reynolds stress and viscous stress both control the mean
flow, and the linear sublayer near the wall (y* < 3 approximately) where the viscous
stresses dominate. It seems appropriate to call this ‘in-between layer’ the mesolayer
since it is clearly not the buffer layer, nor is it the overlap region. And unlike the
‘mesolayer’ proposed by Long & Chen (1981), it needs no new length scale to describe
it since its characteristics and extent are measured entirely by y*. Interestingly,
the application of Near-Asymptotics to the overlap region appears to capture the
functional dependence of both the inertial and mesolayer regions, with the offset

parameter a as noted in section 5.12.

5.10 The Inertial and Mesolayer Subregions

The mathematical character of the overlap region has been derived above and is
seen to follow directly from first principles without assumptions. It remains to inter-
pret these results physically. The overlap region is essentially the region of the flow
where neither convection by the mean motion nor viscous shear stress are of major
importance in the mean momentum balance. In the wall jet, it is clear from the pro-
files presented earlier that these conditions are satisfied approximately in the region
bounded by 30 < y* < O.nyr/2 (or 30/yf’/2 <7 < 0.1), or from just outside the buffer
region (where the total stress has evolved from primarily viscous to Reynolds stress
only) to just inside the velocity maximum which is near 7 = 0.17 as noted earlier.
This is illustrated schematically in Figure 4. It is important to note that neither mean
convection nor viscous effects are completely negligible in the overlap region at finite
Reynolds number, and this is the origin of the Reynolds number dependence of the
overlap solutions obtained above. In fact, GC have argued using the spectral energy
equations that even if viscous effects were small in the single point equations, they

could never be negligible in the two-point equations in the lower part of the overlap
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region, a subregion which they called the mesolayer. Below a value of y* < 300
approximately, they argued that viscosity directly affects the multi-point Reynolds
stress equations, and hence the dissipation and Reynolds stress. Above y™ ~ 300,
inertial effects dominate the non-linear turbulence energy transfer; hence the term
inertial sublayer is used to describe it.

Thus the overlap region itself has two sublayers within it: the mesolayer and the
inertial sublayer. Obviously the latter can exist only when there is a substantial
region in the flow satisfying 0.1yf/2 > 300 or yf/Q > 3000. Few wall jet experiments
satisfy this criterion, and of those, none have been made with techniques which could
measure the near wall region with sufficient accuracy to determine the wall shear
stress. In the KEP data, for example, the mesolayer comprises all of the overlap
region. Note that this is still substantially better than current DNS capability where
even the conditions for a mesolayer are not satisfied; namely, O.1yf/2 > 30! In such
cases the velocity maximum itself does not even occur in the outer region of the flow,
and hence is dependent on flow Reynolds number. Obviously the overlap analysis
above should not be expected to apply to such low Reynolds number flows. It is
clear then that experiments and/or simulations at much higher Reynolds numbers
are necessary before the above theory can be completely tested and the function
h(Ind*) determined beyond doubt.

In spite of the problems presented by the lack of data to test the overlap arguments
at sufficiently high Reynolds numbers, equivalent arguments have previously been
made for the turbulent boundary layer by GC for which there is at least some data.
In fact, the overlap profiles, friction law, and constraint equation for both wall jet
and boundary layer are all of the same form. Therefore there is reason to hope that
the function A(Ind*) might be the same for boundary layers and wall jets, at least to
within the scale factor D as noted above. These ideas will be formalized and tested

below.
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5.11 Wall Jet versus Boundary Layer: A Common
Inner Region?

While the outer flows of the zero pressure gradient boundary layer and the wall jet
are, of course, entirely different, there is reason to suspect that the inner flows may
be the same. First, both scale with the same inner variables, u, and v. Second, all
the governing equations are exactly the same at infinite Reynolds number, and even
the terms which begin to appear at finite Reynolds number are the same. Third,
the overlap profiles in inner variables have exactly the same form. Fourth, for both
flows the leading term in the Taylor expansion around y = 0 is ™ = y* and the
next non-zero term is the fourth order term cyy™; ie., u™ =y + oyt +.... And
finally, as the success of the GC h-function above makes clear, there is experimental
evidence. Figures 18 and 19 show the mean velocity and Reynolds stress profiles
in inner variables for the Johansson & Karlsson (1989) boundary layer experiment
(Rg = 2.4 x 10%) and the KEP wall jet profile for z/b = 70 (y/, = 1.8 x 10°). The
mean velocity profiles are nearly identical for y* < 100, while the Reynolds stress
profiles coincide for y™ < 35. Also shown on the figures are the composite velocity
given by equation 5.89 and the Reynolds stress profile derived by substituting its
derivative into equation 5.15. (The discontinuity arises from the splice described in
Section 5.13). These make it clear that the departure of the wall jet profiles from the
boundary layer profiles is indeed attributable to the outer flow which penetrates to
relatively low values of y* at these Reynolds numbers.

Therefore it seems reasonable to hypothesize that:

e The inner variable parameters Cjy, Vo0, ¢ and ¢4 are the same for both the

wall jet and the zero pressure gradient boundary layer.

e The Reynolds number dependence of the parameters C; and v is the same, to

within the scale factor D discussed in the preceding section.
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Figure 19: Reynolds shear stress in inner variables for boundary layer and wall jet.
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It follows immediately from equation 5.65 that the outer parameter C, for the
wall jet can at most differ by a constant multiplicative factor from the boundary
layer values, since any other difference would change 7. Because this multiplicative
factor must also be reflected in C,,, the only differences between the wall jet and the
boundary layer can be C,, and the scale factor D; otherwise the second hypothesis
is wrong. Finally, the all-important function, A(d%) — h,, must be the same for both
boundary layers and wall jets, since it determines the Reynolds number behavior of
both v and C,/C;. (Recall that §+ = Dny/Q.) (Note that a similar line of reasoning
was applied by Castillo (1997) the pressure gradient boundary layer.)

Thus, as discovered above, the GC empirical form for A for the boundary layer

can be incorporated directly here in the form:

A
h=——7— 5.83
(In Dyfﬂ)a (5:83)
Note that while this may appear to be an arbitrary empirical equation, it is really
much more general. Since h — hy as In Dyb2 — 00, only negative powers are
possible in an expansion of h — h, for large values, of which equation 5.83 is at least

the leading term.

It follows from equations 5.67, 5.66, and 5.70 that

aA

VYo = T Tha (5.84)
(In Dy, "
CO Cooo o
.~ O exp[(1 + &) A/(In Dyj,)°] (5.85)
and
s CO - C(ooo _ o
Un  C; (Dyin) "= @[Dyf/z] " exp[A/(In Dy;)*] (5.86)

For the boundary layer, GC found a = 0.46, A = 2.90, Cj, = 55, 7, = 0.0362,

and a™ ~ —16. If the hypothesis is correct, these values should be the same for the
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wall jet. Alternatively, if the parameters or the empirical form for A have been more
accurately determined for the wall jet, then they should also describe the boundary
layer, to within the scale factor D and C,,, which must be determined for each flow
separately. In fact, the CG parameters describe the KEP wall jet velocity profiles
data to within five percent between y* = 30 and ¥ = 0.1 using C, = C,oo = 1.26 and
D = 1.0. But as illustrated in Figures 15 to 17 above, a slight change to C, = C,o =
1.30 and Cjo, = 56.7 (80 Cyeo/Cino = 0.023 is unchanged) reduces the maximum error
in the overlap range of the mean velocity profiles to less than two percent, which
is within the experimental uncertainty. Both sets of parameters predict the friction
data to within 1% (since u,/U,, depends only on the ratio of C,s to Cin, and not
their individual values). As shown later, a subtle consequence of this will be that all
of the differences in spreading rate among the various experiments can be attributed

to the parameter B; defined in equation 5.31.

5.12 A Mesolayer Interpretation of a™

The a appearing in equations 5.63 and 5.62 has been interpreted by GC as arising
from the effect of the turbulence Reynolds number near the wall on the two-point
Reynolds stress equations. A useful form of the inner velocity profile can be obtained

by expanding the inner velocity profile of equation 5.63 for y* >> a*. The result is

U L1
— = Cw™ +CiatyT T+ 57(7 — DGty + . (5.87)

*

Equation 5.87 can also be written in outer variables as

1
UE = C,y" +vaC,y" " + 57(7 —1)C,a @) 2 +... (5.88)

where @ = a* [y, ;.

These forms are useful for two reasons: First, they are excellent approximations
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to equation 5.63 for all values of y* > —a™ (or ¥ > —a@). Second, it is easier to
incorporate them into a composite solution for the inner region since they do not
have the singularity at y* = —a™. These profiles have been included on Figures 15

and 16 using the GC value of a™ = —16.

5.13 Composite Velocity Profiles for the Inner and
Overlap Regions

A velocity profile valid over the entire inner and overlap regions can be obtained
using equation 5.87 if empirical relations are introduced to account for the variation
of f;(y™,d") inside the overlap region. This is analogous to the near wall and buffer
layer empirical profiles employed by GC for boundary layers which use an empirical
relation to splice together the various regions of the flow so that a continuous profile
is obtained.

The term “buffer layer” was used by GC to refer to the region of adjustment from
linear to the meso/overlap region. They proposed splicing the near wall and expanded

form of the overlap solutions using

U
v F) = ('t + eyt +esy™) exp(—dy™)

-1 1 2 -2 6
+ Ciy"l4+yaty™™ + 370 - a™ y* )1 — exp(—dy™")p.89)

The y+6—dependence of the exponentials allows not only the no-slip condition to be
satisfied at the wall, but also the boundary conditions on the first three velocity
derivatives. The damping parameter is chosen as d = 8 x 1078 to fix the changeover
at y© ~ 15. A constant value of ¢, = —0.0003 is in good agreement with both the
velocity data of KEP and the corresponding expansion for the Reynolds shear stress
near the wall (i.e., < —uv >*= 4¢y+°). The value of ¢5 can not be determined with

any accuracy from the data, so was arbitrarily chosen as c5 = 1.35 x 10~° to provide
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the best splice between the near wall and mesolayer profiles. The value of a™ was
determined by GC to be approximately —16.

Figure 18 shows equation 5.89 together with the velocity data in inner variables
for the KEP profile (x/b = 70) and the boundary layer data of Johansson & Karlsson
(1989). Figure 19 shows the corresponding Reynolds stress profile calculated using
equation 5.89 and equation 5.15, together with the measured Reynolds stress from
these experiments. The calculated profiles use the modified GC values described
earlier for the inner parameters (v, = 0.0362, Ci, = 56.7, a™ = —16, o = 0.46, and
A =2.9) with D = 1.00 and Cps, = 1.30. The agreement between experiment and
theory is remarkable. The slight difference in Cjs, (from the boundary layer value)
is undoubtedly attributable to the higher quality of the wall jet data. Overall, the
agreement between the composite profile and the velocity data is within one percent

for g < 0.1.

5.14 The Asymptotic Friction Law

As noted above, it has long been customary to present friction data plotted against the
local Reynolds number based on the velocity maximum and half-width (or location of
velocity maximum). Such a plot is not naturally suggested by the theory presented
here since the parameters depend on yf/Q, and not on Upyi/2/v or Upym/v. It
can easily be generated on a spreadsheet, however, by assuming a value for yf“ﬂ,
then calculating u, /U, and from the two, R,,. To facilitate comparison with earlier
empirical friction laws and data, such a plot is presented here as Figure 20, where
it has again been assumed that y,,/y;/2 = 0.17. Representative values are shown in
table 5.1.

Since there is no new information, it is not surprising that the same good agree-
ment noted above is achieved. Also shown is the Bradshaw & Gee (1960) corre-

lation. This was originally given by the authors in terms of ¢; as a power law in
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Figure 20: Skin friction coefficient versus R, = Up¥m/V-
yf/Q C, C; v Uy /Upn Ry = YuUn /v
(given) || (= Coxo ) | (eqn. 5.85) | (eqn. 5.84) | (eqn. 5.64 or 5.86) | (Ym/y1/2 = 0.17)

800 1.3 9.30 0.1189 0.0633 2,149
1,000 1.3 9.53 0.1151 0.0616 2,758
1,200 1.3 9.72 0.1122 0.0604 3,379
1,500 1.3 9.95 0.1089 0.0589 4,329
2,000 1.3 10.25 0.1050 0.0571 5,952
2,500 1.3 10.47 0.1022 0.0558 7,614
3,000 1.3 10.65 0.1000 0.0548 9,307
4,000 1.3 10.93 0.0968 0.0533 12,765
5,000 1.3 11.14 0.0946 0.0521 16,301
6,000 1.3 11.31 0.0928 0.0513 19,899
8,000 1.3 11.57 0.0902 0.0499 27,239
10,000 1.3 11.77 0.0884 0.0489 34,734

Table 5.1: Wall jet parameters calculated as a function of yf’/Z
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Ry = Unym/v; in particular, ¢; = 0.0315R,%'82. This transforms to u./U, =
0.122(y,) =% using the KEP estimate of y,/y1/2 = 0.17. There is a remarkable
correspondence between the theoretical curve and the empirical relation of Bradshaw
& Gee (1960). Note that the theoretical and empirical curves diverge as the Reynolds
number increases since the power exponent continues to drop in the former, but is
fixed in the latter. Obviously the empirical expressions should not be used outside of
the limited range for which they were established by experiment, but the theory is
not so limited.

As shown in equation 5.86, u,/U,, is entirely determined by the two constants, v
and Cyy/Ciso, and the function h(Dyf’/Q). In the limit of infinite Reynolds number,
however, even the function A must be constant, so the asymptotic friction law is

indeed a power law with constant coefficients; i.e.,

Us Coco
Um C’LOO

(Dyify) 7 (5.90)
Some idea of when this limiting power law is valid can be obtained by expanding
the exponential of equation 5.86 in powers of A/(ln(Dyf/Q)a

A

expld/(In Dy;)*] =1+ G5 g
1/2

+... (5.91)

Clearly the second term must be negligible for the power law limiting behavior to

dominate; thus the limiting power law behavior is obtained when
In Dy, >> [A]"/* (5.92)

For the values above this would require yfﬂ >> 2.4 x 10*, which is an order of

magnitude above the existing experiments.
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Figure 21: Variation of half-width with downstream distance, y1,2/b versus z/b. KEP,
AJL and WKH data.

5.15 Implications for y,,, and U, versus z

Figures 21 through 24 show the variation of the half-width, y1/2, and the velocity
maximum, U,,, with downstream distance, z, for the KEP, AJL and WKH data.
These data are plotted using both the traditional normalization using b and U, (cf.
Launder & Rodi, 1981), and using M, and v (cf. Narasimha et al., 1973, WKH). Also
shown on the latter are the theoretical curves derived below.

It is not entirely clear whether the data collapse or not even when plotted using
the momentum /viscosity scaling (which is seen to work somewhat better than the
scaling using Uy, and b). The same lack of collapse was observed by by WKH who
attempted to remove the trends with a virtual origin, with limited success. These
differences between data sets were noted in Section 5.5 in the normalized plots of U,
versus y1/2. Clearly source Reynolds number alone cannot explain the differences since
the WKH source Reynolds numbers overlap those of AJL and KEP. As noted earlier

there is nothing in the single point similarity equations themselves to suggest that
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Figure 23: Variation of centerline velocity with distance, 1/(U/U,)? versus z/b. KEP,
AJL and WKH data.
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Figure 24: 1/(vU,,/v)?* versus X = M,z/v?. KEP, AJL and WKH data.

the effect of initial conditions dies off. It is precisely here in By, dy,/»/dx and dU,/dx
where the differences appear. Nonetheless, the cross-flow and rectification errors in
the hot-wire measurements due to the turbulence intensity at least account for some
of the observed differences. All of the hot-wire estimates of y,/, are about 10% to
15% higher than the LDA and theoretical results, consistent with the error estimate of
EKP. Near the velocity maximum, the hot-wire obtained mean velocity measurement
are 3 to 5% too high, which means that the plotted HW data in Figure 24 should
be 6 to 10% too low. This is at least in the correct direction for the AJL data, but
can not account for the WKH data. As noted in Section 5.5, however, we might
have overestimated the WKH values of M, by about the same amount which would
have the opposite effect. So the role of the initial conditions, if any, must remain
unresolved for now.

It has regularly been conjectured (e.g. Launder & Rodi, 1981) that the half-width
of the plane wall jet grows linearly with distance. It will be argued below that
dyy/2/dx is proportional to the shear stress, and it has already been shown that the

only possible asymptotic limit for this is zero. However, dy,/»/dx — 0 does not imply

143



that the wall jet stops growing, only that it cannot grow faster than linear. For
example, if dy, o/dx ~ 2P where 0 > p > —1, then clearly dy,»/dx — 0 as x — oo,
but y;/o = x'*? /(1+p) continues to increase. The growth is not linear, however, unless
p = 0, which we shall see it is not. In fact, most experiments which have attempted
to establish empirical power laws for the z-dependence of the half-width conclude

the growth rate is slightly less than linear. For example, WKH and Narasimha et al.

)0.88 )0.91

(1973) suggest on empirical grounds that y;/2 ~ (z — z, and y1/2 ~ (. — x,)"",
respectively. As will be shown below, there is no theoretical justification for such
power laws in r except for very large values of the Reynolds number, and well above
any experiments to-date.

The z-dependence of y; /2 can be considered using the momentum integral equation

in outer similarity variables, which can be written as

v 2y ) = - 5.93
m%[my1/22]——U72n ( )
where 5 is defined by

L= [1f2 +2(ky = k))dg (5.94)

The turbulence normal stress term, (k, — k,) is of second order, and could have
been omitted with no loss of generality but an error of approximately 5% would
be introduced. Note that I, becomes asymptotically independent of the Reynolds
number in the limit as ny/Q — 00.
The similarity condition of equation 5.24 (i.e., Up, ~ y7),) implies that
Y172 AU, o dy1/2

Un dz " dx (5.95)

It follows after some manipulation that

dly dyl/z u?
1+ 2n)l. = -2 .
{( + n) 2+dlnyf/2}l i 02 (596)
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In the limit as yfﬂ — 00, this reduces to

d 2
(1+2n); l%l = —g—; (5.97)

Note the appearance of the exponent n from the similarity condition of equation 5.24.
The value n = —1/2 is a special case since the corresponding shear stress must be
zero, and hence the growth rate either becomes undefined or must be exactly zero.
In fact, from equation 5.24 it is clear that n = —1/2 would require that that UZy, /2
be constant, which is exactly the momentum conservation condition for a free plane
jet (cf. George, 1989), and this makes sense only if there is no momentum loss to the
boundary. Given the presence of the wall, this would be a possibility only at infinite
source Reynolds number, if at all. For finite source Reynolds numbers, the presence
of the wall dictates a continuing momentum loss to the wall so that n < —1/2, and
as a consequence ¥;/o must grow slower than linearly with z, exactly as suggested by
Narasimha et al. (1973), WKH and AJL on empirical grounds. But there is, to this
point at least, nothing in the equations to indicate that the value of n is universal,
although the experiments cited earlier in Section 5.5 suggest that it might be.

The derivative, dy, /»/dz, in equation 5.97 can be replaced by either d(y1/2/b)/d(x/b)
or dYi),/dX with no loss of generality where Y;/, is defined as before and X by
X = xM,/v?. The momentum-viscosity scaled version is used below to derive the
X-dependence of Y/, and vUp,/M,.

Since n, Iy and u,/U,, can be determined directly from the data, equation 5.97
can be used to calculate dy;/o/dx. Alternatively, n can be determined if Iy, u,/Upn,
and dyy/2/dx are known. In fact, this is probably the best way to determine n since
2n is very close to —1, so the difference between n and —1/2 is magnified. The value
so obtained can then be used together with the continuity equation developed in the
next section to provide an overall consistency check on the flow and data. From the

KEP data, the value of I for /b = 40, 70, 100 (and even 150) is 0.78 (0.745 if
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yfr/g dyijo/dz | X = Moz /v | Y = Moyryo/v* | 1/ (U /Mo)?
(given) || (eqn. 5.97) | (eqn. 5.101) (eqn. 5.98) (eqn. 5.31)
800 0.0917 1.31E4-09 1.33E4-08 1.11E4-08
1,000 0.0870 2.35E+09 2.26E4-08 1.94E+08
1,200 0.0835 3.77TE+09 3.47E+08 3.00E+08
1,500 0.0794 6.72E+09 5.87TE+08 5.31E+408
2,000 0.0747 1.41E+10 1.15E4-09 1.08E+4-09
2,500 0.0713 2.49E+10 1.94E+09 1.88E+09
3,000 0.0687 3.96E+10 2.97E+09 2.94E+09
4,000 0.0650 8.21E+10 5.80E+09 5.97E+09
5,000 0.0622 1.44E+11 9.74E+09 1.03E410
6,000 0.0602 2.28E+11 1.49E410 1.61E+10
8,000 0.0571 4.68E+11 2.89E+10 3.25E+10
10,000 0.0548 8.17E+11 4.84E+10 5.61E+4+10

Table 5.2: Wall jet development as a function of yf/Q. (See table 5.1 for parameters)

the turbulence terms are neglected). Using this, the measured values of u,/U,, and
dy1/2/dz, and averaging the result yields n = —0.528, which is the value cited earlier
in Section 5.4.

Since the values of n and I, can now be assumed known, then the z-dependence
of Y15 (or 41/2/b) can be calculated numerically using equation 5.97 together with
the friction law of equation 5.86. The local value of y;L/Q must be determined for
each value of = before the integration can be performed, so an inverse procedure was
carried out using a spreadsheet, the results of which are summarized in Table 5.2. It

follows after some manipulation that

M,y 1 /C;D7\1Y0+m) .
12 _ Y, = [_ ( )] [/ (5.98)

V2 B1 CO

so Y;/o can be obtained directly for each selected value of yfﬂ. Moreover, from

equations 5.97, 5.86, and 5.31 it can also be shown that

— 2/(147)
dX (1+2n)L | \C; 1/2

(5.99)
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Note especially the appearance of B; in equation 5.99. This is the only way for
the source dependence of y,/, and Uy, to influence the growth rate calculation if n
is assumed universal. As noted in Section 5.5, it is not at all clear whether B is
universal.

A finite difference estimate of dY;,/dX is given by

dYip(X) _ Yip(X +AX) =Y (X)
dx = AX

(5.100)

From this X — X, can be readily obtained by summing the AX estimated from

_ Yip(X +AX) - Vip(X)
le/Q/dX

AX (5.101)

where for each incremental increase in the value of yfr/z from a small value, the values
of Y1/, are obtained from equation 5.98 and dY; /2/ dX from equation 5.100. Note
that X, is a possible virtual origin chosen to be zero for the computations shown
in Figure 22. The results shown were obtained by starting at yf/Q = 40 and using
increments of Ayf/z = 10.

Figure 22 shows the calculated variation of Y7/, versus X for the using the values
of By = 1.85 and n = —0.528 determined in Section 5.5. Also shown are the KEP,
AJL and WKH data. There is excellent agreement between data and theory®. It
is straightforward to convert this Y;,, versus X information to y;/2/b versus x/b
using equation 5.33 and the definitions of Y7/, and X, at least for a top-hat profile
source, but the results depend B; and hence on source Reynolds number as noted in
Section 5.5.

The velocity maxima can readily be calculated as a function of x once the x-
variation of y;/ is known using equation 5.31. The calculated results using B; = 1.85
are shown in Figure 24, along with the experimental data of KEP, AJL. and WKH.

The experiments and theory are in reasonable agreement. Note that the agreement

6Especially if the errors for hot-wires in high intensity turbulence are taken into account.
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for each individual data set is considerably improved if the optimum values of B; for
each data set are used. As noted above, the uncertainty of the hot-wire data does
not seem to warrant this tinkering.

As noted above, it has long been customary to fit power laws to wall jet data.
In fact, power law expressions for y;,, and U,, as functions of x can be obtained by
assuming the parameters C;, C, and v to be locally constant. These, of course, are
not valid for the entire range of x, but are useful in understanding such fits from
earlier experiments. If this assumption is made, then the dependence of C;, C, and

~v on y* can be ignored, and equation 5.99 can be integrated directly to yield

Yi/Z = B2,local(X - Xo)(1+7)/(1+37+2n7) (5102)
where
_ 2/(147) (147)/(1+37+2n7)
By local = (1 ks 3,7 ha 2n7) <%> ! (DBl)_z,Y/(HJY) (5103)

and X, is a virtual origin which depends on the Reynolds number range under con-
sideration. Note that there would be an additional Reynolds number dependence in
the coefficient if y;/2/b and 2 /b had been used instead of Y7/, and X.

If the parameters are evaluated at yf/Q = 1500 (which corresponds approximately
to the KEP experiment at /b = 100), then C,/C; = 0.12, and v = 0.109. Thus
locally, Y12 = 0.515(X —X,)°?'®. This exponent is exactly that obtained by AJL, and
very much in the range observed by WKH and Narasimha et al. 1973. The coefficient
is quite different, however, indicating that the virtual origin must be quite large
and negative, in fact nearly as large as x/b itself to achieve estimates in reasonable
agreement with the data. The fact that these are only local estimates means that
the power will increase as higher local Reynolds numbers are achieved, as will the
magnitude of the virtual origin required. Recall that no virtual origin at all was

required in the numerical integration above which made no assumptions about the
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constancy of the parameters, but evaluated them at each step in the integration.
Finally, it is easy to show that the true asymptotic behavior is indeed a power law.
Like the friction law, however, this asymptotic will be achieved at Reynolds numbers
far above those of current experiments. In the limit as yf’/2 — 00, all the parameters
are exactly constant, so in this limit equation 5.103 represents the exact asymptotic
variation of Yij,. Using n = —0.528, I, = 0.78, 7o = 0.0362, Cyso/Cicc = 0.023
and By = 1.85 yields Bys, = 0.019 and the exponent is 0.97. Thus the asymptotic
variation of Y/, with X is nearly linear, but not quite. The difference from linear
behavior is quite important, however, since as shown above it is a consequence of
the continuing momentum loss to the wall. And even this relation depends on the
value of B;, and hence perhaps the source conditions. Note that this limiting power
law growth rate cannot be achieved until the friction law has achieved its asymptotic

power law; namely when the inequality of equation 5.92 is satisfied.

5.16 Implications of the Continuity Equation

The averaged continuity equation can be integrated from the wall to y to obtain

v oU
V=—[ —dy 5.104
o (5.104)
It follows immediately that
o QU
Voo = — —dy 5.105
W (5.105)

Obviously any attempt to realize a plane wall jet must satisfy these equations. In
general they are difficult to apply, however, because of the z-derivatives. As will be
shown below, similarity simplifies this process considerably so that continuity can be
used both to verify the two-dimensionality of the flow and to provide further evidence
that the flow is indeed similar and the measurements of it are correct.

The outer variables version of the continuity equation can be easily derived by
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substituting equation 5.28 to obtain

Un

V dyije | _ . + Y172 dUp, dyi/2 /y +
= - '1
l dx ] yfo(y,yl/Q) Um d./L' + d:r 0 fO(é-’ yl/Q)dg (5 06)

dyiy| @ v N
- IMW o UL

Note that this equation is valid for all values of 7 as long as ny/Q is finite.

Since f, is a similarity solution of the outer equations as ny/Q — 00 (i.e., fo = fooo)
the last integral is Reynolds number independent in the limit; hence the last term
vanishes in the limit. Thus in the limit, the velocity profile in the outer region of the

flow must satisfy

V ldylp

o || =t - 1) [ im0 (5.107)

where equation 5.95 has been to used to relate dUpy,/dx to dy,/o/dx. 1t follows imme-

diately that in the same limit, the entrainment velocity is given by

Voo _ dy1/2
_Um =—-1+n)l l—dx ] (5.108)
where
I = / 7 Fo(€)dE (5.109)
0

Note that since from equation 5.97 dy; »/dz depends on yf/ /o> S0 does Voo/Um. On
the other hand, if the value of n (and hence the corresponding mean velocity profiles)
are universal, then the ratio (Vio/Up,)/[dy1/2/dx] must be a universal constant.

The integral, I;, in equation 5.109 was estimated from the KEP data by aver-
aging the integral of U/U,, for /b = 40,70, and 100; the result was I; ~ 1.05 to
within 2%. The value of n = —0.528 was obtained using the integral momentum
equation as described in Section 5.15 above. Using these, the calculated value of

(Voo/Unm)/[dy1/2/dx] for the KEP data is 0.50, This can be compared to the ratios
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inferred from the measurements using the local estimates of V. /Uy, and dy,/o/dx
which were —0.47, —0.48, —0.55, and —0.71 for positions z/b = 40, 70,100, and 150
respectively. Clearly the value for z/b = 150 differs substantially from the rest, but so
does the value of I; there which increases to 1.10. Both of these are clear indicators
that similarity is breaking down because of either a lack of two-dimensionality, or a
return flow, or both.

If the flow satisfies the similarity conditions, then the profile of V/U,, in the
outer region should collapse when normalized by either dy,/,/dx or u?/U2. In the
KEP experiment the latter are determined with more accuracy than the former be-
cause the excellent resolution of the measurements near the wall. Figure 25 shows
the actual profiles of (V/U,,)/(u?/U?). Also shown are the profiles calculated from
equation 5.107 using the values of n and I; cited above, and from integrating the
U/U,, profile for the /b = 70 position. The agreement between the measured and
calculated peak values is within 10% for /b = 40,70 and 100, but the relative error
increases to nearly 30% for z/b = 150. Also shown on the plot as a horizontal dashed

line is the theoretical limiting value given by

[oo/[/m (1 n)Il
= 11
u2/UZ, (1+2n)1, (5.110)

Using the values cited above yields (Vo /Uy,)/(u?/U2) = —11.3 (which corresponds
to the value estimated above of (Voo /Un)/[dyi/2/dz] = —0.50).

The discrepancy between the measured and calculated profiles at y/b = 40 can in
part be attributed to the Reynolds number dependent terms in equation 5.107 which
are not yet negligible since the flow is still developing. Such is not the case beyond
x/b = 100 where the outermost data show substantial development with distance,
thus providing additional evidence that the return flow in the facility is beginning to
affect the wall jet part of the flow as noted above.

Another part of the discrepancies must be attributed to measurement errors. EKP

have noted that since the values of V' are very small compared to U, a very tiny
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Figure 25: Profiles of V/U,,/(u2/U2); KEP data, theory: n = —0.528,I; = 1.05.
Figure provided by J. Eriksson (see also George et al. 2000).

error in the angle between the beams of an LDA system can make a large error

in the determination of V. For example, a change in the beam angle of only 0.3

degrees makes about a 10% difference in the V-profiles. Therefore, in cases where

similarity behavior has been established using the U-velocity profile, the V-profiles

calculated from similarity may be considered more accurate than those measured.

This is a wonderful example of how the theory can be used to refine the measurement

parameters, as long as both two-dimensionality and similarity have been established.

The inner part of the wall jet can also be considered by using the inner scaled

profile of equation 5.16. It is straightforward to show that

vV __|ndu
- U, dx

] y fiy™) —n

U
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In the limit as yfﬂ — 0o this reduces to

U

4 _lﬁ%

= dm] yt fi(y) (5.112)

It is easy to show that from a Taylor expansion and the inner momentum equation
that the velocity very near the wall is given by ut = y* + cay™ + -+ and v+ =
eyt + esyt® + --- (v. Monin and Yaglom 1971). It follows immediately from
equation 5.112 that

v lﬂ%] v + ey + ] (5.113)

Thus ey = [(n/u.)/(du * /dz)], e3 = e4 = 0 and e5 = c4[(n/u.)/(du * /dx)]. Interest-
ingly, es and e5 are Reynolds number dependent, contrary to the usual assumptions
that they are constant.

By using the friction law derived, equation 5.86, together with the similarity

condition of equation 5.24, it can be shown after some manipulation that

du, — 1 d
R |t S B (5.114)
Uy dT L+ i) dx
or using equation 5.97 derived in Section 5.15,
n du, n—-y 1 ( Uy )2
A S — 5.115
Uy, dx ll + 7] (1+ QTL)Izny/g Un ( )

Given the experimental difficulties in obtaining mean V'-velocity data so close to the
wall (both because of its very small magnitude and the proximity of the wall), the
velocity calculated from equations 5.112 using 5.115 is probably the only way V' can
be obtained here. This is an excellent example of how theory can be used to obtain

indirectly a result which is not measurable at all.
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5.17 Summary and Conclusions

A new theory has been set forth based on the Asymptotic Invariance Principle in
which the outer wall jet is governed by different scaling parameters than commonly
believed. In particular, the Reynolds shear stress in the outer layer scales to first order
with 42, so that the outer layer is governed by two velocity scales, U, and u,. Both
inner and outer regions become asymptotically independent of the Reynolds number,
and reduce to similarity solutions of the inner and outer boundary layer equations in
the limit of infinite Reynolds number. A consequence of this is that no scaling laws
can perfectly collapse the data at finite Reynolds number.

By examining the inner and outer velocity profiles using Near-Asymptotics, the
velocity in the overlap layer was shown to exhibit power law behavior, but with an
exponent which was only asymptotically constant. This overlap region is not Reynolds
number invariant in either inner or outer variables, contrary to common belief, but
consistent with recent experimental findings. Another consequence of the analysis
was that the friction coefficient varied as a power of the local Reynolds number, the
power and coefficients being entirely determined by the velocity parameters, or vice
versa. New scaling laws for the turbulence quantities in the outer layer were also
derived from similarity considerations of the turbulence Reynolds stress equations.
The theory was shown to be in excellent agreement with the all the experimental
data. In addition, the hypothesis that the inner flow of the zero pressure gradient
boundary layer and the wall jet are the same appears to be supported.

At the very least, a strong motivation has been provided for a careful re-analysis
of the older experiments, and perhaps a new generation of experiments over the entire
range of Reynolds numbers. Of particular interest will be determining whether there
are features of the initial conditions which are preserved, and what exactly are the
asymptotic values of the parameters. The success of the theory in correlating the
observations to-date, all of which were made before the theory was deduced, lends

considerable credibility to the AIP approach to similarity.
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Chapter 6

Thermal Boundary Layers

From an endless beach of reality, we take a grain of sand and call it the

world.

— Robert Pirsig, author of “Zen and the Art of Motorcycle Maintenance”

6.1 Introduction

In this chapter, the similarity analysis of appendix A (see also George & Castillo

(1997), George et al. (1996)) for the isothermal zero pressure-gradient turbulent

boundary layer on a flat plate will be extended to the thermal boundary layer of

forced convection.

The classical scaling laws for the forced convection boundary layer temperature

profile (c.f. Monin & Yaglom, 1971) are:

T T,
T—-T,
To - fo(ga PT)
where
F,
vt =Y with: n= 2 and T, =T, = -%
n Uy Us
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This scaling leads to a logarithmic temperature profile in the overlap region

T,—T 1
@ = —Iny"+ A 6.4
T i (6.4)

T-T, 1
—® = —Iny+ A 6.5

and to a logarithmic heat transfer law
Ty — Too) s 1

St = ( Ju = Inét + (A — A) (6.6)

F, ark

There have been problems with the classical scaling laws. For example, Brad-
shaw & Huang (1995) summarize mounting evidence that the classical theory is, in
fact, wrong. The most serious evidence is that a logarithmic region of the tempera-
ture profile is very limited and does not increase with Reynolds/Péclét number, as a
proper overlap solution should!. Moreover, the constants appear not to be universal
constants.

These problems have been very difficult to detect, because almost no experiments
measure 7, or Fy, = q,,/p ¢, directly. They instead assume the classical theory to be
correct, the constants to be universal, and adjust 7, and F;, to get the best log fits
to velocity and temperature profiles. As for the ZPG-TBL, this is clearly a logical
fallacy.

In the following sections, the new theory for the thermal boundary layer will be
outlined. It is a straightforward extension of the results for the momentum boundary

layer, which is presented in chapter 3. This work shows that

e The classical theory is inconsistent with the Reynolds-averaged Navier-Stokes
and thermal energy equations. Therefore the suspicions of Bradshaw and Huang

were justified — the classical theory cannot be correct!

!Bradshaw & Huang (1995) note that although a point of tangency to the log law can always be
found, that point is moving with Reynolds number.
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e A new theory is proposed which is consistent with the averaged Navier-Stokes

and thermal energy equations.

e The new theory appears to be in excellent agreement with the limited data

available where the heat flux was actually measured.

6.1.1 A Note on Thermal Boundary Layer Data

Unfortunately, there are not many thermal boundary layer data sets where tempera-
ture is a passive scalar in a zero pressure pressure gradient flow. Of the ones available,
only one was found to have measured the heat flux directly and have all the neces-
sary velocity and temperature information. This was the experiment performed by
Reynolds et al. (1958). Even in this experiment the boundary layer flow was not
exactly zero pressure gradient — it exhibited a slight adverse pressure gradient.
Fortunately, Castillo & George (2000) (see also Castillo, 1997) extended the the-
ory to include boundary layers with imposed pressure gradient. These boundary
layers were shown to be uniquely described by a single equilibrium parameter?,
A = [§/pU2,dd/dx])dPy/dz, derived from a similarity condition on the Euler equa-
tion outside the boundary layer, which reduces to the Clauser parameter in the limit
of infinite Reynolds number. This will be of importance here, since the weak pres-
sure gradients the analyzed data sets exhibited were nonetheless strong enough to
introduce a 12-15% error into the momentum integral, when not accounted for. The
shear stress data of Reynolds et al. (1958) were corrected using the momentum inte-
gral for the change in free stream velocity (pressure gradient), then parameters were

calculated according to the theory outlined in appendix A (see also Castillo, 1997).

2Surprisingly — and contrary to earlier attempts to analyze such boundary layers —mnearly all
the measurements either conform to the new equilibrium definition, or show evidence of moving from
one equilibrium state to another. Thus similarity techniques, with the definition of the equilibrium
parameter used here, seem to describe a large portion of the available measurements, contrary to
the conventional wisdom.
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6.2 The Thermal Boundary Layer Equations

Consider the thermal boundary layer formed by flow over a heated surface (c.f. Fig-
ure 1). The effects of buoyancy will be assumed negligible, as will those due to the
variation of thermal properties with temperature. The temperature effectively acts

as a passive scalar entirely driven by conduction and the velocity field.

—_—
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N .-’: \\ j |
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Figure 1: Definition sketch for the thermal boundary layer.

It is well-known that at high Reynolds and Péclét numbers, the conduction term
is negligible over most of the boundary layer, so the outer thermal equation reduces

to
(T — Ty) +V8(T—Too) :_8<vt> 6.7)

u ox oy oy

where the ambient field is assumed to be at uniform temperature and can thus be
subtracted T, = const..

Near the wall the conduction term must remain so that the wall boundary condi-
tion can be satisfied. A consequence of the re-scaling necessary to keep it is that the

convection terms can be shown to be negligible near the near wall, so the thermal
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equation there reduces to

8(T B Too)
—<vt>4+a——

"=y Oy

(6.8)

The inner and outer equations, equations 6.7 and 6.8, are exact in the limit as the
Reynolds and Peclet numbers go to infinity (Re — oo, Pe — 00).

Equation 6.8 can be integrated from the wall to yield

o(T — Ty
_Fw =—<vt> +C¥% (69)
where F,, is the flux parameter defined by
w k oT
Fy=dw -k OT (6.10)

S ope pep Oy,

and g, represents the wall heat flux. In general, ¢,, and the wall temperature 7, are

z-dependent.

6.3 Similarity Analysis of the Near-wall Region

The Asymptotic Invariance Principle (AIP, section 2.3) requires that properly scaled
inner and outer profiles reduce to similarity solutions of the inner and outer equations
in the limit as Reynolds and Peclet numbers go to infinity (i.e., the limit in which the
equations themselves are valid). Thus for the inner equations similarity solutions are

sought of the form

T_Too = sigi(y+T:6’i|“—:Pr) (611)

— <t >= Fyhi(yT 7, 64, Pr) (6.12)
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where
Y
nr

y+T

Il

(6.13)

and 7y is a length scale which remains to be determined. The parameter 67 is the
ratio of outer to inner length scales and remains to be defined. It can be shown a

posteriori that 6; — oo as R, — co. The non-zero boundary conditions are given by

T—Te=T,—Ty=AT, (6.14)

at y =0, and
—vt = F, (6.15)

as y — oo. The last condition is only true in the limit as §; — oo, which insures
that the outer flow is never reached so the inner equation is never invalid (at least in
inner variables).

Substitution into equation 6.9 and dividing by F;, shows that similarity solutions

are possible only if

T, ~ AT, (6.17)
and
aAT,
nr ~ i (6.18)

Note that the symbol ‘~’ does not mean order of magnitude, but rather ‘has the same
x-dependence as’. These can be taken as equalities without loss of generality, and
thus the inner scales are defined.

These results are quite different from the classical law of the wall for thermal
boundary layers; here it is deduced and does not depend simply on dimensional
analysis or empirical scaling. Note that as long as the argument dr is finite, the

profile of equation 6.11 is simply a scaled temperature profile for the entire boundary
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Figure 2: Mean temperature data for thermal boundary layer in inner variables. Data
of Reynolds et al. (1958)

layer. Only in the limit of infinite 67 does it lose the ability to describe the outer
flow and become an inner solution.

Figure 2 shows six of the temperature profiles measured by Reynolds, Kays & Kline
(1958) normalized in the inner variables derived here. The data were taken at two
different values of the free stream velocity for three positions along the surface. Note
the excellent collapse near the wall for all the data, the slight dependence on Reynolds
number in what will be identified later as the overlap region, and the departure from
similarity in the outermost region. Particularly noteworthy is the dramatic difference
between the two sets of measurements outside the near wall region, clearly suggesting

a dependence on initial conditions.
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6.4 Similarity Analysis of the Outer Flow

Application of the AIP to the outer flow is carried out in the same manner. Solutions

are sought of the form

T — Too = Tsogo(yTa 5;5 PT) (619)
—<wvt> = Fyho(Yp,dF, Pr) (6.20)

where
Yr =y/0r (6.21)

and 07 remains to be determined. Note that the dependence of the outer solutions
on &7 might be expected to vanish in the limit as 6 — oo, and that of the Prandtl
number as well. The result for the outer velocity from George & Castillo (1997) must

also be utilized; it is

U= Uvoo[1 + fo(ya 6+)] (622)
where
7= % (6.23)

Substitution into equation 6.7 and dividing by Uy, T,/dr shows that the necessary

conditions for similarity are:

@ diy | P | brdl, | 3 dUs
dx dx UxTlsy Ty dx Uy dx

(6.24)

The last condition involving Uy, applies only if the free stream speed is varying (i.e.,
dPy/dz #0).

Thus it is clear that both the thermal and momentum boundary layer thickness
have the same z-dependence, and can at most differ by a constant (or alternatively,
have different virtual origins). Again, note that there is no suggestion in either the

outer thermal or the momentum boundary governing equations that the outer flow
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might be independent of initial (or upstream) conditions.

Also it is immediately obvious that

do dor
Foo~UxTso— ~ UsTyo—— 6.25
U dx dz ( )

This condition on T}, will be examined later and shown to yield the outer temperature

scale.

6.5 The Outer Temperature Scale

Equation 6.25 is the thermal counterpart to the similarity condition on the Reynolds
stress in the outer layer of the momentum boundary layer; namely, Ry, ~ U2 dd/dz
(eqn. A.39). Since the heat flux across the inner layer is constant and equal to Fy, (but
only in the limit of infinite Peclet number), it provides an inner boundary condition
on the heat flux, so

dér

UsTso—r ~ Fyy ~ F, 6.26
o (6.26)

The coefficient in equation 6.26 is dependent on Peclet number, but asymptotically

constant. A similar argument for the Reynolds stress in the outer layer yielded

dé
Ryo ~ Ugod— ~ u?, (6.27)
X

again with a Reynolds number dependent coefficient which was constant in the limit.
An interesting consequence of this is that for finite Uy, and finite T,, F,, ~ u? is the
only possibility as z — oo. Thus F, = f(AT) 7.

It follows immediately from equations 6.24, 6.26 and 6.27 that the outer tempera-
ture scale which reduces to the proper limit (as the Péclét number Pe — 00) is given

by

1) Fw 00
Tso = TszU i (U ) (628)
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Figure 3: Mean temperature data for thermal boundary layer in outer variables. Data
of Reynolds et al. (1958)

Thus
Tso _ Fw Uoo
Tsi N U*ATw Uy

=H (6.29)

The parameter H can easily be shown to be related to the Stanton number star, St,,

and the Stanton number, St, by

2 2
H=St., |2 =2 (6.30)
Cy Cy

where c; is the friction coefficient.

Figure 3 shows the same data as figure 2, now normalized in outer variables.
The value of 67 was taken as the y-location where the temperature had dropped to
0.10(Ty, — Ts). The friction velocity was computed from the momentum integral
equation, which included a correction for the slight adverse pressure gradient in the
tunnel. The data clearly collapse well over the outer part of the flow as long as the
upstream conditions are fixed. They show the same differences in the overlap region

for the two different sets, however, just as for the inner scaled profiles above. Whether
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this is a consequence of the Reynolds number dependence of the overlap region, or

the effect of upstream conditions was discussed in chapter 3.

6.6 The Overlap Region of the Temperature Pro-
files

In the limit as the Péclét number becomes infinite, the ratio of outer to inner length
scale also becomes infinite. Thus, although at finite Péclét numbers, both of the scaled
profiles of equation 6.11 and 6.19 can describe the temperature profile everywhere
(because of their dependence on d7), in the limit the inner cannot describe the outer
region, nor the outer the region closest to the wall. There might, however, exist an
overlap region in which both inner and outer scalings work in the limit. This can
indeed be shown to be the case by the methodology of George and Castillo 1997
which makes clear the Reynolds and Prandtl number dependence of the parameters.

By applying the Asymptotic Invariance Principle (AIP) and Near-Asymptotics
(methodoloy as outlined in chapter 2) it can be shown (after some manipulation)

that the inner temperature profile is given by
9i(y o, 07, Pr) = Ai(y*y +a®)"" (6.31)

where A; = A;(6F, Pr) and v, (67) is defined as

_ Or dH
= Hds)

S

with: H =

£ (6.32)

i

YT

N

The parameter a arises from the fact that the results must be independent of
the origin in y. The exact behavior of a must be established from experiment (at
least at this point), but it is certainly related to the mesolayer and the effects of
the low turbulence Reynolds number on the thermal dissipation. For the momentum

boundary layer, a* ~ —16, so that it might be constant for the thermal layer as well.
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Similarly, the outer temperature profile can be shown to be given by

9o(Urs07) = Ao(Tp +@)"" (6.33)

where A, = A,(6F, Pr).

Thus the temperature profile in the overlap region is described by a power law,
but not a simple one because of the dependence of the coefficients on 6. In the
limit as 67 — oo, A; — Ajs and A, — A,e. The AIP requires that both A;,, and
A, be asymptotically finite and non-zero, just as for the velocity profile parameters.
Moreover, the limiting value of vy must be zero to insure a finite local dissipation of
temperature fluctuations.

The parameters A;, A,, and v must also satisfy a constraint equation given by

dyr  dinA,/A,

In 6 -
T et T dlnos

(6.34)

which is similar to the analogous requirement for the momentum boundary layer
parameters. The various regions of the turbulent thermal boundary layer are shown

in figure 4.

6.7 The Heat Transfer Law

The heat transfer law governing the forced boundary layer can readily be derived by
substituting the overlap solutions for g; and g, into equations 6.11 and 6.19, then

equating the temperatures. The result is:

Tso Az
or
Uso Us\> A
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Figure 4: Regions of the turbulent thermal boundary layer.
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or using equation A.73
_AC,

St* == A—oa

6Fret T (6.37)

The ratio of temperature scales H is related to the Stanton number and the friction

2 2
H =St |2 =2 (6.38)
Cy Cy

It is clear from equation 6.37 that the exact behavior of the Stanton number

coefficient c; by

based on the friction velocity is an interesting interaction between the momentum
and thermal boundary layer parameters. If v > v, St. increases as the boundary
layer grows, whereas St, decreases if 77 < . On the other hand, if vy = 7, then St,

does not change downstream

Fy
AT,

St, = = const. (6.39)

There is reason to suspect that this may indeed be the case, at least when both
boundary layers have the same effective origin. If so, then the Stanton number is
proportional to the friction coefficient, at least asymptotically, just as in the classic

Reynolds analogy.?

6.8 The Variation of the Parameters with 67
A solution to equation 6.34 can be written as

Xé = exp|(Vr — Vroo) In6F + hr] (6.40)

3These possibilities need to be explored further as more data where both wall shear stress and
wall heat flux were measured directly become available.
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where the single unknown new function hr is at most a function of 6} and the Prandtl

number. It follows immediately from equations 6.32 and 6.35 that

dhr
_ - _ A1
YT — VT d1n 635 (6 )
and
H = §}""=ehr (6.42)

Thus the entire problem is reduced to finding either theoretically or empirically the
function Ag.

It is possible to proceed by analogy with the momentum boundary layer and take

Ar
hr = Proe = o 4
T — hr (Ino5)or (6.43)
where hro, = In Ay /Ajco- If s0, then
arAr
— = .44
AO AOOO
— = eXp[(l + &T)AT/(IH 5’}—)0@] (645)
Az' Aioo
and
Aioo Too a
H= A—é}'7 exp[—Ar/(In )] (6.46)

The heat transfer law and overlap profiles are then entirely specified by Yre0, Aiso, Aoco
and the constants A7 and arg.
It appears from the data that dependence on 67 (or §%) is of the same form as

for the velocity profile, therefore

A = Ajsoexp[(1 + a)A/(Ind)?] (6.47)

Ay = Apso exp[(1 + @) A" /(In61)?] (6.48)
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Figure 5: Determination of thermal boundary layer parameter A;,,. Data of Reynolds
et al. (1958).

The same values as for the momentum boundary layer are used for A and a. Even

for the mesolayer constant

ah ~at L . 6.49
T

For Cino, Cono, Yoos A and a the values of George & Castillo (1997) were used. From the
data examined here (c.f. Figures 5 and 6) it is found that A;, &~ 2.4, Ay ~ 2.17 and

A’ = 1.3A. With A, and A,y determined, there are no more adjustable parameters!

A theoretical heat transfer law can then be expressed as:

Aivo [ 07 T u, \ 2 (14+a)(A"—A) -
I+y +7
St = ] ((5 pT> (U ) exp[ (mot)e 0 (6.50)

with

U Coco 4 Yoo A
= — .51
i Ciooé exp l(ln 6+)a] (6.51)
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and

aA
VT =7 =Y T+ ( (6.52)

EYOED
Figure 7 shows the heat transfer law of equation 6.50 compared to the data of Reynolds
et al. (1958).

Future work should attempt to determine the necessary constants to greater ac-
curacy as more and better data and/or simulations become available. In addition, if
turbulence data become available, the implications for the scaling of the turbulence

quantities should be explored.
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Chapter 7

Summary and Conclusions

The eye sees only what the mind is prepared to comprehend.

— Henri-Louis Bergson (1859-1941), French philosopher

7.1 Thesis Summary

The turbulent wall-bounded flows treated in this work were pipe and channel flows,

plane wall jets, thermal boundary layers and zero pressure gradient boundary layers.

7.1.1 Pipe and Channel Flow

A new theory for turbulent pipe and channel flows has been developed. Application
of the Asymptotic Invariance Principle and deductions from Near-Asymptotics lead
to Reynolds number dependent logarithmic overlap profiles and a logarithmic friction
law. These provided an excellent description of the mean velocity and skin friction
data from fully-developed channel and pipe flows over more than three and a half
decades in Reynolds number.

Unlike developing wall-bounded flows, the Reynolds number dependence of the
solution parameters for pipe and channel flows was found to be slight. The mesolayer

concept, together with the offset a™, proved crucial in understanding where to apply
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the theory. In particular, the overlap mean velocity profile was found not to be a
simple logarithm in y, but instead a logarithm in y+a. Therefore attempts to establish
In y behavior using velocity profile data inside y™ ~ 300 are doomed to failure and the
results misleading unless the mesolayer (and the offset a™ in particular) are explicitly

accounted for.

7.1.2 Plane Wall Jet

A new theory has been put forth for the plane turbulent wall jet based on a similarity
analysis of the governing equations and the Asymptotic Invariance Principle. In this
new theory the outer wall jet is governed by different scaling parameters than those
commonly believed. In particular, the Reynolds shear stress in the outer layer scales
to first order with u2, so that the outer layer is governed by two velocity scales, U,
and u,. Both inner and outer regions become asymptotically independent of the
Reynolds number, and reduce to similarity solutions of the inner and outer boundary
layer equations in the limit of infinite Reynolds number. A consequence of this is that
no scaling laws can perfectly collapse the data at finite Reynolds number. Velocity
profiles in the overlap region and the friction law exhibit power law behavior, with
coefficients which depend on the local Reynolds number.

New scaling laws for the turbulence quantities in the outer layer were also derived
from similarity considerations of the turbulence Reynolds stress equations. The the-
ory was shown to be in excellent agreement with the all the experimental data. In
addition, the hypothesis that the inner flow of the zero pressure gradient boundary

layer and the wall jet are the same, appears to be supported.

7.1.3 Thermal Boundary Layer

The similarity analysis of George & Castillo (1997) for the isothermal zero pressure-
gradient turbulent boundary layer on a flat plate has been extended to the thermal

boundary layer of forced convection, where temperature acts as passive scalar. In
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contrast to the classical scale, a new outer temperature scale was derived, which also
depends on the friction law. Temperature profiles in the overlap region and the heat
transfer law were power laws with Reynolds number dependent coefficients.

A surprising result was — provided the power exponent for the temperature field,
v is equal to the y found by George & Castillo (1997) — that a modified heat transfer
law can be written as St, = St/(Ux/u.) = const., thus asymptotically recovering
Reynolds’ analogy. Thermal data suited for the determination of the overlap solution
parameters is of very limited availability. The values put forth here were based on a

single experiment and await confirmation.

7.1.4 Zero Pressure Gradient Turbulent Boundary Layer

The “base case” originally treated by George & Castillo (1997) has been revisited
and several new developments have been explored. It was shown that the displace-
ment thickness scaling introduced by Zagarola & Smits (1998b) is consistent with
the fundamental scaling laws. The Zagarola/Smits scaling was then derived from a
separability hypothesis of the George/Castillo velocity deficit.

It was suggested that a modified (outer flow only) displacement thickness, 4.,
integrated for 7 > 0.1, might be a better choice for collapsing data in the outer layer.
It was shown that d,/6 is independent of the local Reynolds number and uniquely
determined by the initial /upstream conditions. This implies that fixing a downstream
position and varying the free stream velocity is not a good way to conduct a boundary
layer survey. Even in view of the Zagarola/Smits scaling, the overlap analysis of
George/Castillo remains unchanged.

The consequences of a higher order approximation to the solution for the Reynolds
number dependence were explored, and shown to have little effect on the friction law.

A modified “power law diagnostic function” much better suited to test the George
& Castillo (1997) theory has been suggested, but it was subsequently shown that even

this new form is of limited usefulness when sorting boundary layer theories.

175



7.2 QOutlook

While quite a few questions were answered — some quite surprisingly so — other

interesting questions arise from the results of this work:

e Is the mesolayer parameter at indeed constant as it appears it might be? This
will require accurate measurements of the velocity profile near y* = 30 at
considerably higher Reynolds numbers than has been possible to-date. The
problem here is not with the overall flow Reynolds number, but with the in-
ability to resolve the flow near the wall at the higher Reynolds numbers due
to probe size limitations. An obvious solution is to increase Reynolds number
by increasing the size of the experiment — and not by decreasing viscosity or
increasing the pressure drop — so less absolute resolution is required at a given

Reynolds number.

e The Reynolds number dependence seems to be nearly negligible for channel and
pipe, but crucial for boundary layer flows. Is this a subtle consequence of the
homogeneity of the former and inhomogeneity of the latter, or is it simply a
reflection of the differing inner and outer velocity scales for the boundary layer

with the consequent Reynolds number dependence?

e Since there is very little Reynolds number dependence in pipe and channel flows,
does the parameter RT = Ru,/v contain all the initial /upstream dependence

for these flows?

e There are — of course — numerous possibilities to extend the ideas presented
here to other flows (e.g., heat transfer in pipe/channel, temperature fluctua-
tions in isotropic turbulence, fully developed turbulent Taylor/Couette flow,

buoyancy-driven flows, to name but a few).

e For turbulent boundary layers, does the finding that §,/d is constant for fixed

initial /upstream conditions imply that everything that determines the fully de-
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veloped turbulent boundary layer is in the transition process? (This certainly
destroys the classical view of turbulence theory, i.e. that turbulence always set-
tles into an asymptotic state which is independent of its initial /upstream con-
ditions ...) This could also be of great practical interest, since it implies that
we can predict turbulence from knowing how it was generated. It also implies
that flow control in turbulent flows, including separation control, should be fo-
cused on how a turbulent boundary layer is created (passive control, transition

process), not on trying to influence the flow downstream (active control).

e Why was it not noticed earlier that 0,/d = const. for fixed initial/upstream

conditions?

e Are CTA hot wire and Pitot tube errors in turbulent flows the reason we were
lead to believe that 0,/ was decreasing with increasing Reynolds number (since
measurements are moving through different regions of turbulence intensity)?
Both Hussein et al. (1994) (using LDA and CTA in free jets) and Eriksson
et al. (1998) vs. Abrahamsson et al. (1994) (using LDA and CTA, respectively,
in plane wall jets) showed that even a modest turbulence intensity can result in
significant differences between the two measuring techniques. This is especially
troubling looking at the small differences between competing theories which

need to be sorted out.

e In view of the importance of the initial conditions for the outer region of the
boundary layer, it is puzzling that it does not seem to have any effect on the

overlap region (more investigation is needed here).

e The data in the overlap region of all of the wall-bounded flows considered are

very much in dispute. ..

It would be very pleasant if we had simple answers to all these questions, but this

does not seem to be the nature of the subject, turbulence. ..
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Appendix A

Review of George/Castillo Theory
for Zero Pressure-Gradient

Turbulent Boundary Layers

A.1 Introduction

This dissertation largely builds upon the theoretical concepts developed by George
and co-workers over the past decade. In this appendix, important results of this ap-
proach as applied to the zero pressure-gradient boundary layer are reviewed, closely
following George & Castillo (1997). The zero pressure-gradient turbulent boundary
layer (a schematic is shown in Figure 1, chapter 3) has been extensively investigated.
It has very simple boundary conditions, yet contains the essential physics of the sub-
ject of wall-bounded turbulent flows, and is therefore the canonical problem. George
& Castillo (1997) state: “...any general principles which apply to it should be appli-
cable to all [wall-bounded flows] — if they are in fact principles and general. . .”
The problem of the overlap region in this flow and its scaling laws had been gener-
ally regarded as solved. For recent reviews of ZPG-TBL, see e.g. Sreenivasan (1989);
Gad-el-Hak & Bandyopadhyay (1994); Smits & Dussauge (1996). The analysis of
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channel and pipe flow by Millikan (1938), where inner and outer scaling laws (the
Law of the Wall and the Velocity Deficit Law) were matched at infinite Reynolds
number to obtain logarithmic velocity and friction laws is widely considered to be a
classical result of turbulence theory. Clauser (1954), Hama (1954), Coles (1962) and
others extended Millikan’s arguments to boundary layers — with pressure gradients,
roughness and compressibility. These extensions had been accepted without much
question for the past few decades. One reason for this has been the apparent agree-
ment of experimental data with the theoretical results®, although the reviews cited

above point out several disagreements and inadequacies.

A.1.1 The Classical Theory and its Shortcomings

The classical approach usually lumps together boundary layers and pipe and channel
flows and can be found in almost every textbook on fluid mechanics (e.g. White, 1991;
Tennekes & Lumley, 1972). It is based on the analysis by Millikan (1938). The inner
layer is governed by the law of the wall (Prandtl, 1932)

v

and for the outer layer a velocity deficit is assumed at the outset as

U—-Uy Y
— X —F (2 i A2

Clauser (1954), following Millikan (1938), matched both profiles in the limit of infinite

Reynolds number to obtain the familiar logarithmic overlap velocity profile in the

! As shown in chapter 3, the difference bewteen a logarithmic overlap velocity profile with constant
coefficients, and a power-law (with Reynolds number dependent coefficients) with a mesolayer offset
‘a’ is smaller than the spread between various sets of data. This is also the case for the velocity
derivative, usually plotted as a “power law diagnostic function”, I', when a modified form, including
the off set ‘a’ T* = (yT +at)/UtdU™T /dy™ is used.
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overlap region in inner and outer variables

1 x
v_L (y“)+B (A.3)
Uy K v
U—-Ux Y
_in(4)+B A
Uy K " ) e (A4)
and a friction law given by
2 1
Ve _ [2 _Lpst 4 (B B) (A.5)
U cr K

where k, B, and B; are presumed to be universal constants, and 67 = u,d/v.

Some peculiar features of the Millikan/Clauser theory are:

(i) When multiplying equation A.4 by u,/Us

U @ B Fooo <5> Uoo (A6)

substituting equation A.5 and taking the limit Re — oo

U _,_ Yy U g N[ yst+ (BB
T Fooo<5)Uoo_1 Fooo<5>[ﬁln5 +(B-B)| =1 (A7

the velocity profile disappears, i.e. U/Uy — 1, since Uy /u, — oo. This might
be considered plausible if the limit is approached by increasing the free stream
velocity or by decreasing the viscosity,? but not if the limit is approached by

simply increasing the streamwise distance (i.e., by proceeding along the plate).

(ii) Substituting the inner (A.1) and outer (A.2) scaling laws into the defining in-

tegrals for the displacement thickness §, and the momentum thickness 6, the

2Tt is, in fact, a zero-viscosity solution.
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result is (for large 6T, contributions from inner layer can be neglected)

Ox 7 Uy Y Uy
= | Fo—td (_) =D, (A.8)
0/ Usx \6 Uso

- U Uy \ 2 Yy u u

2= [ |Fpoe — P2 ( ) d(—)zD *[1—1) ] A9

50/l Uso "°°Uoo]6 U Us (A.9)
where D; and D, should be universal constants. Therefore, as Re — oo, the
outer length scale does not remain proportional to any integral length scale,
and blows up relative to them. Boundary layer profiles seem to collapse as well

with momentum or displacement thickness as they do when normalized with

the boundary layer thickness ¢ determined from the velocity profile (e.g., dgg).
(iii) The shape factor H
00 9 y
0 Uy E)f F, oood (6 )

H'=—=1-"“2———
o Vel Fmd ()

—1 (A.10)

approaches unity in the infinite Reynolds number limit (i.e., H = §,/0 — 1).

No shape factors below about 1.2 have been reported in experiments.

A.2 Governing Equations and Boundary Condi-
tions

George & Castillo (1997) reconsidered the theoretical foundations of the classical
analysis (often referred to as the Millikan/Clauser analysis). Using the AIP (c.f. sec-
tion 2.3) the classical velocity deficit law for the outer layer is shown to be inconsistent
with the equations of motion.

The equation governing streamwise mean momentum and boundary conditions of

a zero-pressure-gradient turbulent boundary layer (with constant properties) at high
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Reynolds number are given by (c.f. Tennekes & Lumley, 1972)

ox oy Y oy ox

—<uv>+ua—U]—{2[<u2>—<v2>]} (A.11)

where U — Uy as y — oo and U = 0 at y = 0. The < v? > term arises from
integrating the y-momentum equation to obtain the mean pressure variation explicitly,
then substituting for the pressure in the z-momentum equation. Both of the Reynolds
normal stress terms in curly brackets are of second order in the turbulence intensity
and are usually neglected. However, they do not necessarily become vanishingly small
as the Reynolds number increases, therefore they are kept here.

The presence of the turbulence terms — or, vice-versa, the viscous term — pre-
cludes the possibility of a similarity solution for the entire boundary layer. If the
fluctuating terms are neglected, the laminar boundary equations are recovered, and
a Blasius solution can be applied. If the viscous term is neglected, the solutions lose
the ability to satisfy the no-slip condition. Then there is no momentum loss to the
wall (drag) and no boundary layer at all.> The zero pressure-gradient boundary layer
therefore is a singular perturbation problem where a small, inner length scale must
be defined to ensure that the viscous term remains in the equation in a region close to
the wall, even in the limit of infinite Reynolds number. The use of two length scales
creates a “boundary layer inside of a boundary layer” (c.f. Tennekes & Lumley, 1972),
which divides the turbulent boundary layer (and any other turbulent wall-bounded
flow) in two distinct regions: An outer region comprising most of the boundary layer
where the single point Reynolds-averaged equations are effectively inviscid; and an
inner region very close to the wall where the viscous term is dominant.

When an order of magnitude analysis is performed with an outer and an inner

length scale, one obtains two sets of reduced equations. Therefore solutions are sought

3(Classical laminar boundary layer theory was invented by Prandtl to account for momentum loss
to solid surfaces, which could not be accounted for by potential flow theory, which was well-developed
by his time (c.f. Lamb (1932).
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which asymptotically (at infinite Reynolds number) satisfy the following outer equa-

tions and boundary conditions:
U—+V—:—y[—<uv>]—{—[<u2>—<v2>]} (A.12)

where U — Uy as y — 0o. For the inner (or near wall) region

- <uv > +1/aa—[y]] (A.13)

where U =0 at y = 0.
These equations are exact only at infinite Reynolds number.* This is of consid-
erable importance in the analysis repeated here (and applied to different flows in
chapters 3 through 6), since properly scaled profiles will reduce to similarity solutions
only in this limit. However, these equations are approximately valid as long as the
Reynolds number is large.’
Equation A.13 for the inner region can be integrated from the wall w.r.t. y to
obtain
ou ou T, 9

—<uw>4+rv—=v — L=y
dy g P

(A.14)

*

where 7, is the wall shear stress and u, is the corresponding friction velocity defined
by this equation. In the limit of infinite Reynolds number, the total stress across the
inner layer is constant, hence it is called the “constant stress layer” (Monin & Yaglom,
1971). The appearance of u, in equation A.14 does not imply that the wall shear
stress is an independent parameter (like v or Uy, section A.3). It enters the problem
only because it measures the forcing of the inner flow by the outer; or alternatively, it
can be viewed as measuring the retarding effect of the inner flow on the outer. Thus

u, is a dependent parameter which must be determined by matching solutions of the

4This can most easily be shown a posteriori by substituting the scaled solutions into the full
equations, then using the friction law to get the asymptotic dependence.
5What constitutes “large” remains to be determined, c.f. section A.11.
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inner and outer equations.

The inner layer occurs only because of the necessity of including viscosity in the
problem so that the no-slip condition at the wall can be met. The outer layer, on the
other hand, is dominated by inertia and the effects of viscosity enter only through
the matching to the inner layer. The outer flow is effectively governed by inviscid
equations, but has viscous-dominated inner boundary conditions set by the inner

layer.

A.3 Dimensional Analysis and
Velocity Scaling Laws

Solutions to the governing equations are sought which depend only on the streamwise
coordinate through a local length scale §(x), c.f. Monin & Yaglom (1971). Parameters
occurring in the governing equations and boundary conditions are the free stream
velocity, Uy, the kinematic viscosity, v, and the friction velocity, u,. The friction
velocity, u,, is a dependent parameter, since it can be determined by the rest; i.e.,
Uy = Us(Uxo, 9, ). In other words, placing a smooth flat plate in a flow of viscosity
v and velocity Uy uniquely determines the wall shear stress 7, (and therefore w,)
at a given position z (expressed as 0(z)), if the upstream conditions are not varied.
The “Buckingham Pi Theorem” (c.f. Sedov, 1959; Spurk, 1992) can be used to show
that there can be only two independent dimensionless ratios. Convenient choices are

t+/Us and u.d/v = §%, so that the functional dependence can be written as

g—* =g (5%) (A.15)

and the ratio u, /Uy can be expressed as a “skin friction coefficient”

2

T™wW Uu
= —9__* A.16
Cf - %plm U? ( )

184



A consequence of equation A.15 is that either (but not both) u, or Uy can be used
be for scaling in the mean momentum equation as long as §* is retained and is finite.

The asymptotic value of u, /Uy is of considerable interest, because it determines
if 7 — oo and Uyd/v — o0 as Uxz/v — oo. For now, it will be assumed that
this is the case, so that any of the limits can be used interchangeably. It will be
shown a posteriori that this assumption is consistent with the derived friction law,
the momentum integral equation, and a boundary layer which continues to grow while
the skin friction becomes vanishingly small.

The cross-stream variation of the local mean velocity profile must be described
by U = U(y, 0, U, v). Application of the Buckingham Pi Theorem to the velocity
profile yields a number of possibilities, especially since equation A.15 can be used to
switch among them. In general, inner and outer Reynolds number dependent profiles

can be written as

Usz['](x) =/ (%’ 5+) (A1)
L3

These profiles describe the variation of the velocity across the entire boundary layer
at finite Reynolds number (since " has been retained as a parameter). Velocity and
length scales remain to be determined, from dimensional analysis they can be either
uy or Uy, or v/u, or §, respectively. Note that since u,/Uy and 6T (or u,d/v) are
related by equation A.15, only one of them needs to be retained® in equations A.17 —
A.18.

For a similarity solution it is of interest how these scaled profiles behave as 6% (or
any other Reynolds number for that matter, e.g., Uyd/v or Uyx/v), becomes large.
In the asymptotic limit as 7 — oo, a properly scaled profile must produce finite

values of the scaled velocity (the left hand side) for finite values of the scaled distance

6This fact seems to have escaped Monin & Yaglom (1971), who dismiss a separate dependence
on uy /Uy, only on empirical grounds.
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from the wall (the remaining argument on the right hand side). As the dimensionless

profiles becomes asymptotically independent of 6T, they degenerate to

U _ (¥ (Y
U_sz' - fz (77’5+> — fzoo (77) (Alg)
and
U-Usx , (Y Yy
o = 1o (5:0%) — g (5) (4.20)

As mentioned above, Uy, can be either u, or Uy, which gives two different velocity
deficits. Only one of them, not both, can be Reynolds number independent (and
finite) in the limit as 67 — oo if the ratio u,/U, continues to vary (as the Mil-

likan /Clauser theory requires, see below).

A.4 Full Similarity of the Inner Equations

Following the Asymptotic Invariance Principle introduced in section 2.3, solutions
are sought which reduce to similarity solutions of the inner momentum equation and

boundary conditions in the limit of infinite Reynolds number (67 — o0).

—<uw > = Ry(@)rio(y™) (A.22)

where the “inner variable” y* is defined by

(A.23)

Il
SHES

and the length scale n = n(x) remains to be determined. The subscript “ico” is used
to distinguish the scaled velocity and Reynolds shear stress profiles at finite Reynolds
number, f;(y*,6") and r;(y™, 1), from their limiting forms used here. Obviously f;

and r;, which will be used later in the overlap analysis, are dependent on 6", while
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fisco and r;o, are not.

Substitution into equation A.14, nondimensionalizing and clearing terms yields

uf Rsi 14
] = [o8] e [ o (420
87 81 81

A similarity solution can only exist if n, Uy;, and R, can be determined so that all

the terms in brackets have the same z-dependence; i.e.,

u? R.; v
o[ Ba) [ v A2
H H [HUJ (A.25)

To this point only a transformation of variables has been performed’.

Three scaling functions are to be determined from only two independent con-
straints, so one can be chosen freely. A convenient (and obvious) choice for the inner
length scale 7 is

n=v/Us (A.26)

from which it follows immediately that similarity solutions are possible only if the

velocity scale is the friction velocity

It then further follows that
n = v/u (A.28)
Ry = u? (A.29)

Substitution into equation A.24 yields the integrated inner equation at infinite Reynolds

"Note that the symbol “~” will be used in this analysis to mean “has the same z-dependence as”,
and does not refer to the order of magnitude of the quantities involved.
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number (i.e., §7 — 00)

1= Tioo + fiool (A30)

For finite values of 0T, this equation is only approximately valid because of the ne-
glected mean convection terms.

Note that the similarity variables derived above are the usual choices® for the
inner layer, and the familiar Law of the Wall expressed in inner variables as originally
proposed by Prandtl (1932) is recovered. The Law of the Wall® is thus consistent
with a similarity solution of the inner equations, in the limit of infinite Reynolds
number. For any finite (but large) Reynolds number, solutions for the inner layer will
retain a Reynolds number dependence (as discovered from the Pi-theorem in deriving
equation A.17) since the governing equations themselves do so.

Equation A.17 can now be written as

v_ f; (yz*’(ﬁ) (A.31)

U

It reduces to the proper limiting form of a similarity solution for the inner layer as
0t — oo, and thus is “Law of the Wall for finite Reynolds numbers.” At finite
Reynolds numbers however, it describes the velocity profile over the entire boundary
layer. These ideas are not incompatible since in inner variables the outer layer can
never be reached in the limit of infinite Reynolds number (i.e., as 67 — oo, y© — oo

for finite values of the physical variable y).

80ne could argue that too much space and effort were put into getting the ‘old’ results. It is not
just the resulting scales which are important here, but the formal procedure used to find them.

9The word ‘law’ is formally incorrect since the result has been derived, and no longer depends
on experimental results alone to establish its validity.
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A.5 Full Similarity of the Outer Equations

Again, no scaling laws will be assumed at the outset (in particular, it is not assumed
that R,, = U2). In accordance with the Asymptotic Invariance Principle, solutions
are sought which reduce to similarity solutions of the outer momentum equation and

boundary conditions in the limit of infinite Reynolds number

U-Usx = Us(®)foo(T) (A.32)
—<uw > = Ryo(2)7000(7) (A.33)

where the “outer variable” 7 is defined by

7= y/6(x) (A.34)

and Us,,, R,,, and § are functions of  only'®. The velocity has been written as a
deficit to avoid the necessity of accounting for an offset arising from viscous effects
across the inner layer. This is, of course, not a problem for the Reynolds stress since it
vanishes outside the boundary layer. As in the previous section, the subscript “0oco”
distinguishes f,o and 7,4 from the the §*-dependent profiles scaled with U, and R,
used later.

The V-component can be eliminated by integrating the continuity equation from
the wall (integration by parts), thus introducing a contribution from the inner layer

which vanishes identically at infinite Reynolds number.

dU,, do| (v A dUy | _ dd| _ _
V - - [ d.T 5"‘ Uso%‘| /0 fooo(y)dy - l%él y+ [USO%] yfooo(y) (A35)

ONote that extra arguments can be included in the functional dependence of fooo and ro0o tO
account for the effects of upstream conditions, as shown in section 3.2.
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Substitution into equation A.12 and clearing terms yields

(Uoo> 6 dU,, f n 0 dUs | L9 B Uood_(S T
U.) U, dz |7° U, dz |1~ |0, dz| o

d 6 dU,] . (7 R
_ l%+ o ]fm /O Fooo(€)dE = lUQ] roudA.36)

Note that the streamwise gradient of the normal stresses (the last term of equa-
tion A.12) has been neglected (for now, but with no loss of generality. This will be
shown in section A.6 where the Reynolds stress component equations are considered
individually).

For a similarity solution to be possible, the bracketed terms must all have the same
x—dependence (or be identically zero, the trivial solution). Therefore, full similarity

is possible only if

U\ 0 dUs, 0 dUs, U\ dd  dé Ry,
(Uw) Up dz U, dz (U) dz " dz T UL (4.37)
It follows immediately from the third and fourth terms that
Uso = Uso, (A.38)

at least to within a constant of proportionality which can be chosen as unity with no
loss of generality. Thus, the proper velocity scale for the velocity deficit!! law must
be Uy, and not u, as suggested by Von Karman (1930) and widely utilized since (e.g.
Clauser, 1954; Coles, 1956, 1962).

Since, from Euler’s equation outside the boundary layer, Uy, is constant in a zero
pressure gradient flow, the first two terms of the similarity conditions of equation A.37

are identically zero and with equation A.38 the third is equal to the fourth. The

1Tf the velocity were not written as a deficit, the first and third terms in equation A.37 would
drop out. Then outer velocity scale then is not automatically equal to the reference velocity in the
velocity deficit, but could be chosen as proportional to any velocity occurring in the outer layer. It
could be chosen as Uy, but not as u,.
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remaining two can be satisfied only — to within a constant of proportionality — if

dé

— 772 7
RSO_Uoodx,

(A.39)

The limiting form of the outer equation governing the mean flow then becomes

y Rso !
_gfoool - foool/oyfooo(é-)dg = lm] Tooco - (A40)

This equation can not be solved without a turbulence model and will not receive fur-
ther attention in this chapter (except to obtain the Reynolds shear stress). Nonethe-
less, it has served a very important role, since the outer scaling parameters were
determined from it according to the AIP.

The analysis above leads to the conclusion, that only the profile using Uy, = Uy,
(c.f. equation A.18) is Reynolds number invariant in the limit. Therefore it must be

112

the appropriate scaling for finite Reynolds numbers as well'*. Equation A.18 can now

be written as

Lot~ (5]

A deficit profile using u, as velocity scale'®, F,,(, ), can not be Reynolds number
invariant in the limit (unless u./Uy is non-zero in the limit), since F, = (u./Ux) fo-
Conversely, the fact that f, is Reynolds number invariant in the limit explains why
F, vanishes in this limit if u,/Us — 0,'* as shown under item (i) in section A.1.1.

The Reynolds stress scale, on the other hand, is not U2, but an entirely different
scale depending on the growth rate of the boundary layer, dd/dz. In effect, dé/dz is
acting as a Reynolds number dependent correlation coefficient, just as for free shear

flows (George, 1989). This will be shown later to be related to the fact that as the

12This is, of course, the whole idea behind the Asymptotic Invariance Principle.

13Here the capital‘F’ in F, (7, 1) refers to the finite Reynolds number version of F,, () introduced
in equation A.2. Analogous to equation A.41, but the velocity has been normalized with u,.

a5 required in the classical theory and as derived in section A.8
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Reynolds number increases, less and less of the energy is dissipated at the scales at
which the Reynolds stress is adding energy to the flow so they become effectively
inviscid (c.f. George, 1995). It will also be shown below that R, can be determined
by matching the outer Reynolds stress to the inner Reynolds stress. The need for
such a matching is intuitively obvious, since the only non-zero boundary condition
on the Reynolds stress in the outer flow is that imposed by the inner.

Millikan (1938) and others have objected to the type of similarity analysis em-
ployed here as leading to unphysical results for the boundary layer. There is nothing
unphysical about the velocity deficit law using U, (it occurs in the outer layer!), and
a case for such a deficit law could have been made, even with the data available at
the time. Thus the objection must have come from the condition on the Reynolds
stress. However, this would have been a problem only if it were also required or

assumed at the outset that R,, = U?

o, for then it would have also been necessary

that dé/dz = constant. Since the boundary layer was believed not to grow linearly,
Millikan (and many before and after him as well) was forced to conclude that full
self-preservation (in the assumed sense) was not possible, and therefore had to settle
for what was termed a locally self-preserving solution.

Contrary to how most texts present self-preservation, George (1989) pointed out
that there is no reason to insist a priori that Ry, = UZ2. If this arbitrary requirement
is relaxed, similarity become feasible since there no longer is the requirement for
linear growth. The outer flow is then governed by two velocity scales, U,, and a
second governing the Reynolds stress which is determined by the boundary conditions
imposed on the Reynolds stress by the inner layer. It will be shown below that the

inner and outer Reynolds stresses can overlap asymptotically only if

Ry~ Ugoj_‘s ~ 2 (A.42)
4

which resembles closely the momentum integral equation. This relationship will be

discussed further later on.
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That the outer (and inner) equations admit to similarity solutions (in the sense of
George, 1989) should come as no surprise to the experimentalists who had recognized
that the mean velocity data in outer variables collapses with only U,, and ¢ (especially
if the upstream conditions such as e.g. trip wire and free stream velocity remain fixed).
Hinze (1975) and Schlichting (1968), for example, show profiles normalized by U/U,,
and plotted as a function of y/J§. Even the fact that the outer Reynolds shear stress
scales with u, (but only to first order) is in accord with common practice, since
it is assumed in the old theory — but in a way which could not account for the
observed weak dependence on Reynolds number. Millikan’s conclusions might have
been different had he (and several generations after him) not been locked into the too

restrictive idea of self-preservation (i.e., single velocity scale).

A.6 Scaling of the Other Turbulence Quantities

For the inner layer, there is only one velocity scale, u,, which enters the single point
equations; therefore all single point statistical quantities must scale with it. This
is, of course, the conventional wisdom, but with an important difference: The inner
layer does not include the overlap layer — the region between the inner and outer
regions — which is Reynolds number dependent. Since the inner and outer scales are
different, the dependent variables in the overlap layer are expected to be functions of
both, and thus Reynolds number dependent.'®

From the preceding analysis, it is apparent that the outer layer at finite Reynolds
numbers is governed by not one, but two velocity scales. In particular, the mean
velocity and its gradients scale with U,,, while the Reynolds shear stress scales with
UZ dé/dx ~ u?. Therefore it is not immediately obvious how the remaining turbulence
quantities should scale. In particular, do they scale with Uy, or u,, or both? If the

latter, then quantities scaled in the traditional way with only one of them will exhibit a

5Note that different considerations must be applied to the multi-point equations since conditions
at a point can depend on those at another, and in particular those at a distance.
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Reynolds number dependence and will not collapse. Note that if the ratio of velocity
scales, u,/Us, approaches an asymptotic limit, this Reynolds number dependence
would appear to reduce with increasing downstream distance and could lead to the
erroneous conclusion that certain quantities scaled with only one of them take longer
to reach equilibrium than others.

In view of the possible similarity of the outer equations for the mean flow, it is
reasonable to inquire whether the equations for other turbulence quantities also admit
to fully similar solutions. For the outer part of the boundary layer at high Reynolds

number the equation for < u? > can be written as (c.f. Tennekes & Lumley, 1972)

0 <u?> d<u®> ou
= 2< p—
U p +V By <p8x>
— | = -2 — —2¢, (A4
+ 83/( <uv>) <uv>ay €x (A.43)

where ¢, is the energy dissipation rate for < u? > and the viscous transport term has
been neglected. An order of magnitude analysis of the governing equations reveals
the mean convection and turbulence transport terms to be of second order in the
turbulence intensity u'/U, so to first order the equation reduces to simply a balance
among the production, dissipation and pressure strain rate terms. It could be argued
that these second order terms should be neglected in the subsequent analysis, as in
Townsend (1976). It is precisely these second order terms, however, that distinguish
one boundary layer type flow from another, or from homogeneous flows (like fully-
developed channels and pipes, chapter 4) for that matter. Therefore, for a theory
describing growing shear layers — like the boundary layer — they must be retained.

By considering similarity forms for the new moments like

<> = Ky(@)kuoo ) (A.44)
<> = Papue(d) (A.45)
<= > = Tyoy(2)tuso (7) (A.46)
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€ = Dy(2)dyso(7) (A.47)

and using R, = U2 dd/dz, it can be shown that similarity of the < u? >-equation is

possible only if

U2 ds Usoti?
T2y ~ U;% ( NUoouf) (A.50)
U3 do u?
D, ~ =2~ ~ 2 A.51
“ 6 dzx ( 1) ) (A-51)

All of these are somewhat surprising: The first (even though a second moment like the
Reynolds stress) because the factor of dj/dzx is absent; the second, third and fourth
because it is present. The mixed forms using u, and Uy, instead of dd/dz should be
especially useful for scaling experimental data at low to moderate Reynolds numbers
where u, /Uy shows considerable variation.

Similar equations can be written for < v? > and < w? >; i.e.,

0<v?> 0<v?> ov
— 9 < p
U 5z +V By <p8y>
+ £<—<v3>—2<pv>)—261, (A.52)
dy
and
0 < w?> 0 < w? > ow
— 9<p_
U o +V 3y <p8z>
0 2
+ 8—y(—<wv>)—26w (A.53)

When each of the terms in these equations is expressed in similarity variables, the
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resulting similarity conditions are:

Uso Ky do

D, ~ P, ~ A.54
v v 5 de/' ( 5 )
Uy Ky dé
Dy~ Py~ 2% — A.
0 dx (4.55)
UK, d
Ts ~ 2" — A.
Uy Ky dé
T2 2 A.

The continuity equation requires that the sum of the pressure strain-rate terms
occurring in the component energy equations must be zero. Thus, in similarity vari-

ables,

Pu(x)pu(g) + Pv(m)pv(g) + Pw(x)pw(g) =0 (A58)

This can be true for all 7 only if
P,~P,~ P, (A.59)

An immediate consequence from equations A.54 and A.55 is that

U3 do Unos?
Dy~ Dy~ Dy~ Dy~ =2 ~ 2 A.

where D, is the scale for the entire dissipation, and
K,~K,~K,~U (A.61)

Therefore all of the Reynolds normal stresses scale with U2, but the Reynolds shear
stress scales with u2. Note that this does not imply that the normal stresses are the
same order of magnitude as U2, which clearly can not be the case, only that they are

proportional. It is easy to show that relations of equation A.61 are consistent with
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similarity of the neglected normal stress terms in the mean momentum equation A.36;
hence the equation for the mean flow is consistent with similarity to the second order,
exactly as is being required here.

The remaining equation for the Reynolds shear stress is given by

U +V -~ 5 " 90

0 < uv > 0 < uv > < ou Ov
ox oy P

0 9 ,  O0U
This does not introduce any new similarity functions, but it does create an interesting
problem. The z-dependence of the last term (which is the leading order term) is
proportional to K,Us/d, while the first term is proportional to (UsRso/0)dd/dx ~
(U3,/6)(dd/dx)?. If both terms are required to have the same z-dependence, a new

constraint is imposed on the ones which exist already, namely,

dé dé dé
K,~ R, — ~ U2 (—)? ~ut = A.
»~ Ry, - o { da;) < u ) dx (A.63)

R, is only asymptotically equal to u? (see Section A.10 below), so the outer Reynolds
shear stress scale only evolves to this value with increasing Reynolds number. Regard-
less, there is an apparent contradiction between equation A.63 and equation A.61. It

can be resolved two ways:

(i) Either, the two conditions together require that in the limit of infinite Reynolds

number,
s u?
~

dr U2

— constant (A.64)

(ii) Or, the term which creates the contradiction must go to zero faster than the
other terms so that the offending condition can be removed from the analysis.
In fact, the possibility for this occurs since the terms on the left hand side
of equation A.62 are of order (dd/dz)?> ~ (u./Us)* relative to the leading

term, whereas the highest order terms in the normal stress equations are of
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order dé/dz ~ (u./Us)? relative to the remaining terms. Obviously the mean
convection terms in the Reynolds shear stress equation will vanish in the infinite
Reynolds number limit faster than the remaining terms in any of the Reynolds

stress equations if d§/dz — 0.

It will be argued later that the dj/dx — 0 is a necessary consequence of insuring
that the proper infinite Reynolds number dissipation limits can be satisfied,'® i.e.,
that the local energy dissipation rate be finite. Therefore the mean convection terms
in the Reynolds shear stress equation vanish faster than the remaining terms in the
limit, and so to order dd/dx ~ (u./Us)?, equation A.64 does not enter the analysis.

Therefore similarity solutions to the infinite Reynolds number outer turbulence
Reynolds stress equations are possible to at least order dd/dx ~ (u./Ux)?, with the
leading neglected terms being of order (dé/dz)? ~ (u,/Us)*. Section A.llbelow es-
tablishes approximate bounds where each part of the boundary layer can be Reynolds
number independent. Again, it is noted that nothing in the equations indicates
whether the similarity state achieved in the outer part of the boundary layer is inde-

pendent of upstream conditions.

A.7 The Overlap Layer

Since both the outer and inner profiles are non-dimensional profiles with different
scales and the ratio of the scales is Reynolds number dependent, then any region
between the two similarity regimes cannot be Reynolds number independent, except
possibly in the limit. The actual mean velocity profile at any Reynolds number is the
average of the instantaneous solutions to the Navier-Stokes equations and boundary
conditions. Both scaled forms of this solution, f;(y™, ") and f,(7,0") (equations A.31

and A.41, respectively), represent the velocity everywhere, at least as long as the

6Note that this does not imply that the boundary layer stops growing, only that it grows more
slowly than linearly.
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Reynolds number is finite (as discussed in section 2.4). In fact, the parameter 6+
uniquely labels the fanning out of the inner scaled profiles in the outer region and the
outer scaled profiles near the wall. These scaled finite Reynolds number solutions (to
the whole flow) degenerate in different ways at infinite Reynolds number, and this
can be used to determine their functional forms in the common region they retain in
the limit.

Analytical forms for these Reynolds number dependent solutions are not available
and are only known in principle. But there are several pieces of information about

the two profiles which can be utilized without further assumptions:

e First, since both inner and outer forms of the velocity profile must describe
the flow everywhere as long as the ratio of length scales, 6t = §/n, is finite, it

follows from equations A.31 and A.41 that
1+ fo(7,0%) = g(67) fily™,67) (A.65)

where g(6") = u./Uy is defined by equation A.15.

e Second, for finite values of 6, the velocity derivatives from both inner and outer
forms of the velocity must also be the same everywhere. It is easy to show that

this requires that
vy dfo _ y* df;
L+ fody  fidy*

(A.66)
for all values of 6+ and .

e Third, in the limit, both f, and f; must become asymptotically independent
of 6%, Thus f,(7,6%) = fore(7) only, and fi(y+,3%) = fins(y*) only as 6+ —
oo, or otherwise the velocity scales have been incorrectly chosen. (This is the

Asymptotic Invariance Principle, introduced in section 2.3.)

Now the problem is that in the limit as 7 — oo, the outer form fails to account

for the behavior close to the wall while the inner fails to describe the behavior away
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from it. The question then is: In this limit (as well as for all finite values approaching
it) does there exist an “overlap” region where equation A.65 is still valid? It does
indeed, and it can be shown using the Near Asymptotics methodology of George
(1995) and GC. The details of this particular overlap analysis are the same for all
developing wall-bounded turbulent flows. They have been presented in George &
Castillo (1997) (see also Castillo (1997)) or, in an earlier version in George (1995) or
Wosnik & George (1995). For completeness, the analysis is presented in Appendix B.

Since both ¢ and 7 are increasing with streamwise distance along the surface, this
“overlap” region will not only increase in extent (in inner or outer variables), it will
also move away from the wall in physical variables (this is different for fully-developed
pipe and channel flows, c.f. section 4.4).

In Appendix B it is shown that, to leading order in %, an overlap region exits in

which
7 001+ M)

= 1(5*) (A.67)

The solution to equation A.67 can be denoted as f{!) since it represents a first order
approximation to f,. It is not, however, simply the same as f,o, because of the 6
dependence of v, but reduces to it in the limit. Thus, by regrouping into the leading
term all of the y-independent contributions, the method applied here has yielded a
more general result than the customary expansion about infinite Reynolds number!”

From equations A.66 and A.67, it follows that (c.f. appendix B)

yt 3f,~(1)

£ 5y o =707 (269

An interesting feature of these first order solutions is that the inequalities given by
equations B.12 and B.13 determine the limits of validity of both equations A.67 and

A.68 since either S, or S; will be large outside the overlap region. Clearly the extent

Tt is also easy to see why the usual matching of infinite Reynolds number inner and outer
solutions will not work since the limiting value of v might be zero.
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of this region will increase as the Reynolds number (or %) increases.

Both equations A.68 and A.67 must be invariant to transformations of the form
Yy — y + a where a is arbitrary, since the equation must be valid for any choice of
the origin of y (c.f. Oberlack, 1997). Therefore, the most general solutions are of the

form:

1+ f0(g,6Y) = C(N)m+a)?”) (A.69)
O, 6% = Gt +at)™ (A.70)

or in physical variables,

U 0
@ = Co( 5 ) (A71)
UE* — oY ’; @y (A.72)

The velocity profile in the overlap layer of this flow is thus algebraic — a power law
in (y + a) — with coefficients and exponent which depend on the local Reynolds
number, 6. It is reasonable to expect that a™ be nearly constant since any shift of
the overlap layer in y must be accomplished by the inner layer; regardless it is closely
related to the mesolayer discussed below.!® Earlier versions of this theory (George et
al. 1992, George and Castillo 1993) included additive constants which were believed
to be zero only on experimental grounds. The derivation here makes it clear that
these constants are indeed zero. In the remainder of this paper, the superscript ‘(1)
will be dropped; these first order solutions will be referred to unless otherwise stated.

The relation between u, and U, follows from equation A.65; i.e.,

Cf _ Ux + _ Co(67) +=(6%)
\/;_ . 90 =g (A.73)

18From the data it appears that a* ~ —16.
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Thus the friction law is also a power law entirely determined by the velocity param-
eters for the overlap region. However, equation B.11 must also be satisfied. Substi-
tuting equation A.73 into equation B.11 implies that v, C,, and C; are constrained

by
dy dln [C,/Ci]

+
o 5T = dngt

(A.74)

This constraint equation must be invariant to scale transformations of the form §* —
Dé" since the physical choice of 67 must be arbitrary (e.g., dog, dgs, €tc.). Thus
the Reynolds number dependence of v and C,/C; must also be independent of the
particular choice of 4, since any other choice (say from dg9) would simply be reflected
in the constant coefficient D. This will be important in relating the boundary layer
parameters to other wall-bounded flows (chapters 4, 5 and 6). Also obvious from
equation A.74 is that both v and C,/C; are functions of In+.

Equation A.74 is exactly the criterion for the neglected terms in equation B.9 to
vanish identically (i.e., S; — S, = 0). Therefore the solution represented by equa-
tions A.69 — A.74 is, indeed, the first order solution for the velocity profile in the
overlap layer at finite, but large, Reynolds number. Clearly when y* is too big or 7 is
too small for a given value of 6T, the inequalities of equations B.12 and B.13 cannot
be satisfied. Since all the derivatives with respect to 7 must vanish as 6™ — oo (the
AIP), the outer range of the inner overlap solution is unbounded in the limit, while
the inner range of the outer is bounded only by 7 = —a.

The parameters C;(67), C,(07), and v(6%) as well as the constant D can be
determined empirically or from a turbulence closure model. However, the results
must be consistent with equation A.74. Also, equations A.69 and A.70 must be
asymptotically independent of Reynolds number, since f; and f, are. Therefore the

coefficients and exponent must be asymptotically constant; i.e.,

70" = Yo
Co(6) = Com
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as 07 — oo. These conditions are powerful physical constraints and together with
equation A.74 will be seen to rule out some functional forms for +, like that suggested
by Barenblatt 1993 (see below). Therefore it is important to note that they are a
direct consequence of the AIP and the assumption that scaling laws should correspond

to similarity solutions of the equations of motion.

A.8 A Solution for the Reynolds Number Depen-
dence
It is convenient to write the solution to equation A.74 as

o

% = exp[(7 — Yoo) I + A (A.75)

where h = h(6") remains to be determined, but must satisfy

dh dh
— + —
Ve = 0 g = T dngt (A.76)

The advantage of this form of the solution is easily seen by substituting equation A.75

into equation A.73 to obtain

= exp[—Yoo In 61 + A (A.77)

o |

Thus u. /Uy is entirely determined by 7., and h(6T).
It is easy to show the conditions that both C,, and Cj,, be finite and non-zero

require that:

FEither
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e C,, C; and 7 remain constant always;
or

e (i) v — 7o faster than 1/Iné™ — 0
and

e (ii) A(6") = he = constant.
It follows immediately that

Cooo
&

Note that condition (i) together with equation A.76 requires that dh/dInét — 0

= exp|ho] (A.78)

faster than 1/Ilné" — 0.

Condition (ii) rules out solutions of the form suggested by Barenblatt 1993 who
proposed power law profiles with v = a/In % for which h =Inb—alnlnd™ where Inb
is the integration constant. Obviously this A is unbounded in the limit as 6" — oo.
Substitution into equation A.75 yields C,/C; = b(e/Ind*)®. Thus, either C, — 0
or C; — oo or both. Both of these are unacceptable alternatives in that they are
inconsistent with similarity of even the mean velocity.*

It is interesting to examine the relation between the asymptotic value of v and
Us/Us. Since vy must be asymptotically independent of §*, the only possible values
for v, are either a finite constant, or zero. For the former, u,/Us, — 0, while for
the latter the limiting value is finite and non-zero. Note that both of these satisfy
the conditions from Section A.6 for similarity of the Reynolds stress equations in the
outer layer.

A zero limit for v itself can be considered by using Equation A.77 to obtain

g—; = exp[h] (A.79)

19Barenblatt’s form does produce a logarithmic drag law which is desirable for pipe/channel flow,
but not necessarily for a boundary layer. A logarithmic drag (friction) law can be obtained for
pipe/channel flow in another way as shown in chapter 4.
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Recall that if v — 0 faster than 1/Indé" and h — const as required, this insures a
finite asymptotic value of u,/Us. Hence there would be no question about whether
the turbulence moments in the outer layer approach a state of asymptotic similarity;
they would, since the limiting values of both df/dx and dd/dx are finite. A finite and
non-zero limiting value for u, /Uy is certainly contrary to traditional thinking, and
would have important implications for the engineer.

So there would seem to be a strong argument for v — 0. But this presents
another problem. In the overlap region in the limit of infinite Reynolds number,
the production of turbulence energy is exactly balanced by the rate of dissipation.
Thus, in inner variables, et = Pt = vCi(yt + at)” ' since < —uv >= u? in this
limit. If there is indeed an energy dissipation law (Frisch 1995) which demands that
the local rate of dissipation be finite and non-zero in the limit of infinite Reynolds
number, then v,, must also be finite and non-zero since C; must be finite and non-zero
for similarity as noted earlier. Note that Goldenfeld (1996) has suggested that the
integrated energy dissipation across the flow should be finite, which would lead to
the opposite conclusion if applied here. Finite total energy in the infinite Reynolds
number limit does not appear to be physical no matter how the limit is approached?’,
since the flow is unbounded in inner variables, as is the energy in outer; so only the
local dissipation need be finite. In fact, the data shown in Part IT are most consistent
with a non-zero value of 7,,, but the experimental evidence is not conclusive, so the

dissipation argument is crucial.

A.8.1 George/Castillo Solution for the Constraint Equation

George & Castillo (1997) found on empirical grounds that the variation of v — 74
and C,/C; with 6T was described to a very good approximation by (for the data sets

20Certainly no homogeneous flow could satisfy this criterion.
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investigated)
A
* " (Ingt)e

where o = 0.46, A = 2.90 and D = 1 for § chosen to be dg9. This can easily be

(A.80)

shown to satisfy the constraints above. It follows immediately from equations A.76

and A.75 that

aA
oA A81
T (In (5+)1+a ( )
CO COOO
2= T ep[(1+ a)A/(n %) (A.82)
and
i %[ﬁ]% exp[A/(In 57)°] (A.83)

The variation of C, is described by an empirical expression with two constants found

from experimental data,

C?” =1+ 0.283 exp(—0.005985) (A.84)

000

The data of Purtell et al. (1981) and Smith and Walker (1959), were found to be
consistent with Cyeo = 0.897, Cjoo = 55 and 7, = 0.0362. The variation of C; and
v with 67 was satisfactory. C, (eqn. A.84) reached its asymptotic value too fast, at
least for the boundary layer data examined.?! A solution to the constraint equation
which obtains A (and therefore v and C,) in higher orders of A/(Ind*)* was derived

in section 3.3.

A.9 The Asymptotic Friction Law

The relation between u,/Us and §* is given by equation A.73, or equation 3.32.

From the above conditions on v and h(d%) it is clear that the asymptotic friction law

21For the plane wall jet, on the other hand, the assumption of C, ~ Cyeo = 1.3 worked well for
the limited range of Reynolds numbers for which experimental data was available.

206



is also power law given by

u C _
oy gt A.85
The asymptotic behavior of u, /U, can be investigated by rewriting the friction
law as
u C - C +
* = 205t = 22 vInd A.86
Uw G C;° (A.86)

To get an idea when the infinite Reynolds number limit might be achieved, the expo-
nential of equation A.83 is expanded in powers of A/(Ind™)* to obtain

exp[A/(IndT)*] =1+ ﬁ +... (A.87)

The second term must be negligible for the power law behavior to dominate; thus the

limiting power law behavior is obtained when
Inét >> [A]Y/e (A.88)

For the values A and « of George & Castillo (1997) this would require §+ >> 2.4x10%,
or at least an order of magnitude above the existing experiments (currently §+ ~
18,000 is the highest, c.f. Fernholz et al. (1995)).

The friction laws written above all use u, on both sides of the equation. This can
be cast in an alternative form by eliminating the dependence of the right-hand side

of equation A.73 on u,; i.e.,

Uy Co 1/147 U 5 —v/(1+7)

U (5) < v ) (489
or /( ) 2v/(1+7)
2/(14y 6 —y v

¢ =2 (g) (Uy ) (A.90)

Unfortunately, because C,/C; is itself a function of Reynolds number, this form is

less useful than it might appear to be. In section A.14 the relation of Rs; to Ry and
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Rs, will be determined so that the friction law can be expressed in terms of any of

the convenient Reynolds numbers.

A.10 The Reynolds Stress in the Overlap Layer

By following the same procedure?? as for mean velocity, the outer and inner Reynolds
stress profiles for the overlap region are also obtained as power laws. For example,

the Reynolds shear stress is given by,

ro(@6%) = Do(6)(m+a)’" (A.91)

r(yti6t) = D)yt +at)’") (A.92)

where a solution is possible only if

R D,
“tso i gtB A.
Rsi Do ( 93)
and
B d D
+ _ o
o s = dmor ™ {Di] (A.94)

Note that the last equation must also be invariant to transformations of the form
0 — D4, just as for the corresponding velocity constraint. It has been assumed that
the scale factor D and the origin shift represented by a is the same as for the velocity,
since any other choice does not seem to make sense physically.

Unlike the velocity, however, more information about the Reynolds stress is avail-
able from the averaged momentum equation for the overlap layer since both equa-

tions A.12 and A.13 reduce to

0
By (—<uv>)=0 (A.95)

22Gections A.10 through A.16 closely follow George & Castillo (1997)
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in the limit of infinite Reynolds number. Thus,
BRyD,(y+a)" ™ =0 (A.96)

and

BRuDi(y"+a")’ ' =0 (A.97)

Since both D, and D; must remain finite and be asymptotically constant (if the

Reynolds stress itself is non-zero), these conditions can be met only if
g —0 (A.98)

From equation A.30 for large values of y*, the Reynolds stress in inner variables

in the matched layer is given to first order (exact in the limit) by

Since R,; = u?, this can be consistent with equation A.92 only if D; — 1 as §* — oo.
It follows immediately that
D:

R, — F’uf (A.100)

in the infinite Reynolds number limit, just as suggested in Section A.5.
Some insight into the behavior of D,(6%) and D;(6%) can be obtained by intro-

ducing the momentum integral equation defined by

o u?
== (A.101)

Using this, equation A.100 and the similarity relation for Ry, from equation A.39

yields
D,(6%)  df/dx
D;(6+)  dé/dx

(A.102)
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The relationship between 6 and § will be explored in more detail below, and it will
be shown that 6/4 is asymptotically constant. Thus the scale for the outer Reynolds
shear stress is asymptotically proportional to u? as noted earlier, and the outer layer
is indeed governed by two velocity scales. Note that for finite Reynolds numbers,
both D, and D; are Reynolds number dependent. Hence, u? alone should not be able
to perfectly collapse the Reynolds shear stress in either the overlap or outer layers,
except in the limit of infinite Reynolds number. This has been observed by numerous
experimenters (e.g., Klewicki and Falco 1993) who show persistent Reynolds number
trends in the Reynolds shear stress measurements.

The interrelation of the Reynolds stress and velocity parameters can be examined
by considering the production term < —uv > 0U/dy . Since this must be the same

whether expressed in inner or outer variables, it follows that

CODOU;% ~ C;Dyu? (A.103)

or asymptotically, D, ~ C;(D;/C,). The experiments considered in Part II show that
C, and D; achieve a nearly constant value for relatively low values of Ry, while C;
only approaches a constant value for much higher Reynolds numbers. Obviously the
outer Reynolds stress parameter, D,, follows the inner velocity, thus emphasizing the
role of the boundary condition provided by the Reynolds stress on the outer flow by

the inner.

A.11 The Effect of Reynolds Number

The question arises: How large must the Reynolds number be before the boundary
layer begins to show the characteristics of the asymptotic state.

The averaged momentum equation from about y* > 30 out to ¥ < 0.1 is given
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approximately by

0 < uv >
0= ———""— A.104
5 (A104)

It has no explicit Reynolds number dependence; and the Reynolds shear stress is ef-
fectively constant throughout this region. Unfortunately many low Reynolds number
experiments do not have a region where this is even approximately true because the
convection terms are not truly negligible. Hence it is unreasonable to expect these
experimental profiles to display any of the characteristics of the overlap described
above, except possibly in combination with the characteristics of the other regions.
(For example, the composite velocity profile of section A.13 can be used to obtain the
Reynolds stress by integrating the complete momentum equation from the wall.)
Even when there is a region of reasonably constant Reynolds stress, however, this
is not the entire story because of the Reynolds number dependence of < —uv > itself.
The origin of this weak Reynolds number dependence can be seen by considering
the Reynolds transport equations. For this “constant shear stress region”, the vis-
cous diffusion and mean convection terms are negligible (as in the mean momentum

equation), so the equations reduce approximately to (c.f. Tennekes & Lumley, 1972),

Ou; + < Ouy >)— | < ujus > %+ < upuy > OUi| O< viuguy >
0z}, pax,- e 0o kT2 09 0o k
(A.105)

O~ —(<p

where U; = Ué;;. Thus viscosity does not appear directly in any of the single point
equations governing this region, nor does it appear in those governing the outer
boundary layer.

In spite of the above, however, viscosity can be shown to play a crucial role in at
least a portion of the constant stress layer, even at infinite Reynolds number. The
reason is that the scales of motion at which the dissipation, ¢;;, actually takes place
depend on the local turbulence Reynolds number, R; = ¢*/ve. At R, ~ 5000, the
energy-containing scales of motion, say L, are about 20 times larger than the Kol-

mogorov microscale, g (since L/nx = (R;/9)**). The peak in the dissipation spec-
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trum is at about 67, and most of the dissipation occurs at smaller scales (Tennekes
& Lumley, 1972). Thus for R; > 5000 approximately, the energy and Reynolds stress
producing scales are effectively inviscid,but they control the energy transfer through
the energy cascade to the much smaller dissipative scales. When this is the case, the
dissipation is nearly isotropic so €;; = 2ed;,. Moreover, € can be approximated by the
infinite Reynolds number relation, € ~ ¢®/L, where L is a scale characteristic of the
energy-containing eddies. The coefficient has a weak Reynolds number dependence,
but is asymptotically constant. Thus, the Reynolds stress equations are effectively
inviscid, but only exactly so in the limit. And in this limit the Reynolds shear stress
has no dissipation at all?3, i.e., €10 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing ranges nearly overlap (c.f. Figurefig:zpg-spectra), and so the latter (which
also produce the Reynolds shear stress) feel directly the influence of viscosity. In
this limit, the energy and dissipative scales are about the same, so the dissipation is
more reasonably estimated by € ~ vg?/L? where the constant of proportionality is of
order 10. The dissipation tensor, €;; is anisotropic and €5, in particular, is non-zero
(Launder 1993). (Hanjalic and Launder 1972, for example, take €10 = € < —ujuy >
/¢*.)

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from € ~ v¢?/L? to
€ ~ ¢>/L as R; increases. Thus the Reynolds stresses themselves will feel this directly
through their balance equations, and will consequently show a Reynolds number
dependence. Obviously, in order to establish when (if at all) parts of the flow become
Reynolds number independent, it is necessary to determine how the local turbulence

Reynolds number varies downstream and across the flow.

Over the outer boundary layer (which is most of it), L ~ 30 and ¢ =~ 0.1U.

23Note that these are nearly the same conditions required to observe a k~%/3-range in the energy
spectrum, (c.f. Batchelor, 1953).
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So when Uyf/v > 15,000, the dissipation in the outer flow is effectively inviscid.
Alternatively, L ~ 0.36 and ¢ ~ 2.5u, so this corresponds to 6* > 5,000. Above
these values the mean and turbulence quantities in the outer flow should show little
Reynolds number dependence, and this is indeed the case — when they are scaled
properly! This outer region can, of course, not be entirely Reynolds number indepen-
dent, except in the limit, and this residual dependence manifests itself in the overlap
layer in the slow variation of v, for example.

The near wall region is considerably more interesting since in it the scales gov-
erning the energy-containing eddies are constrained by the proximity of the wall.
Hence, the turbulence Reynolds number, R;, depends on the distance from the wall
and R; =~ 18y™ (Gibson 1997); so, in effect, y™ is the turbulence Reynolds number.

Because of this, two things are immediately obvious:

e First, since a fixed value of y™ does not move away from the wall as fast as d,
then as the Reynolds number increases more and more of the boundary layer
(in outer variables) will become effectively inviscid and will be governed by
the inviscid dissipation relation. And correspondingly, the mean and turbu-
lence quantities in the overlap layer will become Reynolds number independent,
albeit very slowly. Clearly this limiting behavior cannot be reached until at
least part of overlap layer, say the inertial sublayer, is governed by the infi-
nite Reynolds number dissipation relation and its coefficient has reached the
limiting value. Obviously this can happen only when there is a substantial in-
ertial subrange satisfying y* > 300 and for which the mean convection terms
are negligible, typically ¥ < 0.1. Thus the asymptotic limits are realized only
when 300v /u, << 0.16 or u.d/v >> 3000, which corresponds approximately to
Uxf/v >> 10,000. Note that a choice of 7 < 0.15 would bring these numbers
into coincidence with those for the outer flow, but at most all of these choices
are approximate. Regardless, all estimates for where inertial effects dominate

the dissipation and Reynolds stress in the near wall region are near the highest
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range of the available data which end at about Ry =~ 50,000. Therefore the
inertial sublayer, to the extent that it is identifiable at all, should display a
Reynolds number dependence, not only in C,, C;, and v, but correspondingly

in the behavior of < u? >, < uv >, etc.

Second, there will always be a region, hereafter referred to as the mesolayer®,
below about y™ & 300 in which the dissipation (and Reynolds stress) can never
assume the character of a high Reynolds number flow, no matter how high
the Reynolds number for the boundary layer becomes. This is because the
dissipation (and Reynolds stress) can never become independent of viscosity —
even though the mean momentum equation itself is inviscid above y™ & 30! This
fact is well-known to turbulence modelers (v. Hanjalic and Launder 1972), but
the consequences for similarity theory and asymptotic analyses do not seem to
have been noticed previously. It is particularly important for experimentalists
who have routinely tried to apply asymptotic formulas to this region, wrongly

believing the mesolayer to be the inertial sublayer.

Thus, as illustrated in Figure 1, the constant stress layer is really two separate re-

gions, an ‘overlap (or constant Reynolds stress) region’ and a ‘viscous sublayer’ where

the viscous stress directly affects the mean momentum equation. Each of these has

two subregions. The overlap region obtained in the preceding section consists of an

“tnertial sublayer’ (y* > 300, ¥ < 0.1) which is nearly inviscid; and a ‘mesolayer’

(30 < y™ < 300) in which the viscous stresses are negligible, but in which viscosity

acts directly on the turbulence scales producing the Reynolds stresses. The viscous

sublayer consists of a ‘buffer layer’ (3 < y* < 30) where the Reynolds stress and

viscous stress both act directly on the mean flow; and a ‘linear sublayer’ near the

wall (y* < 3) where the viscous stresses dominate. And of these four sub-regions, the

24This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued strongly
for its existence, but from entirely different physical and scaling arguments which we find untenable.
Nonetheless, despite the skepticism which greeted his ideas, Long’s instincts were correct.
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Figure 1: Schematic showing inner and outer regions of a zero pressure gradient
turbulent boundary layer together with subregions (6" = du./v).
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‘inertial sublayer’ will be the last to appear as the flow develops or as the Reynolds
number is increased. Thus it will be the most difficult to identify at the modest
Reynolds numbers of laboratory experiments. Identification will be easier if the prop-
erties of the mesolayer are known. Fortunately, as demonstrated in the next section,
its essential features have been captured by the overlap analysis; in particular the

parameter a™.

A.12 A Mesolayer Interpretation of a™

The overlap solution of equation A.70 can be expanded for values of y* >> |a*| to

obtain

U -1 1 - 1 -

— = Oy +yCiay™? 1+§’Y(7—1)C’ia+2y+(7 2)+67(7—1)(7—2)0ia+3y+(7 Vi
(A.106)

For y* >> |(2 — v)a™|/3, this can be approximated by the first three terms as

U a1 B
—= Coy "L +aty™ ™ + 3707 = L)aty* ™ (A.107)

An equivalent expansion in outer variables is given by

o= G+ + gy - Vet (A.108)

Equations A.107 and A.108 are useful for three reasons: First, they are an excellent
approximation to the overlap solutions for values of y™ > 2|a™| (or 7 > 2|a|). Second,
they are easier to incorporate into a composite solution than the overlap solution
itself since they do not have the singularity at y™ = —a™; and they will be used for
this purpose when comparing to experimental data. Third, the inner variable version

_|_

will be shown below to offer a useful insight into the role of the parameter o™ as

accounting for the mesolayer identified in the previous section.
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In the overlap region the turbulence energy balance reduces to production equals
dissipation; i.e., in inner variables, P* ~ €. This is exactly true in the limit of
infinite Reynolds number, but is approximately true even at finite Reynolds numbers
for 30 < y™ < 0.16%. The overlap solutions for the velocity and Reynolds stress have

already been obtained. The same methodology applied to the dissipation yields

et =Byt +at)’ (A.109)
It follows immediately by substitution for P™ and e* that
~C;D;(yt + o)L = Ei(yT + a™)’ (A.110)

Hence ¥ = 8+ v — 1 and E; = vC;D;, at least in the limit as 6 — oco. So the
dissipation is given by

e = CiD;(y* +aT)P 1 (A.111)

But in section A.10 it was shown that 8 — 0 and D; — 1 as 6t — oo. Therefore in
this limit, the dissipation profile and the velocity derivative profile are identical and

equal to the derivative of equation A.70 with respect to y™; i.e.,

L, dut + g\l
€ —>dy—+:701~(y +a") (A.112)

Equation A.111 can also be expanded for y* >> a™ to obtain

+

€~ /CiDiy P L+ (v + B — 1)Z—+] (A.113)
This can be re-written into the form
et =€l frly") (A.114)
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where

e =C; Dy (A.115)
and
a+
fr= [1+(7+ﬁ—1)y—+] (A.116)

But this is identical to the form used by most turbulence modellers for wall- bounded
flows (cf. Reynolds 1976). In fact, if R; = 18y™ as noted earlier, the function fr is
exactly that used by Hanjalic and Launder 1972 to account empirically for the change
in the character of the dissipation near the wall. Thus the interpretation of a™ as a
mesolayer parameter is obvious since it, in effect, modifies the dissipation (and hence
the velocity profile) near the wall.

The same form of fr is obtained if the log profile of Appendix I for fully-developed
pipe and channel flow is expanded in a similar fashion, even though the form of ¢, is
different (v. George, Castillo & Knecht, 1996). However, interestingly, if the order of
argument is reversed and any of the simple dissipation models (e.g., Reynolds 1976)
are used to deduce the mesolayer contribution to the velocity profile, they produce
a y+_1 additive term for both types of flows instead of the y”_l required for the
developing flow here. This form of the mesolayer contribution was used by George et
al. (1996) and Castillo (1997), and is nearly indistinguishable from the expanded form
of the overlap solution given by equation A.107. Obviously these simple turbulence
models, as currently posed, are inconsistent with the theory developed here, although
the difference is slight. Also note that the common practice of choosing the model
constants to produce a log profile at y* ~ 30 is clearly wrong if the theory proposed
herein is correct.

Note that equation A.114 offers an insight into why the familiar log profile has
survived so long. As noted earlier, the high Reynolds number dissipation is approx-
imately proportional to ¢*°/y" in inner variables. Suppose there were a region in

the boundary layer for which the kinetic energy is nearly constant, but at sufficiently
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large values of y* so that the a* could be neglected. Then to a first approximation,
dut/dy* ~ ™", and the profile corresponds exactly to that originally deduced by
Prandtl (1932) from an eddy viscosity hypothesis. These assumptions above are only
satisfied over a very narrow region for boundary layer flows (50 < y* < 150), but
this is exactly the region where the log law is known to work best (v. Bradshaw
and Huang 1995). These same authors note the seemingly paradoxial fact that the
log profile is remarkably ‘resilient’, but its range of validitly does not seem to in-
crease with increasing Reynolds number like a proper overlap solution as it does for
fully-developed pipe and channel flows. In fact, the mesolayer/overlap profile derived
above and the old log law are nearly indistinguishable over this limited range. All
of these observations are consistent with the interpretation that the ‘log’ region in
a boundary layer is just a portion of the mesolayer. Thus Prandtl’s original log law
is valid, but only over a limited range. Clauser’s identification of this region with

Millikan’s matched layer is, however, clearly incorrect.

A.13 Construction of a Composite Velocity Profile

It is possible to use the information obtained in the preceding sections to form a
composite velocity profile which is valid over the entire boundary layer. This is
accomplished by expressing the inner profile in outer variables, adding it to the outer
profile and subtracting the common part (Van Dyke, 1964), which is the profile for the
overlap region. Alternatively, the outer profile could be expressed in inner variables,
etc.

The composite velocity profile in outer variables is given by

Uy

Uso

Y1+ £, 6] + 2= [16*,6%) — (55" +a*)] (A.117)

Uso
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Recall that f,, f;, C; and «y are all functions of §*, as is U, /Us.

The composite velocity solution has the following properties:

e As 6T =0/n — 00, U/Us — 1+ foe0(7) for finite values of j. Thus there is
a boundary layer profile even in the limit of infinite Reynolds number and it
corresponds to the outer scaling law. This can be contrasted with the Millikan
approach for which U/U, — 1, a limit remarkably like no boundary layer at

all, even in its own variables.

¢ Asy — 0, U/Uy — (us/Usx) fi(got, o) for all values of 6. This is because
the small 7 behavior of [1 + f,(7,07)] is cancelled out by the last term leaving

only the inner solution.

e As ot — 00, U/Usx — 1+ fo(y,d7) for all values of 6. This is because the
large 76" behavior of f; is cancelled by the last term.

e In the overlap region, only the power law profile remains.

It is an interesting exercise to substitute the composite solution into the full bound-
ary layer equation given by equation A.11. As expected, it reduces to equation A.12
for infinite Reynolds number and to equation A.13 as the wall is approached. This
can be contrasted with the substitution of the Millikan/Clauser log law plus wake
function (v. Coles 1956) in which the outer equation vanishes identically in the limit
of infinite Reynolds number.

An alternative composite solution can be obtained by multiplying the inner and

outer solutions together and dividing by the common part; i.e.,

= ') (A.118)

For the zero-pressure-gradient boundary layer, this composite solution is nearly in-

distinguishable from equation A.117 when plotted against the experimental data.
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A.14 Displacement and Momentum Thickness

The displacement thickness, d,, is defined by
Und, = / (U = U)dy (A.119)
0

This can be expressed using equation A.117 as

%* =1, — LR " (A.120)
or

d 1 I,

— =101+ = A121

5. - 10T R,) 20
where

L= [ 1,04y (A122)

0
L= [ [f ) - Gl + )] dy* (A123)
0

and the Reynolds numbers Rs; and R;, are defined by

Ry = U0 (A.124)
v
and
R, = Yo (A.125)
v

The integrals [; and I, are functions only of the Reynolds number and become asymp-
totically constant.

The momentum thickness, 6, is defined by

U9 = /°° U(Us — U)dy (A.126)
0
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Again using equation A.117, the result is

9 *
5 = _(Il+13) _RJ_I [IQ+214+I55 ] (A.127)
or
5= T {1+R1[I+21 +1 u]} (A.128)
' I, + I ] 2 4 5Uoo )
where
Ry = 2= (A.129)
v
and
*© 2
I= [ [fu(m.6")] dy (A.130)
0
L= [ (A7 6%) =Gl + )] foly* /5%, 6%)dy” (A.131)
* 2
I = / [fiyt,6%) = Cily™ +a*) ] dy* (A.132)
0

Since u,/Uy varies in the limit as (Ux6/v)™/0*" and 4 > 0, all terms but the
first vanish in the limit of infinite Reynolds number. Thus, as for the displacement
thickness, the momentum thickness is also asymptotically proportional to the outer
length scale, but with a different constant of proportionality. This limit is approached
very slowly, and the limiting value is achieved at Reynolds numbers well above those
at which experiments have been performed.

The shape factor can be computed by taking the ratio of equations A.120 and
A.127. The result is

H

5./0

B I + LR;! (A.133)
(L + L)+ Ry Y (I + 214 + L, /Uy,) '

For large values of Reynolds number, the asymptotic shape factor is easily seen to be
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given by
I

I + 1

H— (A.134)

Note that since f, < 1 always, it follows from their definitions that I; < 0, I3 > 0 and
|I;| > I5. Therefore the asymptotic shape factor is greater than unity, in contrast to
the old result, but consistent with all experimental observations.

It is obvious from equations A.120 and A.127 that both the displacement and
momentum boundary layer thicknesses are asymptotically proportional to the outer
length scale (or boundary layer thickness) used in the analysis. Note that it does
not matter precisely how this outer length scale is determined experimentally, as long
as the choice is consistent and depends on the velocity profile in the outer region of
the flow (e.g., do.99 OF dg.95). This is quite different from the Millikan/Clauser theory
(with finite k) where the displacement and momentum thicknesses vanish relative to

the unspecified outer length scale.

A.15 Streamwise Dependence of the
Boundary Layer

The friction coefficient can be written entirely in terms of Ry by using equations A.128

and A.90; i.e.,

_ o Gov2/(14) ( —1 ) —29/(14)
Cf = 2(01) [ Il + I3 (Ra + ]2 + 2]4)] (A135)

where the term involving Isu, /Uy has been neglected. Also I, and I, are much less

than Ry, so that
C -1
A2 2(22)2/4) ( )R —2/04) A.136
s~ 2 (g ) Bl (4.136)

This theoretical result provides a point of reference with Schlichting (1968) who noted

that a 1/7-power law fit the velocity profile reasonably over a range of Reynolds
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/* which was his corresponding

1/5

numbers. Using v = 1/7 leads immediately to ¢y ~ Re_l
friction law. Note that for higher Reynolds numbers Schlichting suggested c; ~ R,
which corresponds to v = 1/9, consistent with the idea that - is indeed Reynolds
number dependent and decreases with increasing Reynolds number. The asymptotic
value of 7o, = 0.0362 suggested in Part 11 gives ¢y ~ Ry 097 as the limiting power law.
The integral of equation A.11 across the entire boundary yields the momentum

integral equation for a zero-pressure gradient boundary layer as
o 1

Z_Z A.
d.T 2Cf ( 137)

Thus the z-dependence of # can be obtained by integrating

— N\
1 3 ]

where R, = Uyz/v.

If the values of C;, C,, v and the I’s can be evaluated as functions of Ry, equa-
tion A.138 can be integrated numerically to yield the variation of Ry as a function of
R, — R,, where R, is a virtual origin which will be determined by how the boundary
layer is generated. The x-dependence of H, and the other boundary layer parameters
can be similarly determined by substituting the results of the integration into the
appropriate equations.

It is interesting to note that if v can be considered to be constant over some range

of Reynolds numbers, then equation A.138 can be integrated analytically to obtain

CNYO) 1437\ —1
Ry= (22 R, — Ry} /(487 A.139

where z; is the virtual origin for the section of the flow under consideration. Thus the
boundary layer thickness is proportional to z(!*1/(1+3%)  For example, if v — 1/10,

6 — z''/'. The suggested infinite Reynolds number limit for v corresponds to
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§ ~ 20935 Because of the slow approach of v to its limiting value, a most important
experimental clue that the present analysis is correct will be whether the exponent
increases toward unity (or some limiting value close to it, like 0.935) as data points
are added from distances farther from the leading edge, especially if data from points

close to leading edge are successivelly dropped.

A.16 Power Law versus Log Law

The asymptotic approach of v to a small value makes it possible to approximately
recover the logarithmic relations of the classical theory. Ignoring for the moment the
mesolayer parameter a™, the power law velocity profiles of equations A.69 and A.70

can be expanded for small values of 7 as

g = fi(yT;0%) = C’Z-(ﬂl"er ~ Ci(1+ylny™ +...) (A.140)
and
UE =14 f,(7;07) = Coe™¥ = C,(1 +7ing + ...) (A.141)

So the asymptotic boundary layer profiles would appear logarithmic to leading order,
even for finite values of 7.

From these “log” profiles and the asymptotic friction value of equation A.73 it
follows that the effective von Karman/Millikan “constants” of equations A.3 and A.4

are given by

1/k = 7o Cin (A.142)
B; = Cyo. (A.143)

and
By = Cino(1— Cioo) (A.144)

Thus the Millikan/Clauser log profile result is recovered as the first term in an expan-
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sion. It will be shown below, however, that this is not a useful approximation since
the higher order terms vanish at Reynolds numbers well above those encountered in
the experiments.

It is easy to see why the mean velocity profile could have been accepted for so long
by experimentalists as logarithmic: it is very difficult to tell a logarithm from a weak
power using experimental data alone since one can always be expanded in terms of
the other. Suppose for the moment that it is indeed the overlap region which is being
examined and that the present theory is correct, but that an experimenter believed
the log theory to be correct with a constant and finite value of k. The values for
C; and v at Ry = 50,000, the limits of experimental data, will be estimated later
in Part II to be about 12 and 0.09 respectively. These yield a value of 1/k = 1.1
which is nowhere close to the generally accepted value of about 2.5, believed to be
the asymptotic value for both boundary layers and pipes. Over the range of most
experiments, however, Ry ~ 10* and v &~ 1/7 while C; ~ 10, which yields about an
estimate of 1/k =~ 1.4. However, the logarithmic expansion converges rather slowly
and terms above first order are not negligible (nor were they in the calculation above).

To third order in yIny™, the effective value of « is given by

1 1 1
—~ Gl +yIny" +S(vIny")* + = (vIngy")’] (A.145)

Now the presence of y™ in this expansion is interesting since it is well-known that
attempts to fit the log law to boundary layer velocity profiles at modest Reynolds
numbers depend on where the point of tangency is chosen. If k is evaluated by fitting a
log profile which is tangent to the data at y* = 100 (as suggested by Bradshaw 1993),
using the above values in the expansion yields an estimate of 1/k ~ 2.36 or k & 0.42,
which is the value usually assumed. Most often in practice, the experimenter picks
his point to obtain the “right” value of x (hence its universal value), and accepts
whatever value of the other universal (but highly variable!) constant which comes

out. In view of this and equation A.145, the seemingly paradoxical variability of B;
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and constancy of k is not at all surprising since the ‘right’ point of tangency can
always be found.

As noted above, there is considerable debate in the literature about the value of
B; with cited values (for boundary layers) ranging from 4 to 12. From equation A.143
it is equal to C;. C; will be seen later to vary from about 7 to 10 over the range of
the low Reynolds number experiments. This is higher than the value of 4.9 suggested
by Coles 1968, but well in the range of recent experiments, some of which also show
much higher values and a Reynolds number dependence (Nagib and Hites 1995).
There is no consensus value for the outer 'constant’ B,, and it is seldom reported at
all. Perhaps equation A.144 suggests a reason for this in that it is quite small since
C, is never very far from unity. Hence estimates for it would vary widely since the
errors might be larger than its value.

In summary, at least some of the general satisfaction (and dissatisfaction as well)
with the log law over the range of most experiments can be explained with the new
theory. Even the sensitivity noted by experimentalists to the choice of the point of
tangency can be explained because of the Iny*-terms in the expansion of x for finite
values of 7. The power law profiles (and the parameters in them) resulting from the
present theory, if correct, should be much less sensitive to the actual range of the
data used, especially if the limits imposed by the mesolayer are honored.

The considerations above apply only to boundary layers and other developing
flows, and not to homogeneous wall-bounded flows like fully-developed pipes and
channels. These homogeneous flows are indeed described theoretically by logarithmic
profiles, the recent arguments of Barenblatt et al. (1997) notwithstanding. These
naturally occuring log profiles could, of course, be expanded approximately as power
laws, but with all the problems of Reynolds number dependencies and tangency points
noted above. This undoubtedly explains the success of Barenblatt et al. (1997)
in fitting power laws to the data of Nikuradse (1932), as well as their difficulty in

extending their results to the much higher Reynolds numbers of the Zagarola and
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Smits (1996) superpipe data?.

Before leaving this section it is interesting to consider one aspect of a finite and
non-zero limit for u, /Uy, however unlikely it may be in view of the requirement for
a finite local energy dissipation rate discussed earlier. If both u, and U, were the
same in the limit, shouldn’t an asymptotic theory based on either alone (like the Mil-
likan /Clauser theory) be correct? An asymptotic approach of v to zero indeed makes
the expansions above exact, and the definitions of equations A.142 and A.143 must be
exactly the Millikan/Clauser constants. The problem is that in the limit as Ry — oo,
k will blow up if v — 0 since Cj must be constant (to satisfy the requirements for
similarity of the mean momentum equation). This unseemly behavior of & is not just
a consequence of the theory here but can readily be seen from the old log friction
law of equation A.5 by requiring that the limiting value of u,/Uy be a non-zero con-
stant. In fact, if the Millikan/Clauser scaling arguments are applied to the turbulence
moment equations, then it is easy to show that similarity of the Reynolds stress equa-
tions is possible only if dé/dx = constant and u./Us = constant, consistent with
the analysis presented herein. And the only possibility of satisfying equation A.5
with a finite value of u,/Uy is for k to increase without bound, exactly as derived
here. Note that this problem has been rationalized in the past by simply ignoring all
the second order terms as noted in Section A.6. Interestingly, the terms which must
be ignored are those associated with the streamwise growth of the boundary layer.
These second-order terms vanish identically for flows homogeneous in x, providing yet
another indicator that the inner and outer region of fully-developed pipe and channel
flows indeed scale with u, as argued in Appendix 1.

Therefore, either the old theory is not the limit of the new (if u,/Ux, — 0), or
it is but with an infinite von Karman constant (if the limiting value of u,/Us is

finite). Obviously the latter possibility makes little sense. Note that precisely the

2 They ‘explained’ this failure by suggesting the superpipe data was tainted by roughness. It is
shown in Wosnik et al. (2000), and in chapter 4 that this it not the case.
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same arguments which have been applied to the boundary layer here lead to a finite
limiting value of the von Karman ‘parameter’, k., in the log profile for fully-developed
pipe and channel flows (see Appendix I). Thus the principles applied to both flows
are the same; only the results are different; and this is clearly because one flow is
developing in x while the other is homogeneous.

“Part II. Experimental Data” of George & Castillo (1997) has not been included

due to its length. The reader is referred to the original article.
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Appendix B

Details of the Overlap Analysis for

Developing Flows

The methodology used to determine the overlap characteristics was introduced by
George (1995) and was termed “Near-Asymptotics”. It is necessary because the
traditional approaches to asymptotic matching cannot account for the possibility of
a power exponent tending to zero, which cannot be ruled out without additional
arguments. Here the overlap analysis is performed for the mean velocity profile,
its adoption to any statistical quantity is straightforward. This appendix closely
follows George & Castillo (1997) (see also Wosnik & George (1995) for an application
to the natural convection boundary layer), and is included here for completeness.
The details of this particular overlap analysis are the same for all developing wall-
bounded turbulent flows, like turbulent boundary layers and wall jets. There is a
slight difference depending on whether there is a need for a reference velocity in the
outer layer (boundary layer) or not (wall jet, natural convection boundary layer),
which will be pointed out where necessary. This analysis is somewhat different —
especially in its results — for flows which are homogeneous in the streamwise direction,
such as fully developed pipe and channel flows, therefore it is discussed separately in

chapter 4.
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The question of whether there is a common region of validity can be investigated
by examining how rapidly f, and f; are changing with 6. From the Taylor expansion
of the velocity derivatives in equation A.66,5.58 about a fixed value of §+,

filyT 6"+ AT) — filyTs6t) 1 Ofilyt;6T)

AStfi(y*; o) ~ Ty ot) a0+ Si(0*,y")  (B.1)

y+

and

So(07,7) (B.2)

fo(G 0" + ASF) = fo(g;6%) 1 9fe(g;07)
ASH fo(7;6T) T L@oet) ot |

Thus S; and S, are measures of the Reynolds number dependences of f; and f,
respectively. Both vanish identically in the limit as §* — oo. If y*, .. denotes a
location where outer flow effects begin to be strongly felt on the inner scaled profile,
then for y* < y™, .., Si; should be much less than unity (or else the inner scaling is
not very useful). Similarly, if 7,,;, measures the location where viscous effects begin
to be strongly felt (e.g., as the linear velocity region near the wall is approached),
then S, should be small for ¥ > 7,,,,. Obviously either S; or S, should increase as
these limits are approached. Outside these limits, one or the other should increase
dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an
“overlap” region where both scaling laws are valid. Since S; will increase drastically for
large values of y for given % and S, will increase for small values of y, an “overlap”
region exists only if there exists a region for which both S; and S, remain small
simultaneously. In the following paragraphs, this condition will be used in conjunction
with equation 5.56 to derive the functional form of the velocity in the overlap region
at finite Reynolds number.

Because of the movement of the matched layer away from the wall with increasing
X, it is convenient and necessary to introduce an intermediate variable y which can

be fixed in the overlap region all the way to the limit, regardless of what is happening
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in physical space (v. Cole & Kevorkian, 1981). A definition of § which accomplishes
this is given by

g=yo " (B.3)
or

gt =G5t (B.4)
Since 7 =y /6", it follows that

g=gst""" (B.5)

For all values of m satisfying 0 < m < 1, § can remain fixed in the limit as §* — oo
while 7 — 0 and y™ — oco. Substituting these into equation 5.56 yields the matching

condition on the velocity as
Fo@0*™ ", 6%) = g(67) (g™, 67) (B.6)

Now equation B.6 can be differentiated with respect to 6% for fized § to yield

equations which explicitly include S; and S,. The result is

_ dg afi
7o d5+f1+g{6y+

8y+ of;
s+ 06t 06t

9fo
9y

gy | 0fs
s 05T B6F

R

Carrying out the indicated differentiation of y* and 7 by d* (for fixed %), and multi-

y} (B.8)

} (B.9)

plying by §%/f, yields (after some rearranging)

y+ ofi

g 0/,
—_— _ m_
5+ fi oyt

fo Oy

104,
o Jo00°

(m—1) & g dot 7, 06+

+ .

It follows immediately from equation 5.58 that

_10f,
o o007

__otdg [ 10f
s g dot £,00+
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Equation B.9 can be rewritten as

7 0/,

=~(67) —6%(S; — S, B.10
o SRESCREERCEEY (B.10)
where v = v(67") is defined by
+
Gty =-L 2 I (B.11)

g d6t dlnét

Note that the first term on the right hand side B.10 is at most a function of §* alone,
while the second term contains all of the residual y-dependence.

Now it is clear that if both

1 ding | |~
and
1 dlng | |~

then the first term on the right-hand side of equation B.9 dominates. If v — constant
as 07 — oo, the inequalities are satisfied. Note that a much weaker condition can be
applied which yields the same result; namely that both inner and outer scaled profiles
have the same dependence on 61, i.e., S; = S, in the overlap range.

Since these inequalities are satisfied over some range in y, then to leading order,

equation B.9 can be written as

7 ofY

| =7(6") (B.14)
0oy |y

The solution to equation B.14 can be denoted as fO(I) since it represents a first order
approximations to f,. It is not, however, simply the same as f,o because of the 6
dependence of 7, but reduces to it in the limit. Thus, by regrouping into the leading
term all of the y-independent contributions, the method applied here has yielded a
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more general result than the customary expansion about infinite Reynols number. It
is also easy to see why the usual matching of infinite Reynolds number inner and
outer solutions will not work if the limiting value of v is zero.

From equation 5.58, it also follows that

yt afi(l)

1
fz() ay+ 5t

= (6 (B.15)

An interesting feature of these first order solutions is that the inequalities given by
equations B.12 and B.13 determine the limits of validity of both equations B.14 and
B.15 since either S, or S; will be large outside the overlap region. Clearly the extent
of this region will increase as the Reynolds number (or %) increases.

Both equations B.14 and B.15 must be independent of the origin for y; i.e. invari-
ant to transformations of the form y — y + a. Therefore, the most general solutions

are of the form:

V@, 6% = C(g+a) (B.16)
fOt 67 = Cilyt +at)” (B.17)

where the parameters C,, C; and 7 are functions of ™ and must be determined
along with the constant a. In the remainder of this chapter, the superscript (1)’ will
be dropped; however it is these first order solutions that are being referred to unless
otherwise stated.

The relation between u, and U, follows immediately from equation 5.56; i.e.,

= Gl iy

However, equation B.11 must also be satisfied. Substituting equation B.18 into
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equation B.11 implies that v, C,, and C; are constrained by

dry d C
+ @47 _ 4 Yo
In§ ity Ci] (B.19)
or equivalently,
dy d C
Ingt = 1 —0] B.2
M0 st~ dmer e, (B.20)

Equation B.19 is exactly the criterion for the neglected terms in equation B.9 to
vanish identically (i.e., S; — S, = 0). Therefore the solution represented by equations
B.16 — B.19 is, indeed, the first order solution for the velocity profile in the overlap
layer at finite, but large, Reynolds number. Clearly when y* is too big or % is too
small for a given value of 6%, the inequalities of equation B.12 and B.13 cannot be
satisfied. Since all the derivatives with respect to 0™ must vanish as 0t — oo (the
A.LP.), the inner range of the outer overlap solution is unbounded in the limit, as is
the outer range of the inner.

Since equation B.20 must be satisfied regardless of the precise choice of %, solu-
tions to it must be invariant to transformations of the type 6 — D¢ where D is a
scale factor. Also, equations B.16 and B.17 must be asymptotically independent of
Reynolds number, since f; and f, are. Therefore the coefficients and exponent must

be asymptotically constant; i.e.

70") = Yo
Co(61) = Com
CZ((S+) — Cioo

as 07 — oo. Also, as noted in in section 5.7, Yy, Coso and C,s cannot be zero.
These conditions are powerful constraints; and together with equation B.19 rule out

some functional forms for  (like that suggested by Barenblatt (1993), for example).
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Therefore it is important to note that they are a direct consequence of the AIP and
the assumption that scaling laws should correspond to similarity solutions of the

equations of motion.

...and two quotes for the road:

Remember, son, trying is the first step towards failure.

— Homer Simpson (immortal), animated couch potato, counseling Bart

There s no comparison between that which s lost by not succeeding and
that lost by not trying.
— Francis Bacon (1561-1626), English philosopher
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